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ABSTRACT
We consider the problem of extracting text instances of prede-

fined categories (e.g. city and person) from the Web. Instances

of a category may be scattered across thousands of independent

sources in many different formats with potential noises, which

makes open-domain information extraction a challenging problem.

Learning syntactic rules like “cities such as _” or “_ is a city” in a

semi-supervised manner using a few labeled examples is usually

unreliable because 1) high quality syntactic rules are rare and 2)

the learning task is usually underconstrained. To address these

problems, in this paper we propose to learn multimodal rules to

combat the difficulty of syntactic rules. The multimodal rules are

learned from information sources of different modalities, which

is motivated by an intuition that information that is difficult to

disambiguate correctly in one modality may be easily recognized

in another. To demonstrate the effectiveness of this method, we

have built a sophisticated end-to-end multimodal information ex-

traction system that takes unannotated raw web pages as input,

and generates a set of extracted instances (e.g. Boston is an instance

of city) as outputs. More specifically, our system learns reliable re-

lationship between multimodal information by multimodal relation

analysis on big unstructured data. Based on the learned relation-

ship, we further train a set of multimodal rules for information

extraction. Experimental evaluation shows that a greater accuracy

for information extraction can be achieved by multimodal learning.
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1 INTRODUCTION
The task of information extraction has been traditionally defined as

extracting information from unstructured or semi-structured text

in the form of text strings which are placed into slots labeled to

indicate the kind of information that can fill them. For example, city
is an example slot (or category), and Boston is an example instance

that can fill the slot city. While wrapper [9] is one of the most pop-

ular methods used to extract information from semi-structured text,

it fails when the text becomes less structured. The proliferation of

the Web, which largely consists of unstructured documents lacking

semantic metadata, advocates the development of methods that can

efficiently extract information from less structured text.

Supervised machine learning approaches such as [2, 29] have

been shown to be effective for extracting information from unstruc-

tured text. However, these approaches usually rely on availability

of labeled training samples in a large scale. Recent research interest

has been focused on semi-supervised learning approaches [1, 3, 21].

The semi-supervised learning algorithms learns iteratively in a

bootstrapping manner. They start with a handful of labeled seed

instances, then learn syntactic rules based on context of seed in-

stances. The recently learned syntactic rules can be used to extract

new instances which are then used to learn new syntactic rules.

Though semi-supervised learning methods overcome difficulty of

supervised methods and can easily extract knowledge in a scale

that was impossible before, they often exhibit unacceptable accu-

racy. This is primarily caused by: 1) high quality syntactic rules are

rare; 2) given limited amount of training data, the learned syntactic

rules are usually unable to properly constrain the problem. This

motivates us to develop stronger rules to better guide the learning

process.

In this paper, we propose a novel learning method that learns

multimodal rules to improve the reliability of syntactic rules. The

thesis explored in this paper is that, a much higher accuracy for

information extraction can be achieved by learning multimodal

rules. Themajor motivation behind our approach is that multimodal

information (e.g. text, image, and audio) usually correlates and

complements with each other, which allows us to develop more

reliable information extractors by making use of information from

multiple modalities. More specifically, in this paper we have focused

on text and imagemodalities due to their broad research interest and

high availability of information. Given text categories of interest, we

learn related visual concepts (multimodal relations) by multimodal

relation analysis. For example, visual concepts plane, bus, and car
are related to text category vehicle. Once multimodal relations are

calculated, multimodal rules (including text rules and visual rules)

can be developed. In our system, the text rules are syntactic rules

(e.g. “cities such as _") as usual, but visual rules are based on visual

concepts of an instance. In this way, an instance is evaluated based

on information from both text and image modalities. Extensive
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experiments confirm that, extracting information using multimodal

rules can better guide the learning process, resulting in a much

greater extraction accuracy.

We believe the contributions of this paper can be summarized

as follows.

• We present a novel multimodal learning approach that effec-

tively makes use of information across multiple modalities.

To the best of our knowledge, this is the first time that multi-

modal learning method is applied to extracting text entities

from the Web.

• Based on the multimodal learning algorithm, we developed

a sophisticated and scalable end-to-end system for multi-

modal information extraction. Our system takes unanno-

tated raw web pages and handful of seed instances as inputs,

then automatically extracts information in a self-supervised

manner, minimizing the human intervention. The system

is self-contained that includes components of the entire in-

formation extraction pipeline: data crawling, HTML web

page parsing, indexing, syntactic rule mining and instance

extraction, visual object detector training, visual object de-

tection using deep learning, and a web portal for presenting

learned knowledge as well as rules. For best scalability, the

system is implemented in a distributed manner for crawling

(based on Amazon EC2), storage (based on Hadoop HDFS),

and information extraction (based on Apache Spark).

• We present an effective approach to learn multimodal re-

lations between text and image. The multimodal relation

learning is one of the most important steps in multimodal

learning because it bridges concepts over different modali-

ties, which allows information to flow across the modalities.

• Through experimental evaluation on a real-world informa-

tion extraction task, we demonstrate the effectiveness of the

multimodal learning method, and found that multimodal

extraction can greatly improve the accuracy over the corre-

sponding unimodal methods.

2 RELATEDWORK
Recently, significant progress has been made for mining knowledge

from semi-structured or unstructured text in both commercial and

academic domains. For example, Google is building the largest

knowledge base (a collection of structured text knowledge) called

Knowledge Vault [11]. As of 2014, it contained 1.6 billion facts which

had been collected automatically from the Internet. In academic

domains, many projects such as YAGO [26], NELL [5], DBpedia [14]

and DeepDive [18] have attracted unprecedented research attention

in the recent years.

In this paper, we shall focus on mining categorical knowledge

(e.g. Boston is an instance of city category) from large corpus of

unstructured text. Instances of a category may be scattered across

thousands of independent sources in many different formats with

potential noises, which makes open-domain information extrac-

tion a challenging problem. While programs like wrapper [9] can

extract information from well structured text with high precision,

they usually fail when the text becomes less structured. Recent

research efforts have been focused on developing machine learning

models to automatically extract information from unstructured text.

Supervised approaches train machine learning models with a set

of labeled training data, and then perform text classification using

the models. For example, conditional random field (CRF) can be

used for named entity recognition (NER) where CRF models are

trained and then applied to extract sets of named entities such as

Person, Location and Organization [16]. However, due to the

limitation in availability of labeled training samples, the supervised

machine learning approaches cannot be easily scaled up to very

large knowledge bases with thousands of categories.

Bootstrapping approaches based on semi-supervised learning

start with a small number of labeled seed instances and iteratively

grow labeled examples by alternatively learning extraction rules

and extracting new labeled examples. The advantage of bootstrap-

ping approaches is that they require only a small number of seed

instances for each category, which allows them to easily scale up to

large knowledge bases. Bootstrapping approaches have been shown

to be effective for information extraction from unstructured text. For

example, Brin [3] proposed an effective bootstrapping approach

to extract a relation of (author,title) pairs from the World Wide

Web; Riloff et. al. [21] extracted semantic lexicon and dictionary

of extraction patterns using a multi-level bootstrapping method;

Agichtein et. al. [1] demonstrated an information extraction system

called Snowball to extract relational tuples from newspaper docu-

ments. However, the bootstrapping doesn’t come without it own

disadvantages. Accuracy typically declines as iteration increases

because errors in labeling accumulate, a problem that has been

called semantic drift [8].
To reduce the error accumulation, many algorithms have been

studied in the literature. Due to the learning problem is usually

underconstrained, algorithms that are designed to add additional

constraints to the problem can effectively reduce the errors. Cou-

pling is one of the techniques that are used to further constrain

the problem [6, 27]. The coupling uses positive examples of one

category as negative examples of another, so that instances that

are positive examples of other categories are not extracted. Type

checking [6, 19] by specifying types (e.g. proper noun, common

noun) of a category or relation arguments between categories that

instances have to satisfy is another effective technique used to fur-

ther constrain the problem. Other approaches reduce the errors by

combining predictions frommultiple extractors [4, 20], to overcome

the difficulty of using single extractor (e.g. syntactic rules). Our

work is built on top of these ideas, with distinct focus on learn-

ing multimodal information for enhanced information extraction

performance.

3 MOTIVATING EXAMPLE
In this section we illustrate the core ideas behind our multimodal

learning method through a motivating example. Suppose we want

to populate the bird category with instances, and we have learned

two syntactic patterns “wings of the _" and “_ takes flight" that

are used to extract instances of bird. Scanning through the text

corpus, we found that both Dreamliner and Gull match the given

two syntactic patterns. If we rely only on the syntactic patterns,

then both of the two instances should be classified as instances of

bird category with equal confidence. This immediately results in

an outlier instance Dreamliner, because it is actually a airplane, not
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a bird. This is one of many examples that are difficult to correctly

classify when using unimodal learning.

Multimodal learning is proposed to combat this kind of disad-

vantage. In multimodal learning, we not only consider the syntactic

patterns (text modality), but also consider the corresponding visual

concepts of the instances (image modality). The visual concepts of

Dreamliner suggest that it is actually a airplane, instead of a bird.

Through this example we have seen how multimodal learning can

potentially improve the information extraction accuracy.

4 MULTIMODAL LEARNING
In this section, we present our information extraction system based

on text and image multimodal learning. Our system comprises three

key stages:

(1) MultimodalRelationAnalysis.To enablemultimodal learn-

ing, we first learn the relationship between concepts of the

text and image modalities. This stage creates a set of relating

visual concepts for each predefined text category, which will

be used to develop multimodal classification rules in the next

stage.

(2) Learning Multimodal Rules. Confidence score of an in-

stance is calculated based on the multimodal rules that it

matches. Amultimodal rule defines how an instance ismatched,

and what’s the confidence score of that instance if a rule

is matched. This stage generates a set of useful multimodal

rules for information extraction.

(3) Multimodal Information Extraction. In the final stage,

we apply the learned multimodal rules to extract information

from the real-world data.

4.1 Stage 1: Multimodal Relation Analysis
The task of our information extraction system is to populate a

predefined text knowledge base with correct instances. In this paper,

we focus on text knowledge base with a flat ontology structure,

defined as

OT = {C
(T )
k |k = 1, ...,K }, (1)

where superscript T denotes text categories. In our system, the

knowledge base is initialized with a small number of seed instances

(or entities, we will use entities and instances interchangeably for

the rest of paper) for each category, with K = 24 categories in total.

In the meanwhile, the ontology of image knowledge base is defined

in a similar manner as

OV = {C
(V )
j |j = 1, ..., J }, (2)

where superscriptV denotes visual concepts. The image knowledge

base is initialized using around 250 labeled images for each cate-

gory from the ImageNet [10], with J = 102 visual concepts. Then

visual object detectors are trained based on seed instances of image

knowledge base for visual object detection. In this paper, since the

focus is on extracting text knowledge (keeping image knowledge

base unchanged), visual object detectors are fixed once they are

trained.

The multimodal relation analysis learns relationship between

concepts of the text and image modalities. Mathematically, an multi-

modal relation R is a binary relation defined on a pair of multimodal
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Stage 2: Learning Multimodal Rules (only visual rules are shown)

Stage 1: Interlingual Relation Analysis

Figure 1: The illustration for multimodal relation analysis
(Stage 1) and multimodal rule learning (Stage 2) based on
text and image knowledge bases. The kb1 represents for text
knowledge base, and kb2 represents image knowledge base.
In Stage 1, related visual concepts of text category vehicle
are learned by visualizing all instances (planes, cars, etc) of
the category, followed by histogram counting, normaliza-
tion and ranking as described in Section 4.1. In this exam-
ple, the Stage 1 results in three related visual concepts (bus,
warplane,truck) for text category vehicle. In Stage 2, multi-
modal rules for both text and image modalities are learned
as described in Section 4.2. In the figure we illustrate three
learned visual rules, where the first rule can be interpreted
as “when x has visualization (vis) concept bus, then it can be
considered as instance of vehicle because visual concept bus
is believed to be related (rel) to vehicle, and the probability
of this assertion is given by the rule confidence".

knowledge bases OT and OV as

R = {(x ,y) |x ∈ OT ∧ y ∈ OV }. (3)

The R ⊆ OT × OV relates two multimodal knowledge bases on

concept level. Intuitively, (x ,y) ∈ R if instances of concept x co-
occurs with instances of concept y with high frequency, where a

pair of instances co-occurs if they occur under the same context (e.g.

the same meta tag in HTML pages). The calculation of R is through

these steps:

• image tagging assigns each image in a Web page with

proper text descriptions.

• instance visualization creates links at instance level from

text instance to image.

• instance aggregation aggregates instance-level links by

pairs of multimodal concepts to extract the multimodal rela-

tions.
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The Figure 1 illustrates the multimodal relation analysis.

4.1.1 Image Tagging. The image tagging program assigns each

image a set of noun phrases (tags) that best describe the image [7].

We extract tags of each image based on both image meta and web

page context information, following these steps:

• Retrieve top-k most important noun phrases (denoted as

NPk ) from a web page containing the target image to be

tagged. The importance of a noun phrase t is measured by

the following tfidf scoring function

t f id f (t ,d ) = 0.5 + 0.5
ft,d

max{ ft ′,d : t ′ ∈ d }
× loд

N

nt
, (4)

where d represents the web page document, ft,d is the fre-

quency of term t in documentd ,N is the total number of web

pages, and nt is the total number of web pages containing

the term t .
• For each noun phrase t ∈ NPk , if either name of the image

(where name is extracted from image url) or alt attribute
of the <img> tag contains the noun phrases, then assign

t as a tag of the image. Note that a single image can have

multiple tags. Table 1 shows some example automatically

tagged images.

4.1.2 Instance Visualization. At this step, we visualize text in-
stances by linking them to visual concepts. For example, instance

salmon can be linked to visual concepts such as fish. Suppose the
image tagging program creates a set of tagged images denoted as

Γ = {(In , t1, ..., tkn ) |n = 1, ...,N }, (5)

where In denotes the nth image, ti represents a tag and kn is the

number of tags assigned to the image In , and N is the total number

of images. Then for each text instance e we retrieve a set of images

I (e ) whose tags containing the instance, and the visualization score

of instance e w.r.t. visual concept y is given by

V (e,y) =
1

P (y)

∑
i ∈I (e )

∑
d ∈D (i )

δ (d,y)P (d ), (6)

whereD (i ) denotes a set of detected visual categories on image i (an
image can detect multiple objects with different visual concepts),

and P (d ) is the confidence score that objects of visual concept d
exists. The δ (d,y) is an indicator function that takes value 1 only

if d = y. The P (y) is the prior probability of detecting an object of

visual concept y on any image. The P (y) is used to suppress affect

of trivial visual concepts like people that have high occurrence fre-

quency. To reject occasional visual linking that is usually unstable,

visual category y is considered as visualization of e only if number

of images detecting objects in y is above a threshold. We also found

that an instance usually have quite limited number of meaningful

visualization concepts, so for each instance we retain up to top k
visual concepts of the highest visualization scores.

4.1.3 Instance Aggregation. Suppose all instances of text knowl-
edge base used to learn multimodal relation are collectively denoted

as E. Then we apply instance visualization program on each in-

stance e ∈ E, and take top k = 1 visualization concept for each

instance, which results in a set of links

L = {(e,y) |e ∈ E ∧ y ∈ OV }. (7)

The L provides an instance-level linking from text instance to visual

concepts. To obtain a concept-level mapping, we aggregate these

links by text category, resulting in an aggregation function A :

OT ×OV → R.

A(x ,y) =
1

|x |

∑
e ∈x

δ ((e,y) ∈ L), (8)

where δ (x ) is an indicator function takes 1 only if x evaluates True.

Then a visual concepty is linked to text category x ifA(x ,y) is above
a threshold. Mathematically, a multimodal relation R is defined as

R (x ,y) = {(x ,y) |x ∈ OT ∧ y ∈ OV ∧A(x ,y) ≥ τ }. (9)

The τ represents the minimum percentage of instances in text

category x that have visualization concept y.

4.2 Stage 2: Learning Multimodal Rules
Themultimodal relation analysis creates relations between concepts

across difference modalities. Based on these relations, in this stage

we learn multimodal rules for information extraction. In our system,

there are two types of multimodal rules: the syntactic rules in text

modality and visual rules in image modality.

4.2.1 Learning Syntactic Rules. The syntactic rules are learned
from unstructured text corpus in a bootstrapping manner. Suppose

we want to learn syntactic rules for category c , given most recently

promoted instances E (initially seed instances). Then, syntactic

rules of category c are learned in two steps:

(1) Extract candidate rules. For each e ∈ E, we extract the

preceding words as a candidate rule using the following

regular expressions:

[Noun] Verb {JJ|JJR|JJS|IN|DT|CC|TO}+ _ (10)

Noun {JJ|JJR|JJS|IN|DT|CC|TO}+ _ (11)

The _ is a placeholder for the instance e , and the part-of-

speech tags are defined by the Penn Treebank Project [15].

The (10) means that a rule can consist of verbs followed by

a sequence of adjectives, prepositions, or determiners and

optionally preceded by nouns (e.g. “novel written by _"). Al-

ternatively, rule (11) consist of nouns followed by a sequence

of adjectives, prepositions, or determiners (e.g. “Google and

_"). On the other hand, we also extract words following the in-

stance as candidate rules. More specifically, words following

an instance are extracted as a candidate rule if they match

these regular expressions:

_ [MD] Verb {DT|IN|CC|TO|JJ|JJR|JJS}* [Noun] (12)

_ [MD] CC Noun (13)

The rule (12) are verbs optionally preceded by modal verb,

and optionally followed by a sequence of adjectives, prepo-

sitions, or determiners and then nouns (e.g. “_ attended the

party"). Once the candidate rules based on E are extracted,

they are merged with other candidates extracted in previous

iterations to generate a complete candidate list for promotion

in the second step.

(2) Promote top candidate rules. Syntactic rules are extracted
from the top candidate rules of the highest precision. The
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precision of a promoted syntactic rule r of category c is

estimated by

Precision(r , c ) =
count (r , c )

count (r )
, (14)

where count (r , c ) is the number of distinct matched instances

in c , and count (r ) is the total number of distinct matched in-

stances. A candidate rule can only be promoted if it matches

at least two promoted instances.

4.2.2 Learning Visual Rules. The visual rules recognize instances
based on their visualization concepts. A visual rule can be repre-

sented as a triple:

r (x ,Vc ,Tc ) : x
vis
−−−→ Vc

rel
−−−→ Tc , (15)

which represents if instance x has visualization concept Vc (as

described in 4.1.2), andVc is a related visual concept of text category
Tc , then x can be considered as an instance of Tc . For example,

instance Heathrow Airport has visualization concept plane which
has been identified as a related visual concept of text category

airport:

Heathrow Airport
vis
−−−→ plane

r el
−−−→ airport

Based on this visual rule, the Heathrow Airport is considered as

instance of airport. The precision and recall of a rule r (x ,Vc ,Tc )
is estimated using promoted instances of Tc as positive samples

(denoted as sp ), and candidate instances that are candidates or pro-

moted instances of other categories as negative samples (denoted

as sn ). Mathematically,

Precision(r ) =
count (r , sp )

count (r )
, (16)

and

Recall (r ) =
count (r , sp )

count (sp )
. (17)

The count (r , sp ) represents the number of positive instances match-

ing the rule r , and count (r ) is total number of matching instances.

The Figure 1 illustrates more example learned visual rules.

4.3 Stage 3: Multimodal Information
Extraction

Our system is based on semi-supervised bootstrapping learning that

extracts information incrementally. Starting from a handful of seed

instances (with each category having 10-20 seeds), we iteratively

extract new instances as described in Algorithm 1.

Example images retrieved by our system with key work “truck”

Truck

0

1

2

3

4

5

6

7

8

tableskypeoplecartruck

Visual concept distribution of “truck”

truck truck vehicle
vis rel

truck   car vehicle
vis rel

car or _ 

helicopter and _

_ and trailer

Pages with “truck” Syntactic rules co-occur with “truck”

... car or (truck) ...

... (truck) or motor ...

... helicopter and (truck) ...

... (truck) and trailer ...

Multimodal rules

vehicle

Stage 3: Multimodal Information Extraction

Figure 2: The illustration for extracting “Truck" as an in-
stance of vehicle category. Images whose tags containing
“Truck" are retrieved and ranked, and these images are
then used to evaluate the related visual concepts (see Sec-
tion 4.1.2). In the meanwhile, all web pages containing
“Truck" are retrieved and then used to calculate the co-
occurrence with syntactic rules in the vehicle category. Fi-
nally, the confidence score of “Truck" is calculated based on
the multimodal rules it matches.

Algorithm 1 Multimodal Information Extraction

Input: The text ontology OT , image ontology OV , text corpus

and image corpus.

Output: Trusted instances for each text category.

Train visual object detectors using OV .

for t = 1, 2, ...,∞ do
for each category c ∈ OT do

Learn multimodal relations;

Learn syntactic rules Rt ;
Extract candidate instances using Rt ;
Evaluate visual concepts of candidate instances;

Learn visual rules Rv ;
Evaluate instance confidence with (Rt ,Rv );
Promote top candidate instances;

end for
end for

The Figure 2 illustrates the multimodal information extraction

process. For each category, we maintain two list of candidates: syn-

tactic rule candidates and instance candidates. The maximum size

of these two lists are 5, 000 and instances of the lowest confidence

scores are removed from a list once it overflows. When evaluating

visual concepts of an instance, we retain up to top three visual

concepts. Finally, the confidence score of an instance is a merge of

both syntactic rules and visual rules, given by

P (e ) = 1 −
∏

x ∈Rt (e )

∏
y∈Rv (e )

(1 − P (x )) (1 − P (y)), (18)
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where Rt (e ) and Rv (e ) are sets of matching syntactic rules and

visual rules of e , respectively. The P (x ) and P (y) represents the
estimated precision of the rules (adjusted to be less than 1.0).

4.4 Coupling and Type Checking
Coupling the learning of syntactic rules by using positive examples

of one category as negative examples for others has been shown

to be effective in improving the extraction accuracy [6, 21, 27]. We

combine this coupling technique into our system. More specifically,

at syntactic rule promotion stage, a rule whose precision is less than

precision of the same rule in any other categories is not promoted.

For instance promotion, we apply a similar coupling technique.

Type checking [6, 19, 22] by specifying types (e.g. proper noun,

common noun) of a category or relation arguments between cate-

gories that instances have to satisfy is another effective technique

used to improve the information extraction accuracy. In our sys-

tem, we apply type checking on each category by specifying the

noun types of instances. For example, instances of city can only be

proper nouns, and instances of vehicle can be either proper nouns

or common nouns.

4.5 Large-Scale Implementations
Our multimodal information extraction system is designed to pro-

cess big data. There are three major components in our system:

• Mining syntactic rules or instances.At syntactic rule dis-
covery stage, for given instances we need to retrieve all the

matching patterns. This is done by first indexing the location

of all noun phrases in the text corpus, then search the given

instances and examine the part of speech information of

preceding and following words to generate syntactic rules.

At the instance discovery stage, for given syntactic rules

we retrieve all matching instances. To speedup the retrieval

process, we index the text corpus with Trie data structures

(that are most suitable for information retrieval as suggested

by its name). The core parts of both stages are implemented

with C++ for optimal memory and computational efficiency.

To scale up the system, we group web pages into blocks (each

having around 40, 000 web pages), and compute both stages

in a distributed manner (based on Apache Spark MapRe-

duce [28]), where data blocks are stored in a distributed file

system (based on Hadoop HDFS [24]) providing around 2.0

GB/s peak disk reading performance. Practically, it takes

around 3 min for one pass on a text corpus with 100 million

web pages on a 52-core cluster.

• Collecting image corpus.The image corpus is not included

in the Common Crawl data [25] where we derived text

corpus. We collect the images for instance visualization

(see Section 4.1.2) by extracting the image urls from raw

web page data and download the necessary images in a dis-

tributed manner using Amazon EC2/S3 [17]. In our system,

we download images in a distributed manner with multiple

network-independent machines, which provides throughput

of around 4 million images per day.

• Visual object detection. We train deep learning neural

networks based on the state-of-the-art Fast R-CNN algo-

rithm [12]. The neural networks are trained to predict 102

visual concepts, using Cuda GPU (dual nVIDIA Tesla K40C)

based on Caffe library [13].

The Figure 3 illustrates the pipeline of our information extraction

system.

5 EXPERIMENTS
5.1 Dataset

5.1.1 Ontologies. In our system, we have two ontologies: OT
and OV , both of which have flat structures. The text ontology OT
consists of 24 different categories, and image ontology OV has 102

categories. The categories of OT corresponding to concepts that

are both visualizable and not visualizable. The categories of OV
are selected to be potentially related to OT to efficiently utilize the

visual space. Each category of OT is initialized to have 10-20 seed

instances, while each visual concept inOV are trained with around

250 labeled images of the ImageNet database [10].

5.1.2 Corpus. We derive our text and image corpus based on the

Common Crawl dataset [25] that is publicly available on Amazon

S3. The entire dataset comprises billions of raw Web pages in warc

compressed format, and for our study we take a subset of the data

with hundreds of millions of Web pages. These pages are processed

following these steps:

(1) Extract the warc files to get raw web pages payload.

(2) Parse the HTML web pages, with a C++ open-source pro-

gram gumbo-parser by Google.

(3) Remove non-English web pages by counting the stop word

ratio.

(4) Extract all image urls of each web page, along with alt and src
attributes. We only retain images whose dimension (shortest

edge) is at least 150 pixels.

(5) Clean meta and spam from web pages to obtain plain text,

then tokenize and apply part-of-speech tagging. The part of

speech tagger is based on Tree-Tagger [23] for best compu-

tational efficiency.

(6) Extract nouns and noun phrases. The nouns can be extracted

directly based on part-of-speech information of a word. The

noun phrases are extracted based on the following rules:

• Common noun phrase (e.g. “computer monitor") consist

of a sequence of consecutive common nouns;

• Proper noun phrases (e.g. “National Aeronautics and Space

Administration") consist of a sequence of proper nouns

connected by optional coordinating conjunction or prepo-

sition.

To remove outliers caused by unreliable part-of-speech tag-

ger, a sequence is considered as as noun or noun phrase only

if its frequency is above a threshold.

(7) Assign a set of tags to images by running image tagging

program, as described in Section 4.1.1

(8) Crawl web images based on their urls extracted from web

pages, and then extract visual objects from these images

with trained object detection models. Table 1 shows some

example detected objects of bedroom category.

This results in corpus of around 100 million web pages, 5 billion

tokens, and 150 million images for our study.
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Figure 3: The illustration for information extraction pipeline of our system. The data (text and image) is first collected from the
Internet in a distributed manner using multiple independent Amazon EC2 virtual machines. Then for the text data we parse
themeta contents, followed by part of speech (POS) tagging on the cleaned text, and finally create necessary index for efficient
search/extraction. The resulting data is stored inHadoopDistributed File System (HadoopDFS) on a collection ofmachines for
efficient distributed access. After that we assign tags to the images automatically as described in Section 4.1.1. For the image
datawe apply the trained deep learningmodels to extract visual objectswithGPUs. The instance visualization evaluates related
visual concepts for individual noun phrases. When visual concepts of noun phrases are ready, we start iterative multimodal
extraction by following steps as described in Algorithm 1.

@bedroom

Table 1: Visualization of detected image objects for the bedroom category. For each image, detected objects are marked by
rectangles along with confidence values (between 0 and 1) given by the visual object detector. The corresponding text tag of
an image is shown at the bottom of that image.

5.2 Multimodal Relations
The multimodal relation analysis automatically discovers related

concepts across different modalities. To investigate the effectiveness

of the algorithm described in Section 4.1 for learning multimodal

relations, we run the program and print the visual relations learned

for each category, as shown in Table 2 (only a subset of randomly

selected categories are shown due to space limitation). Based on

these results, we conclude the following observations:

• For most of the categories, the program is able to discover

the correct relations. Occasionally, the program generates

some relations that are not consistent with our intuition. For

example, musical instrument is related to beach, etc.
• The program is able to discover some multimodal relations

that are difficult to be discovered by human. For example,

pizza is related tofish becausemany fishes (e.g. tuna, salmon)

can be used to make a pizza (or pizza-like sandwich, dishes);

bed and kitchen are related to airport because hotels and
airports cooccur with high frequency (e.g. “Hilton hotel at

O’Hare International Airport").

5.3 Comparative Evaluation
In this section, we compare the capability of extracting information

from the Web of the following three different approaches.

• Proposed: The multimodal learning algorithm makes use

of information across text and image modalities by apply-

ing both syntactic rules and visual rules, as described in

Section 4.

• CPL: It performs information extraction using only syntactic

rules only as described in Section 4. The difference between

CPL and the proposed approach is that, the proposed ap-

proach utilizes visual information in addition to text. It is

mostly a re-implementation of the state-of-the-art algorithm

called Coupled Pattern Learner (CPL) [6]. The CPL is one of

the major extractors for the NELL [5] knowledge base.

• CPL+NaiveMultimodal Fusion (CPL-NMF):Rather than
using the proposed multimodal rules in equation 18, it uses

the following scoring function:

S (e ) = (1 −
∏

x ∈Rt (e )

(1 − P (x ))) ·
∑
y′∈IC

V ′(e,y′)F (y′),
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Category Related Visual Concepts

bridge bridge, suspension bridge

coach man’s clothing, musician

fish pizza, striped bass, salmon

clothing skirt, woman’s clothing, jersey

automobilemaker car, beach wagon, sports car

city people, sky, window

lake seashore, ship, cliff, sky

actor man’s clothing, sunglasses

vehicle warplane, bus, motorcycle, ship

beach seashore, beach, musical instrument

bird wading bird, female child, loon

company computer screen, laptop

hotel building complex, bed

fruit orange, fringe tree

airport warplane, bed, kitchen

Table 2: The related visual concepts learned by multimodal
relation analysis

Category CPL CPL-NMF Proposed

vehicle 69.43 80.24 85.75

automobilemaker 86.23 90.11 95.16

fish 80.91 75.67 92.86

bird 68.24 71.28 80.22

bridge 42.57 48.62 52.81

hotel 68.47 78.04 76.45

clothing 80.41 91.72 94.11

airport 85.73 81.37 90.22

musicinstrument 88.14 87.41 91.75

consumerelectronicitem 65.20 70.84 75.23

beach 70.32 71.22 73.04

lake 59.66 63.97 62.90

river 79.64 81.08 89.22

company 96.41 94.54 97.65

plant 74.35 80.22 81.45

insect 71.03 76.25 83.82

city 95.88 91.57 94.47

coach 93.27 95.22 95.74

fruit 74.68 65.32 67.54

actor 95.73 98.65 98.17

athlete 90.05 92.11 94.11

governmentorganization 68.37 70.21 71.43

drug 98.22 96.74 97.83

ceo 79.68 79.24 77.21

Average 78.44 80.48 84.13

Table 3: The comparative results. All the listed categories
have number of promoted instances between 94 and 100 for
totally 10 iterations.

where Rt (e ) is a set of matching syntactic rules and P (x )
represents the estimated precision of the rules as before.

The IC denotes a set of all visual concepts, and F (·) is the
frequency of visual concept for the target category calculated

on the promoted samples. The V ′(·) is normalized score of

V that is defined in equation 6.

The CPL is a recent state-of-the-art unimodal approach only

using text information, and CPL-NMF makes use of multimodal

information by naive multimodal cooccurrence.

5.3.1 Experimental Procedure. When comparing the algorithms,

we ran each algorithm for 10 iterations of bootstrapping, and then

assessed the instances promoted by the algorithms. At each iter-

ation, we promote at most 10 instances and 5 syntactic rules per

category by their confidence scores. For each category, we sampled

50 instances to estimate the accuracy of that category. Samples

that can be found in the NELL knowledge base [5] are considered

as True, and for samples that are not contained in the NELL are

manually evaluated by human workers.

5.3.2 Accuracy Comparison. The accuracy comparison results

are shown in Table 3. The accuracy of a category is defined as

number of correctly promoted instances divided by total number of

promoted instances. The “Average" row averages accuracy across

all categories. Based on these results, we observe that on average

both CPL-NMF and Proposed outperform the unimodal CPL by

a quite clear margin. This confirms that multimodal analysis can

improves the extraction accuracy over unimodal approach. Addi-

tionally, while both CPL-NMF and Proposed utilize multimodal

information, the Proposed is able to make more efficient use of the

information, which leads to improved accuracy. We also observe

that, improvement brought by multimodal analysis is much more

significant when target categories are visualizable than those are

not. This suggests that, strong relationship between multimodal

objects is a crucial requirement for the success of multimodal anal-

ysis.

5.3.3 Significance Testing. To test the significance level of the
results, we apply the sign test which is a statistical method to test

for consistent differences between pairs of observations. According

to Table 3, when comparing the Proposed and CPL, we see the

proposed approach “wins" 20 out of 24 trials. This leads to a p-

value (two-tail) of 0.0015, which indicates the improvement over

state-of-the-art unimodal approach is significant at the 5% level.

6 CONCLUSIONS
In this paper, we present a novel multimodal analysis approach

for text information extraction. The proposed approach consists of

three steps, from multimodal relation analysis to learning multi-

modal rules. The key idea of our approach is to effectively utilize

information across multiple modalities for enhanced performance.

For the future work, we will study other useful ways to integrate

multimodal information to further improve the performance.
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