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ABSTRACT
This paper introduces fsLDA, a fast variational inference
method for supervised LDA, which overcomes the compu-
tational limitations of the original supervised LDA and en-
ables its application in large-scale video datasets. In addi-
tion to its scalability, our method also overcomes the draw-
backs of standard, unsupervised LDA for video, including
its focus on dominant but often irrelevant video information
(e.g. background, camera motion). As a result, experiments
in the UCF11 and UCF101 datasets show that our method
consistently outperforms unsupervised LDA in every met-
ric. Furthermore, analysis shows that class-relevant topics
of fsLDA lead to sparse video representations and encapsu-
late high-level information corresponding to parts of video
events, which we denote “micro-events”.

Keywords
video event detection; video micro-events; supervised topic
modeling; variational inference

1. INTRODUCTION
Recently there have been significant advancements in video

event detection with the two-stream models of [10, 15, 16]
achieving high classification results. However, several re-
lated problems still exist (e.g. mapping motion to text de-
scriptions, zero-shot detection) and seeking meaningful ways
to analyse and represent video events remains a challeng-
ing and interesting problem. This paper aims to develop
a method capable of decomposing actions or events from
large-scale video data to a set of meaningful discriminative
components, namely micro-events. To achieve that, we de-
velop fsLDA, a variational inference algorithm that simul-
taneously preserves the computational efficiency of Latent
Dirichlet Allocation (LDA) [2] and improves the discrimina-
tiveness of supervised LDA (sLDA) [1].
LDA was initially introduced as an unsupervised method,

namely only the words in documents were considered to be
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the observed information. The goal was to infer topic dis-
tributions that maximized the likelihood of the data. Later
on, Blei et al. [1] introduced a supervised variant of LDA
in order to retain the discriminative information from the
words with respect to the classes.

Supervised LDA has been successfully applied for classify-
ing multimedia content mainly in the form of images [13, 8,
17]. Using a generative model is shown to be beneficial since
it allows for different types of information to be encoded in a
single latent space, resulting in improvements shared accross
all predictions. For instance, modeling annotations in [13]
marginally improves classification performance. However, it
is shown in [3] that in sLDA the classes influence only lightly
the latent topic assignments resulting in performance similar
to LDA, which is an issue addressed in this paper. Further-
more, sLDA becomes computationally intractable for even
moderately large video collections [9].

Regarding multimedia content, LDA has also been re-
cently used, in a straightforward manner [9, 4], to combine
information from different modalities and discover topics
that span different vocabularies. To the best of our knowl-
edge, there has been no attempt to train a discriminative
LDA model on large-scale video data and this is probably
due to computational issues in the traditional supervised
LDA.

Unsupervised topic models encode the dominant structure
in documents. In multimedia and especially in video data
most content may refer to background movements and cam-
era motion. This is less relevant to the depicted action than
the foreground objects and their motion, thus our goal is to
develop a method capable of encoding the most relevant in-
formation about the illustrated event rather than the most
common.

The main contributions of this work are the following:

• We adopt topic modeling to infer both discriminative
and semantic topics from large-scale video data, which
encapsulate information about the micro-events that
generate the events.

• We propose a supervised variation of LDA (fsLDA)
that not only has lower asymptotic complexity than
sLDA but is also able to adapt the influence of the
supervised part on the final topic representation.

The rest of this paper is structured as follows. In section
2 the proposed method is presented. Experimental results
are reported in section 3, followed by conclusions in section
4.
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2. FAST SUPERVISED LDA
The key idea behind fsLDA is to reduce the computa-

tional complexity of sLDA so that it can infer topic distri-
butions from large-scale video data, while at the same time
increasing the influence the class information exerts on the
topics to improve classification performance. Each video in
the corpus corresponds to a mixture of visual and motion
codewords, which are obtained by using a bag-of-words ag-
gregation method on extracted local features. Every video
belongs to one of C discrete classes, let it be y.
We suppose that the corpus consists of D documents and

that there are V terms in the vocabulary. In addition, we
denote two latent variables θD×K and zD×N×K , where K is
the total number of topics and N is the number of codewords
in a document d. The first hidden variable θ corresponds to
the per-document topic distributions, while z corresponds to
the per-codeword topic assignments. Moreover, αK , βK×V

and ηK×C are the model parameters. sLDA assumes the
following generative process for each document d in the cor-
pus. For clarity, the subscript d is omitted when an equation
refers to a single document (e.g. θ instead of θd and zn in-
stead of zdn).

1. Draw topic proportions θ ∼ Dir(α)

2. For each codeword:

(a) Draw topic assignment zn | θ ∼ Mult(θ)

(b) Draw word assignment wn | zn, β1:K ∼ Mult(βzn)

3. Draw class label y | z1:N ∼ softmax
(

1
N

∑N
n=1 zn, η

)
where the softmax function provides the following dis-
tribution

p(y, z̄, η) =
exp

(
ηT
y

1
N

∑N
n=1 zn

)
∑C

ŷ=1 exp
(
ηT
ŷ

1
N

∑N
n=1 zn

)
Given a document and the corresponding class label the

posterior distribution of the latent variables is intractable,
thus we use variational methods to approximate it. Follow-
ing Blei et al. [1], our goal is to maximize the evidence lower
bound (ELBO) L(·), which is given in equation 1.

log p(w, y | α, β, η) ≥ L(γ, ϕ | α, β, η) =
Eq[log p(θ | α)] + Eq[log p(z | θ)] + Eq[log p(w | β, z)]+
H(q) + Eq[log p(y | z, η)]

(1)
The expectation is taken with respect to a variational dis-

tribution q(θ, z1:N | γ, ϕ1:N ) = q(θ | γ)
∏N

n=1 q(zn | ϕn),
where ϕn is the variational multinomial parameter for the
topic assignment zn and γ is the variational Dirichlet pa-
rameter. Figure 1 depicts the probabilistic graphical model
of sLDA.

2.1 Inference approach of sLDA
In this section we present the inference approach of sLDA

as it was introduced by Wang et al. in [13]. We point out
the demerits of this approach, that motivated the develop-
ment of our algorithm which is presented in section 2.2. In
equation 1 the first three terms and the entropy H(q) of
the variational distribution are identical to the correspond-
ing terms in the ELBO for unsupervised LDA [2]. The last
term is the expected log probability of the class variable

D

N K

βk

η

wdnθd

yd

α zdn

Figure 1: A graphical model representation of Su-
pervised LDA

given the topic assignments, which can be computed from
equation 2.

Eq[log p(y | z, η)] = ηT
y

N∑
n=1

ϕn

N
−Eq

log C∑
ŷ=1

exp(ηT
ŷ z̄)

 (2)

Following Wang et al. [13], the second term is approxi-
mated using Jensen’s inequality, which results to the follow-
ing update rules for ϕ and γ in the expectation step, where
Ψ(·) is the first derivative of the log Γ(·) and h is computed
as in [13].

γ = α+

N∑
n=1

ϕn

ϕn ∝ exp

(
Ψ(γ) +

1

N
ηy − (hTϕold

n )−1h

) (3)

Notice that in order to update ϕn once, one must compute
the rule multiple times, since it is a fixed-point iteration
method. The supervised part of this update rule is multi-
plied by 1

N
and as a result, the influence of the supervised

part is reduced for documents with more words, also no-
ticed in [3]. Another drawback of the traditional inference
approach of sLDA concerns the maximization step, where
one must keep in memory all the variational parameters in
order to compute the gradient of L with respect to η (e.g.
for a moderately large video collection with 5000 videos,
4000 codewords and 50 topics, the variational parameter ϕ
consists of 109 elements).

2.2 Inference approach of fsLDA
The main goal of our method is to improve the computa-

tion of the approximate variational distribution and reduce
the memory requirements. L in terms of ϕn is:

Lϕn =

K∑
i=1

ϕn,i

(
Ψ(γi)−Ψ(

K∑
j=1

γj)

)
+

K∑
i=1

ϕn,i log βi,n −
K∑
i=1

ϕn,i log ϕn,i +

ηT
y
ϕn

N
− Eq

log C∑
ŷ=1

exp(ηT
ŷ z̄)


(4)

The last term of equation 4 prevents a closed form solution
for the update of ϕn. Using Jensen’s inequality we can derive
a lower bound for the expectation of the log normalizer and
then approximate it with a second-order Taylor expansion,
as shown in equation 5.
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− Eq

log C∑
ŷ=1

exp(ηT
ŷ z̄)

 ≥ − log

C∑
ŷ=1

Eq

[
exp(ηT

ŷ z̄)
]
≈

− log
C∑

ŷ=1

exp(ηT
ŷ Eq[z̄])

(
1 +

1

2
ηT
ŷ Vq[z̄]ηŷ

) (5)

The expectation is Eq[z̄] =
1
N

∑N
n=1 ϕn, while the variance

is Vq[z̄] = 1
N2

(∑N
n=1

∑
m̸=n ϕnϕ

T
m +

∑N
n=1 diag(ϕn)

)
. It

can be observed that the variance term is multiplied with a
very small number, especially in the case of multimedia. For
instance, in case of video data, the corresponding number of
codewords usually surpasses 20,000. Therefore, we decide to
approximate the expectation of the log normalizer with the
first-order expansion.
Finding a closed form solution to maximize Lϕn requires

computing the derivative with respect to ϕn and adding La-

grange Multipliers, L′
ϕn

= Lϕn + λn

(∑K
i=1 ϕn,i − 1

)
.

dL′
ϕn

dϕn
=

(
Ψ(γ)−Ψ(

K∑
j=1

γj)

)
+ log βn − log ϕn − 1 + λn+

1

N

ηy −
∑C

ŷ=1 exp
(
ηT
ŷ Eq[z̄]

)
ηŷ∑C

ŷ=1 exp
(
ηT
ŷ Eq[z̄]

)


(6)
The last term of equation 6 can be written using s =

softmax(Eq[z̄], η) as ηy−
∑C

ŷ=1 sŷηŷ. Experiments show that
s changes very slowly with respect to ϕn and therefore we
derive the subsequent closed form update rule.

ϕn ∝ βn exp

Ψ(γ) +
1

N

ηy −
C∑

ŷ=1

sŷηŷ

 (7)

Using the update rule from equation 7 we managed to alle-
viate the computational problems indicated in 2.1. We thus
attain comparative computational complexity with the un-
supervised LDA, while preserving the supervised part. How-
ever, the supervised part in this update rule is less dominant
than the unsupervised one, due to the multiplication with
the 1

N
factor.

In order to address this problem we introduce the update
rule shown in equation 8, where C is a free to change hyper-
parameter, which can influence the effect of the supervised
part on the topics inference.

ϕn ∝ βn exp

Ψ(γ) +
C

max(η)

ηy −
C∑

ŷ=1

sŷηŷ

 (8)

Intuitively, this update rule is justifiable if we consider
that what actually matters is the relative proportions of the
two terms and not the magnitude of their values, since ϕn

is normalized. The update rule for γ remains the same as in
the unsupervised LDA.
In the maximization step, we need to maximize L with re-

spect to the model parameters β and η. The maximization
with respect to the topics β remains the same as for the un-
supervised LDA. To compute the classification parameters

Figure 2: Typical Bag of Words and topics repre-
sentations for a video

η we need to maximize Lη.

Lη =

D∑
d=1

ηT
yd Eq[z̄d]−

D∑
d=1

log

C∑
ŷ=1

exp(ηT
ŷ Eq[z̄d])

(
1 +

1

2
ηT
ŷ Vq[z̄d]ηŷ

) (9)

We have already mentioned that the influence of Vq[z̄] is
insignificant. In addition, in order to avoid computing and
keeping the variance matrix in memory for every document,
we adopt the first order approximation which amounts to
multinomial logistic regression with respect to Eq[z̄].

3. EXPERIMENTS
In this section, fsLDA is evaluated in two action recog-

nition datasets of realistic videos. We assess its perfor-
mance regarding two metrics, namely discriminativeness of
the topic mixture representations and qualitative assessment
of the semanticness of the inferred topics.

3.1 Experimental setup
Two datasets are used in our experiments, the UCF11-

Youtube Action Dataset [5] and the UCF101-Action Recog-
nition Dataset [12]. UCF11 is composed of 11 action classes
with 1600 videos, the majority of which contain heavy cam-
era motion. UCF101 is one of the state-of-the-art datasets
for action recognition. It consists of 13320 videos, belonging
to 101 categories.

We use both visual and motion features, in the conducted
experiments, to establish that the proposed method is ef-
fective regardless of the nature of the local features. In or-
der to represent motion information, Improved Dense Tra-
jectories (IDT) [14] are extracted from each video for both
datasets. In case of UCF11, Dense SIFT [6] are computed
to encapsulate visual information. Regarding encoding vi-
sual information from UCF101, we decided to use the last
two convolutional layers from [11] as local features in R512.
The extracted local features are subsequently encoded us-
ing Bag of Words (BoW) representation with 1000 and 4000
codewords for UCF11 and UCF101 respectively.

In subsequent experiments, we measure the classification
performance of a linear SVM by computing the mean accu-
racy score in three random splits. C for the SVM is cho-
sen via cross-validation while the C hyperparameter of our
method is selected by hand. We compare our method with
both supervised and unsupervised LDA as well as with BoW.

3.2 Qualitative topic evaluation
It simply suffices to observe the topic versus word repre-

sentation in Figure 2 to notice that topics are by far more
sparse than words. Intuitively, this can be attributed to
the topics encapsulating much more information than a sin-
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Figure 3: Visualization of rotational movement topic (orange) and vertical movement topic (light blue). The
red bullet indicates the beginning of the trajectory.

Figure 4: Classification accuracy using few dimen-
sions to represent videos

gle word. In Figure 3, we draw the IDT trajectories that
correspond to a codeword that belongs in the ten most com-
mon words of two different topics. It is noticeable that the
inferred topics capture the specifics of different complex mo-
tions, such as rotational and vertical movements. These mo-
tions are discovered in videos from different classes, such as
trampoline jumping and diving for rotational movement and
soccer juggling and trampoline jumping for vertical move-
ment. We have observed that many topics discovered with
unsupervised LDA refer to background information, which is
the dominant structure in the video. In contrast, the topics
inferred using our method encapsulate high level informa-
tion, which corresponds to micro-events.
In order to evaluate the class-relevant information en-

coded in each topic, we reduce feature dimensionality us-
ing either minimum Redundancy Maximum Relevance Fea-
ture Selection (mRMR) [7] or by simply training our method
with a smaller number of topics. Figure 4 depicts the clas-
sification performance according to the aforementioned pro-
cedure on UCF11 using a single representative descriptor
(idt-hog). Each of the topics discovered by fsLDA contains
more class-relevant information compared to the ones in-
ferred by both LDA and sLDA as well as to the codewords
found by KMeans. This is established since the proposed
method outperforms BoW using mRMR feature selection.
The same results are observed when selecting features with
other feature selection methods.

3.3 Evaluation of discriminativeness of topics
In this section, we evaluate the discriminativeness of the

inferred topic distributions by measuring the classification

Figure 5: Comparison of fsLDA with unsupervised
LDA and sLDA using 600 topics in UCF11

LDA @ 1200 fsLDA @ 1200

conv5 2 56.03% 62.37%

idt-hof 52.72% 56.07%

combined 67.50% 69.87%

Table 1: Comparison of fsLDA with unsupervised
LDA in UCF101 (the complexity of sLDA for
UCF101 is prohibitive)

performance on a variety of descriptors using the whole topic
distribution or the concatenation of the topic distributions
(denoted as combined) as a feature.

Figure 5 depicts the mean accuracy for every descriptor in
UCF11. Our method outperforms LDA in every descriptor
and sLDA in all but one while being 50 to 100 times faster.
Table 1 presents the three-fold accuracy scores in the case
of UCF101 for some indicative descriptors. Even in this
more demanding large-scale dataset, fsLDA performs better
in terms of classification accuracy especially for the conv5 2
features.

4. CONCLUSIONS
We have developed a new method to infer topics in a su-

pervised manner which, in contrast to sLDA, is tractable on
large-scale video datasets such as UCF101. Furthermore, we
have shown that the proposed method outperforms unsuper-
vised LDA and discovers topics which encapsulate high level
information corresponding to micro-events, while containing
more class-relevant information than words.

Future work includes the study of topics as rich descrip-
tions of video attributes for video captioning and retrieval
applications.
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