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ABSTRACT

Cities’ visual appearance plays a central role in shaping hu-
man perception and response to the surrounding urban en-
vironment. For example, the visual qualities of urban spaces
affect the psychological states of their inhabitants and can
induce negative social outcomes. Hence, it becomes criti-
cally important to understand people’s perceptions and eval-
uations of urban spaces. Previous works have demonstrated
that algorithms can be used to predict high level attributes
of urban scenes (e.g. safety, attractiveness, uniqueness), ac-
curately emulating human perception. In this paper we pro-
pose a novel approach for predicting the perceived safety
of a scene from Google Street View Images. Opposite to
previous works, we formulate the problem of learning to
predict high level judgments as a ranking task and we em-
ploy a Convolutional Neural Network (CNN), significantly
improving the accuracy of predictions over previous meth-
ods. Interestingly, the proposed CNN architecture relies on
a novel pooling layer, which permits to automatically dis-
cover the most important areas of the images for predicting
the concept of perceived safety. An extensive experimental
evaluation, conducted on the publicly available Place Pulse
dataset, demonstrates the advantages of the proposed ap-
proach over state-of-the-art methods.

1. INTRODUCTION
Cities are shaped by and affects the life of their inhab-

itants. Several studies have shown that cities’ visual ap-
pearance plays a central role in human perception and re-
sponse to the surrounding environment. A notable example
is the Broken Windows Theory suggesting that visual signs
of environmental disorder, such as broken windows, aban-
doned cars, litter and graffiti, can induce negative social
outcomes and increase crime levels [17]. Interestingly, the
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Figure 1: Given the images above showing specific
details extracted from pictures of urban scenes, a
human observer can easy choose which group corre-
sponds to safe areas and which to unsafe ones.

Broken Windows Theory has greatly influenced public pol-
icy strategies leading to aggressive police tactics to control
the manifestations of social and physical disorder. Moreover,
the visual qualities of urban spaces affect the psychological
states of their inhabitants [22]. For example, urban scenes
with vegetation tend to produce positive feelings [37], while
urban disorder induces psychological distress [33]. Hence, it
becomes critically important to understand people’s percep-
tions and evaluations of urban spaces.

In The Image of the City [23], Kevin Lynch introduced
the city’s mental map, indicating the city elements that
are distinguished among hundreds, thousands, or millions
of other city artifacts by their unique shapes, sizes, colors,
etc. Traditionally, researchers have studied the city’s mental
map by interviewing city residents and manually reviewing
photographs and videotapes: a tedious process, involving
considerable collective efforts [26]. While this was unavoid-
able at the time of Lynch’s study, today, modern informa-
tion technology permits to analyze the image of the city
in a quantitative manner. In particular, recent works have
shown that modern crowdsourcing platforms can be used
to collect millions of users’ opinions about places and ad-
vanced machine learning approaches are very accurate in
predicting human judgements of urban scenes, even in case
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of previously unseen locations. Moreover, geo-tagged images
publicly available from Google Street View and from social
network platforms, such as Flickr or Foursquare, represent
an invaluable resource to study human perceptions of places.
Recently, few works [31, 25, 2, 27] have proposed computa-
tional methods to automatically infer high level perceptual
attributes from geo-referenced images of urban spaces.

In this paper we propose a novel approach for predict-
ing human opinions about places. Specifically, confirming
the recent findings in [27, 25], we demonstrate that a com-
puter vision algorithm can emulate human perception and
reliably predict judgments of safety from pictures of urban
scenes. For a human observer it is generally hard to quan-
tify the absolute degree of safety of a scene, while relative
judgements (e.g. “this looks safer than that”) are more
natural [7]. Indeed, most crowdsourcing platforms collect-
ing annotations of high levels human judgments1 operate on
image pairs. Previous works presented solutions based on a
two-steps approach: first the pairwise annotations are used
to calculate a set of absolute safety scores, then a regression
model is learned to predict these scores. We believe that this
indirect approach rises some fundamental issues, which are
thoroughly discussed in Subsection 4.2.1. For these reasons
we propose to adopt a ranking framework, which directly
operates on relative judgements. The prediction algorithm
we propose relies on a Convolutional Neural Network specif-
ically designed for ranking tasks. Experiments conducted on
the Place Pulse dataset [32] demonstrate that our approach
is superior to state-of-the-art regression methods.

Previous works [27, 25] presented computational mod-
els capable of answering the question “does this place look
safe?”. In this paper we also tackle a second fundamental
aspect about the way humans judge a place from a picture:
“what makes this place look safe?”. Our proposed CNN is
based on a set of latent detectors, which are optimally com-
bined for predicting urban safety. Each detector is asked
to select specific parts of the images, correlating them with
the concepts of perceived safety/unsafety. Indeed, a human
observer can guess the degree of safety of a specific urban
scene by simply looking at some parts of it (Figure 1). Im-
portantly, the proposed detectors are designed in order to
capture complementary information: some aim to discover
very localized areas, thus focusing on discriminative objects
(e.g. residential windows and trees, graffiti), while others
are meant to capture spread areas, focusing on large objects
and more diffuse patterns (e.g. roads and vegetation).

In summary, the main contributions of this study are: (i)
we propose a ranking approach to predict human percep-
tions of safety from geo-tagged images of urban spaces. Our
analysis and experimental evaluation demonstrates the ad-
vantages of a ranking-based framework over previous regres-
sion methods; (ii) To our knowledge, this is the first work
based on CNN for predicting high level judgements of urban
spaces. Previous works have considered traditional feature
representations or descriptors derived from a pre-trained
CNN. Differently, in this paper we propose a novel CNN ar-
chitecture, demonstrating improved performance over state-
of-the art methods; (iii) Our approach permits to automat-
ically discover the parts of the image, which correlate with
the concept of perceived safety. No previous works have
proposed computational models to address this issue.

1http://pulse.media.mit.edu/,http://urbangems.org/

The rest of the paper is structured as follows. Related
work for analysing patterns of human perception are dis-
cussed Section 2. The proposed approach for predicting the
perceived safety from geo-tagged images of urban scenes is
presented in Section 3. Extensive evaluations and compar-
isons with state-of-the-art methods are reported in Section 4.
Finally, Section 5 is devoted to conclusions and future works.

2. RELATED WORK
In this section, we review key works from two research

fields: urban perception and automatic scene recognition.

2.1 Urban Perception
Since the seminal study of Lynch [23], several works in ur-

ban studies and environmental psychology have investigated
people’s preferences for certain environments and their aes-
thetic judgments of urban scenes, such as streets, parks,
buildings [38]. In particular, the urban activist Jane Jacobs
discussed extensively, in The Death and Life of Great Amer-
ican Cities, the role played by streets as principal visual
scenes in a city [14]. In particular, research has shown seven
environmental features as prominent in human evaluation
of places: naturalness, complexity, order, novelty, openness,
historical significance, and upkeep [26]. More specifically,
people prefer vegetation and dislike obtrusive signs, intense
land uses and traffic. Weber and colleagues identified uni-
formity in architectural style, symmetry, scale and presence
of vegetation as primary factors driving the aesthetic judg-
ments of urban spaces [38]. Again, several studies highlights
people notice and prefer order. Dilapidation and disorder
such as trash, boarded up buildings, abandoned property
and cars, and litter, which researchers refer to as physical in-
civilities, also contribute to a perception of the breakdown
of social controls, fear of crime, and crime [36, 17]. For
example, Schroeder and Anderson found vacant buildings
and graffiti associated with judgements of low safety [35].
Based on videotaping and systematic rating of more than
23,000 street segments in Chicago, Sampson and Raden-
bausch [34] constructed scales of social and physical disorder
for 196 neighborhoods. In particular, graffiti, abandoned
cars, garbage or litter on street or sidewalk were recognized
by raters as visual signs of physical disorder. Another set
of environmental cues evoking the possibility that an area
is unsafe are related with entrapment, referring to the dif-
ficulty a person would have escaping, and physical conceal-
ment, referring to a visual occlusion of space big enough to
hide potential offenders. Thus, people usually consider safer
places offering open vistas [26]. The studies described above
were mostly based on interviews or visual surveys where peo-
ple were asked to rate images of streets and neighborhoods
on a 1-10 scale. Nowadays, the large amount of geo-tagged
images publicly available on Google Street View and in so-
cial network platforms such as Flickr or Foursquare opens a
new way to study human perceptions of places. Our work
represents one of the first attempts in this novel research
direction.

2.2 Automatic Scene Recognition
In the last few years there has been significant progress in

the area of automatic scene recognition [21, 39, 40]. How-
ever, previous research on scene understanding has mainly
focused on traditional problems such as place classification
or analysis of scene composition (i.e. the detection and
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recognition of the objects present in the scene). This paper
tackles a different problem: we are interested in learning to
infer human high level (safety) judgments of places. Per-
ceptual prediction from images has received an increased
interest recently in the vision and multimedia community.
However, previous works have focused mainly on tasks such
as assessing automatically the interestingness and the aes-
thetic quality of images [10, 24] or discovering the style of a
city or an object [8]. These tasks are substantially different
from ours, as we focus on predicting high level judgments
of urban areas from geo-tagged images and specifically from
pictures depicting outdoor street level scenes.

Geo-tagged images are an invaluable resource for researchers
in multimedia analysis and have been exploited for many
tasks, such as for automatic localization of non geo-referenced
pictures [12], for photo trip pattern mining [1], for aug-
mented reality [30, 29], for developing personalized travel
recommendations [6]. Prediction of human judgments from
geo-tagged images depicting urban spaces has been attempted
only very recently. Quercia et al. [31] used crowdsourcing
to collect a dataset of street level images and the associ-
ated perceptual attributes, corresponding to the concepts
of attractiveness, happiness and quiet. They also investi-
gated the role of different visual features (i.e. color, tex-
ture and compositional features) for automatic high level
judgments prediction. Naik et al. [25] proposed an ap-
proach based on support vector regression to predict three
perceptual characteristics of scenes, i.e. safety, wealth and
uniqueness). Their analysis is performed on the Place Pulse
dataset [32], consisting of about 4K images downloaded from
Google StreetView and corresponding to four different cities
(New York, Boston, Linz and Salzburg). Human annota-
tions have been collected with crowdsourcing, asking users to
decide, among two scene images, which picture corresponds
to the most safe/upper-class/unique place. The Place Pulse
dataset has been used in [27], where deep convolutional acti-
vation features [20] have been shown superior to traditional
descriptors (e.g. GIST, Dense and Sparse SIFT, HOG) for
high level judgments prediction. In this paper we also con-
sider the Place Pulse dataset, but differently from previous
works based on regression [25, 27], we propose a ranking
framework, showing that our approach guarantees more ac-
curate estimates of human perceptions.

The problem of automatically identifying visual elements
(i.e. small image patches) that correlate with high level non-
visual attributes has been rarely considered. Notable excep-
tions are the works in [2, 18]. Arietta et al. [2] proposed
a computational model, based on support vector regression,
to predict non-visual attributes (crime rate, housing prices)
from images and to automatically discover visual elements
correlated with the predicted attributes. However, they
did not consider human annotations obtained with crowd-
sourcing and the annotated data are derived from public
databases of city municipalities. Khosla et al. [18] presented
an approach to look beyond the visible scene and used deep
learning features extracted from visual data to infer prop-
erties about the environment (e.g. crime rate). They also
proposed an approach based on sparse coding to analyze
the importance of different image regions for predicting high
level attributes. To our knowledge, no previous work have
considered the problem of discovering mid-level visual ele-
ments responsible for human perceptual judgments in the
context of Convolutional Neural Networks.

3. PREDICTING THE PERCEIVED SAFETY

OF URBAN SPACES
In this section, we first describe the Place Pulse dataset,

then we present the proposed ranking method for learning
the perceived safety of urban places. Specifically, we first
show an approach based on Support Vector Machines (SVM)
and precomputed feature descriptors, then we introduce a
novel method based on CNNs. Additionally, we discuss the
challenges of learning from human judgments, analyzing the
noise of users annotations in the Place Pulse dataset.

3.1 Place Pulse 1.0
We consider the publicly available Place Pulse 1.0 dataset

[32]. This dataset contains 4,136 geo-tagged images for the
cities of New York (including Manhattan and parts of Queens,
Brooklyn and The Bronx), Boston (including parts of Cam-
bridge), Linz and Salzburg. As typical for images down-
loaded from Google Street View, these are captured from a
vehicle in the early morning, thus depicting mostly empty
sidewalks, little traffic and limited human activity.

For each image, the scores for perceived safety, wealth and
uniqueness are provided. These scores were computed from
user preferences using the Microsoft Trueskill algorithm [11].
User preferences were collected with crowdsourcing through
an online website2. Participants were shown two randomly
chosen images from the dataset and were asked to choose
one of the two in response to the question: Which place
looks safer/more upper-class/more unique?. In total, user
annotations corresponding to 208,738 votes were obtained
between August and November 2011. 7,872 unique users
from 91 countries took part to the survey. The user prefer-
ences, i.e. the votes corresponding to pairwise comparisons,
are publicly available only for the attribute of safety. There-
fore, in this work we only consider this attribute. However,
it is worth nothing that our approach is general and can be
used for predicting arbitrary high level judgments.

3.2 Learning to Predict the Perceived Safety
It is hard for a human observer to quantify the degree

of safety of a place given a single picture, while it may be
relatively easy to give judgments over image pairs. In confir-
mation of this, in the Place Pulse dataset, as well as in other
studies on urban perception [31], annotations are collected
in the form of votes on couples of images. Therefore, in this
paper we propose to formulate the problem of learning to
predict the perceived safety of places as a ranking task.

More formally, we consider a setting, where we observe
judgments about the relative safeness of pairs of images.
Each judgment consists of a triplet (I, J, y) ∈ I × I × Y,
where I, J ∈ I are images and y ∈ Y = {+1,−1} is a label
that indicates whether image I is perceived by a human as
safer (y = +1) or unsafer (y = −1) than image J .3 We
assume the judgments to follow an unknown distribution P ,
which is in general noisy due to inconsistencies that exist
among humans’ perceptions. We denote by Dn ⊆ I × I ×Y
a training set of n judgments, being i.i.d. samples from P .
The goal of the learning task is to estimate from the train-

ing set Dn a function f ∈ I → R that provides for each im-

2http://pulse.media.mit.edu/
3To facilitate comparison with previous methods we have
excluded ties in our analysis, but in principle they could be
added as a third class.
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Feature Extractors Latent DetectorsInput Image Safety Predictor

H=hfe(I;θ)

M=H*K Πη(M)
x=hld(H;K)

fw,K,θ=hsp(x;w)

Figure 2: Schematic representation of the three blocks composing our rCNN architecture.

age I ∈ I a real value f(I) that reflects the degree of safety
perceived by a human. The prediction function f is sought
within a subset of feasible functions F ⊆ I → R (a.k.a.
hypothesis space) following the regularized, empirical risk
minimization principle. This yields the following optimiza-
tion problem

f⋆ ∈ arg min
f∈F

λΩ(f) +Remp(f) , (1)

where Ω(f) is a regularization term penalizing complex func-
tions to prevent overfitting, λ is a nonnegative trade-off pa-
rameter and Remp(f) is the empirical risk term, which is
given by:

Remp(f) =
1

|Dn|

∑

(I,J,y)∈Dn

L(y, f(I), f(J)) .

In the empirical risk, the quality of a prediction function
with respect to the observed data is assessed via a loss func-
tion. Each loss term L(y, zI , zJ) represents the cost one in-
curs by assigning image I and J a safety degree of zI and zJ ,
respectively, given that y is the true, relative safety label.

The loss function that is typically regarded as the refer-
ence loss, and that is used in practice at test time to measure
the errors committed by the learning algorithm, is the binary
loss, which is defined as

Lbin(y, zI , zJ) =

{

1 if y(zI − zJ) ≤ 0

0 otherwise.

At training time, however, the binary loss is typically re-
placed with some other convex, surrogate loss that renders
the optimization of (1) easier. Later in this section, we will
consider differentiable, convex losses such as the squared
hinge loss and the logistic-loss.

In the following we present two different learning settings
for the problem at hand: in Subsection 3.2.1 we present a
solution based on the well-known SVM; in Subsection 3.2.2
we propose a Convolutional Neural Network (CNN) archi-
tecture, which includes a new type of pooling unit. Finally,
in Subsection 3.3 we discuss the problem of optimizing the
empirical risk in the case of a binary loss and unconstrained
function space, with the purpose of determine the intrinsic
noise level of a given dataset.

3.2.1 RankingSVM

We describe a learning machine for our task that is known
as RankingSVM [13, 5]. In this setting, the hypothesis space
FSVM comprises linear, generalized decision functions of the
following form:

FSVM = {fw = I 7→ w
⊤φ(I) : w ∈ R

m} ⊂ I → R .

where φ ∈ I → R
m is a pre-defined feature map that provides

a vector-valued feature abstraction for image I. Functions
fw ∈ FSVM are penalized by means of an ℓ2-regularization
of the parameter vector w, i.e.

Ωℓ2(fw) = ‖w‖22 ,

and the loss function we consider is given in terms of the
squared hinge loss as follows:

Lhinge2(y, zI , zJ) = |1− y(zI − zJ)|
2
+ ,

where |x|+ = max(x, 0). With this loss, one incurs no pe-
nalization if y = +1 and zI > zJ + 1, or if y = −1 and
zJ > zI +1, i.e. when the image deemed as safer has indeed
a safety degree that is at least 1 point better than the one
of the other image.

Under this setting, the optimization in (1) is convex in w

and a global solution can be recovered using the algorithm in
[5]. Once the learned parameters w are obtained, the degree

of safety for a novel image Î can be computed as fw(Î).

3.2.2 Convolutional Neural Networks

A drawback of the SVM-based approach is its depen-
dence on a pre-defined feature mapping φ. To overcome this
limitation, we consider a richer hypothesis space in which
functions admit a compositional factorization of the type
f = hk ◦ · · · ◦ h1, such as those implemented by multilayer
neural networks. In the specific, the architecture we propose
can be organized into three compositional blocks (Figure 2):

Feature extractor

hfe(·; θ) ∈ I → R
r×s×t

This block maps an input image I to an intermediate r×
s×t-dimensional representation. It consists of the first 2/3
layers (we tried both settings) of the deep convolutional
network proposed in [20] and known as AlexNet. All the
parameters of the block are held by θ;

Latent detectors

hld(·;K) ∈ R
r×s×t → R

m , K = (K1, . . . ,Km)

This block takes the output H of the feature extractor and
returns the scalar responses of m detectors of latent visual
concepts. The i-th detector performs the convolution of
the input H with a linear filter Ki ∈ R

u×v×t, followed by
a ReLU non-linearity, obtaining a matrix. This matrix
is then fed to a pooling operator Πηi(·), parametrized by
0 ≤ ηi ≤ 1, to obtain a single scalar. The pooling parame-
ters (η1, . . . , ηm) are model choices to be fixed a priori. In
our experiments we use linear filters of spatial dimensions
u = v = 3, corresponding to a receptive window of 99×99
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η=0 η=0.01 η=0.05 η=0.1

Figure 3: Visual representation of our pooling method. Given different values of the η parameter we show
the areas of four images that concur to the output value of the pooling function, i.e. those corresponding to
the 1+ ⌈η(wz− 1)⌉ largest elements in its input M . Each pixel’s intensity is scaled according to the magnitude
of its corresponding element in M .

pixels in the input image. The pooling operator Πη(M)
that we propose generalizes the well-known max-pooling
and average-pooling operators. It takes as input a matrix
M ∈ R

w×z and depends on a parameter 0 ≤ η ≤ 1. It com-
putes the average of the 1 + ⌈η(wz− 1)⌉ largest elements
in M . If η = 0 then it returns the largest element as the
max-pooling operator, while if η = 1 it returns the aver-
age of the elements in M as the average-pooling operator.
Intuitively, this pooling operator selects a variable-sized
portion of the input image as the most relevant for the
detector’s response. In other words, the proposed struc-
ture for latent detectors permits to discover the regions
of the image which are discriminative with respect to the
perceived safety/unsafety. A graphical representation of
this intuition is shown in Figure 3.

In summary, this block takes the following form:

hld(H;K) = (Πη1(|H ∗K1|+), . . . ,Πηm(|H ∗Km|+)) ,

where |M |+ returns M with negative elements set to 0.

Previous works [4, 19] have investigated similar paramet-
ric pooling methods, which allow a smooth transition be-
tween average and max-pooling. However, none of these
works have focused specifically on CNN architectures for
automatic scene analysis.

Safety predictor

hsp(·;w) ∈ R
m → R

This block is a linear decision function with parameter
w ∈ R

m applied to the responses x ∈ R
m of the latent

detectors, i.e.

hsp(x;w) = w
⊤
x .

The final form of the safety prediction function is

fw,K,θ = hsp(·;w) ◦ hld(·;K) ◦ hfe(·; θ) ,

where w ∈ R
m, K ∈ R

u×v×t×m and θ ∈ Θ, Θ being the set of
all possible parametrizations of the hfe. The corresponding
hypothesis space is thus given by

FrCNN =
{

fw,K,θ : w ∈ R
m,K ∈ R

u×v×t×m, θ ∈ Θ
}

⊂ I → R .

Functions in FrCNN are regularized as usually done for
neural networks through an ℓ2-penalization of the parame-
ters in each layer. As for the loss function, we adopt the
so-called logistic loss, which is given by

Llogistic(y, zI , zJ) = log(1 + exp(zJ − zI)) .

As opposed to the SVM case, the optimization of (1) in
this scenario is non-convex and we rely on Stochastic Gra-
dient Descent (SGD). Specifically, we adopt an SGD solver
with momentum µ = 0.9 and learning rate α = 0.01 (or
α = 0.001 for fine-tuned layers), scheduling a tenfold de-
crease of the learning rate every 6 training epochs.

As a final remark, it is worth noting that, comparing our
CNN with recent deep learning approaches popular in the
vision community [20, 40], the proposed architecture is rela-
tively shallow. Our choice is motivated by the fact that, with
the proposed latent detectors, we aim to discover mid-level
visual representations (i.e. small image regions), which are
discriminative with respect to the perceived safety. Impor-
tantly, our experimental results demonstrate that this choice
does not imply a decrease in terms of prediction accuracy.

3.3 Determining the training set noise
The learning task that we address has a data distribu-

tion that is by nature affected by noise, because humans,
to some degree, tend to provide inconsistent judgements re-
garding the relative safety of image pairs. For this reason,
it is interesting to quantify the smallest error that can be
achieved for some data Dn. To this end, we setup a learning
task under an unconstrained hypothesis space F consisting
of explicit mappings of images in Dn to real values, without
regularization (i.e. λ = 0) and with a binary loss. By doing
so, the solution to (1) yields an error, which corresponds to
the intrinsic noise of the dataset.

Unfortunately, the ERM optimization under this setting
is NP-hard, as it is substantially equivalent to the Minimal
Feedback Arc Set (MFAS) problem [16], which asks for the
minimum set of edges that should be removed from a di-
rected graph to obtain an acyclic graph. The directed graph
G = (V, E) we refer to can be constructed from the training
set by considering the set of images in Dn as the vertex set
V, and for each judgement (I, J, y) ∈ Dn we have an edge
(I, J) ∈ E if y = +1, or (J, I) ∈ E if y = −1.

From the MFAS of G, denoted by A ⊂ E , we can directly
recover the optimal empirical error as Remp(f

⋆) = |A|/|E|.
As for the minimizer f⋆, there are uncountably many possi-
ble solutions that belong to the set

F⋆ = {f ∈ F : f(I) > f(J) , ∀(I, J) ∈ E \ A} .

To construct an arbitrary function f ∈ F⋆, we initialize
fI for all I ∈ V with a random real number. Then, we
visit the directed acyclic graph G′ = (V, E \ A) in breadth-
first order starting from the source vertices, i.e. those ones
having no incoming edge. Each time a new vertex I ∈ V is
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visited, we set fJ ← max(fJ , fI+r) with r a random positive
number for each vertex J ∈ V that is adjacent to I, i.e. such
that (I, J) is an edge of G′. At the end of the graph visit,
f represents an arbitrary function in F⋆ and, therefore, a
minimizer of (1). Since solving the MFAS problem exactly
is in general NP-hard, we rely on the heuristic algorithm of
Berger and Shor [3] to find a possibly good solution. In the
following section we show the results of this analysis on the
Place Pulse dataset.

4. EXPERIMENTAL RESULTS

4.1 Experimental setup
As mentioned above, our experimental evaluation is con-

ducted on the Place Pulse 1.0 dataset. We implemented
Convolutional Neural Networks approaches using the Caffe
package [15] and run them using a NVIDIA Tesla K40 GPU.
For RankingSVM, we adopted a publicly available imple-
mentation4, while for Support Vector Regression (SVR) we
used LIBLINEAR [9]. In all our experiments, the regular-
ization parameters of RankingSVM and SVR have been cho-
sen with a five-fold cross-validation. The performance of the
tested methods has been evaluated in terms of the share of
correctly predicted users’ votes on pairs of images.

4.2 Prediction of Perceived Urban Safety
In this section we demonstrate that a ranking approach

can be successfully used to learn a function that automati-
cally predicts the perceived safety of places from images.

4.2.1 Ranking vs Regression

In Section 3 we have shown that we can learn from the
users’ judgements a real-valued function that assigns a score
to each image. This function induces a total ordering (a.k.a.
ranking) on the set of images, which should be as consistent
as possible with the pairwise relations gathered from the
users. Although the true source of information for the Place
Pulse dataset is given by the users’ pairwise judgements,
previous works [25, 27] have focused on training their al-
gorithms in a way to mimic a ”ground-truth” image scor-
ing function, which has been computed by the Place Pulse
creators from the users’ annotations through the Microsoft
Trueskill algorithm. In this way, the attention has been
shifted from the original ranking problem based on the users’
judgements to a regression problem relying on the provided
”ground-truth” scoring function.

In our opinion, this drift raises two important issues. First
of all, the ability of an algorithm to mimic the provided
scoring function weakly correlates with the ability of the
algorithm to explain the true data distribution, which con-
sists of the users’ pairwise annotations, being the only, true,
physical observations one can rely on. Indeed, there are un-
countably many possible scoring functions (see, Subsection
3.3) performing equally well, but being arbitrarily different,
that could potentially have been taken as a ”ground-truth”
scoring function. Moreover, errors measured for the regres-
sion task on the scoring function do not properly map to
errors relative to the true data distribution (i.e. violations
of the users’ annotations). A second issues is that, according
to the previous point, the only reliable way to measure how
well a trained algorithm performs for the safety prediction

4http://olivier.chapelle.cc/primal/

Table 1: RankingSVM: Performance with different
features representations.

Features Average Accuracy (std)
GIST 65.42% (±0.95)
HOG 65.82% (±0.79)
ImageNet 62.02% (±1.15)
PLACES 66.34% (±1.16)
SSIM 64.48% (±1.03)
SUN 65.97% (±1.04)

task on the Place Pulse dataset is via an error measure-
ment on the true data distribution. However, any attempt
in this direction will be intrinsically biased, if the algorithm
has been trained using the ”ground-truth” scoring function.
This is because the ”ground-truth” scoring function has been
constructed using all the users’ annotations and, hence, any
algorithm trained for regression on those scores is a function
of the whole dataset, thus leaving no independent piece of
information for a proper error assessment.

We also found out that the ”ground-truth” scoring func-
tion based on Microsoft Trueskill, which is used in [25, 27],
is not the best representative for the users’ annotations. In-
deed, it yields an accuracy of 72.87%, which is smaller than
what we obtain with a scoring function constructed using
the procedure described in Subsection 3.3, namely 76, 9%.

For the aforementioned reasons, we do not find reliable to
train an algorithm for regression on the ”ground-truth” scor-
ing function provided with the Place Pulse dataset: it will
hinder the possibility of a more principled error assessment
via the users’ annotations, i.e. the true data distribution.
We consider instead more appropriate to train our algorithm
directly on the users’ votes.

4.2.2 RankingSVM

In this section we analyze the performance of a ranking
approach, i.e. RankingSVM, when different types of fea-
tures are considered: GIST, Histogram of Oriented Gra-
dients (HOG) and Self-similarity descriptors (SSIM), as
described in [28]; features extracted from the sixth layer of
the Caffe reference network, trained on the 1.2 million im-
ages of ImageNet (ILSVRC 2012) [15]. These features have
been used in previous related works [25, 27]. We also pro-
pose two additional feature representations: (i) features ex-
tracted from the sixth layer of a CNN having the same archi-
tecture as the Caffe reference network, trained on the recent
PLACES [40] dataset; and (ii) features derived from the
SUN Attribute dataset [28]. Specifically, we used as high-
level features the scores computed by predicting the presence
of each of the 102 crowd-sourced scene attributes available in
the SUN Attribute dataset [28]. The 102 attributes are quite
heterogeneous and span materials, surface properties, func-
tions or affordances, and spatial envelope properties. The
prediction of attributes is obtained following the approach
described in [28] using a publicly available code.5

The results shown in Table 1 demonstrate that, despite
the many challenges inherent to the task, a ranking approach
can be used to learn to predict human judgements of safety.
Table 1 also shows that the best performance is obtained
using the features derived from the pre-trained Places-CNN.
This is somehow expected, as these features represent state-
of-the-art descriptors for scene recognition problems [40].
However, confirming the findings of previous works on the

5http://cs.brown.edu/~gen/sunattributes.html
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Figure 4: Word clouds of SUN attributes. Top,
green: safe, bottom, red: unsafe.

Table 2: Comparison between different ranking
methods.

Method Accuracy

CNN

rCNN2[m = 24, ηA] 70.25%
rCNN3[m = 24,max] 69.12%
AlexNet-noinit 66.85%
AlexNet-ImageNet 67.15%
AlexNet-PLACES 70.65%

SVM

GIST 66.18%
HOG 66.37%
ImageNet 63.01%
PLACES 65.93%
SSIM 64.56%

Place Pulse dataset [27], we did not observe a significant
increase in accuracy when using pre-trained CNN-derived
features with respect to more traditional descriptors. It is
worth noting that, discarding CNN-based features, the best
performance is obtained considering SUN attributes.

Looking at SUN features, it is also interesting to try to in-
terpret these data, by analyzing which of the SUN attributes
correlate with the concept of perceived safety/unsafety. To
this aim we performed a simple experiment. Given the rank-
ing scores computed with the algorithm described in Sec-
tion 3.3, we took the 100 images corresponding to places
perceived as safe and 100 pictures associated with the most
unsafe locations. For each of the SUN attributes we ana-
lyzed the distribution of the scores computed as in [28] and
we selected the 10 most represented attributes in both sets.
Figure 4 shows these attributes in the form of a word cloud,
where the size of each attribute’s name is proportional to the
number of images in which it was detected. It is interest-
ing to see that, among attributes being discriminative of a
specific set, those corresponding to vegetation are associated
to safe areas, while concepts like clouds or asphalt correlate
with non-safe places. As expected, common attributes in-
volve aspects like natural light, man-made structures and
open area, indicating general concepts related to outdoor
scenes.

4.2.3 Ranking with CNN

In this section we analyze the performance of the pro-
posed CNN architectures for ranking (rCNN). Specifically
we consider the following configurations (cfr. Section 3.2.2):
• rCNN2[m = 24, ηA], rCNN2[m = 32, ηA]: 2-layers fea-

ture extractor, respectively 24 and 32 latent detec-
tors split into four groups with pooling factors ηA =
(0, 0.01, 0.05, 0.1);
• rCNN2[m = 24, ηB ], rCNN2[m = 32, ηB ]: 2-layers fea-

ture extractor, respectively 24 and 32 latent detec-
tors split into four groups with pooling factors ηB =
(0, 0.1, 0.25, 0.5);

Table 3: Comparison between different regression
methods using the same split as Table 2.

Features Accuracy
GIST [25, 27] 65.29%
HOG [25] 66.04%
ImageNet [27] 66.79%
PLACES 67.93%
SSIM [25] 63.93%

Table 4: Comparison among the proposed CNNs.
Method Accuracy
rCNN2[m = 24, ηA] 70.25%
rCNN2[m = 32, ηA] 69.44%
rCNN2[m = 24, ηB ] 69.70%
rCNN2[m = 32, ηB ] 69.73%
rCNN2[m = 24,max] 66.87%
rCNN2[m = 32,max] 68.39%
rCNN3[m = 24,max] 69.12%
rCNN3[m = 32,max] 68.98%

• rCNN2[m = 24,max], rCNN2[m = 32,max]: 2-layers
feature extractor, respectively 24 and 32 latent detec-
tors with max pooling (η = 0);

• rCNN3[m = 24,max], rCNN3[m = 32,max]: 3-layers
feature extractor, respectively 24 and 32 latent detec-
tors with max pooling (η = 0).

The feature extractor layers of all configurations are fine-
tuned from AlexNet trained on the Places dataset [40], while
all other layers are learned from scratch. Due to the long
training time of CNNs, the results presented in this section
refer to a single random split of the data, where 80% of
the images and their votes are used for training and 20%
for testing. We do not expect significant differences in the
results when a different split is chosen.

In a first series of experiments we compare the two best
performing configurations of our CNN architecture with Rank-
ingSVM and state-of-the-art deep learning methods. In par-
ticular, we adapt the well-known AlexNet architecture [20]
to our task: we keep the original topology for the bottom
6 layers (5 convolutional, 1 fully connected) and attach a
final fully connected layer that outputs the ranking score.
The resulting network is trained both from scratch (denoted
as AlexNet-noinit) and by fine-tuning the bottom six layers
from two publicly available models learned on object recog-
nition [20] (AlexNet-ImageNet) and scene recognition [40]
(AlexNet-PLACES) tasks. Table 2 reports the results of this
comparison. It is immediately clear that CNN approaches
outperform SVM-based ones, confirming the advantages of
deep learning for predicting human perception over pre-
vious works based on traditional features descriptors [25,
27]. By comparing the accuracy of our CNNs with the
AlexNet-derived ones, we observe that AlexNet-PLACES
slightly outperforms our approach. Indeed, a deeper net-
work typically guarantees improved performance when suf-
ficient training data is available. The requirement for con-
siderable amounts of training data is reflected by the re-
sults obtained for AlexNet-noinit, which shows the worst
performance among the CNN approaches. Finally, we note
that AlexNet-ImageNet achieves a lower accuracy than both
AlexNet-PLACES and our CNNs. We think that this de-
pends on the scene recognition task on which AlexNet-PLACES
was pre-trained begin closer to our safety-prediction task, as
opposed to the object recognition task in ImageNet.
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Figure 5: The most important patterns correlated
with perception of safety discovered by the network
rCNN2[m = 24, ηB ]

Figure 6: The most important patterns correlated
with perception of safety discovered by the network
rCNN2[m = 32, ηA]

For the sake of comparison, we also report the results ob-
tained on the same data split using SVR (Table 3). Note
that the values in Table 3 suffer from the score bias discussed
in Section 4.2.1. Nevertheless, Table 3 clearly shows that the
proposed CNN outperforms previous regression-based meth-
ods [25, 27], independently from the feature representation
used. Table 4 reports a comparison among the aforemen-
tioned configurations of our CNN architecture. We observe
an advantage in terms of accuracy for the mixed-pooling
configurations compared to the max-only ones. In partic-
ular, rCNN2[m = 24, ηA] achieves the best overall result
with an accuracy of 70.25%, while rCNN2[m = 24,max]
shows the worst with an accuracy of 66.87%, suggesting that
both localized and diffused features are more informative for
the prediction of perceived safety. Looking at the effects of
changing the number of latent detectors, only slight differ-
ences in accuracy are observed between m = 24 and m = 32.
We did not report results for m > 32 as they typically cor-
respond to a decrease in accuracy as well as a less clear
separation between safe/unsafe visual patterns.

4.3 Visualizing Patterns of Safety/Unsafety
In this section we analyze the ability of the proposed CNN

approaches to automatically discover visual patterns associ-
ated with the perception of safety. With reference to Sec-
tion 3.2.2, we use the learned weights w to characterize the
latent detectors. Intuitively, since a latent detector’s out-
put is always greater than or equal to zero, its positive or
negative contribution to the predicted image safety only de-
pends on the sign of the corresponding entry of w. Thus, we
mark as “safe” the detectors associated with learned positive
weights and “unsafe” the others, while we use the weight’s
magnitude to determine how discriminative the detector is.

As a first visualization approach, we select the four most
discriminative “safe” and “unsafe” latent detectors from the

Figure 7: The most important patterns correlated
with perception of unsafety discovered by the net-
work rCNN2[m = 24, ηB ]

Figure 8: The most important patterns correlated
with perception of unsafety discovered by the net-
work rCNN2[m = 32, ηA]

two best performing CNNs of Table 4: rCNN2[m = 24, ηA]
and rCNN2[m = 24, ηB ]. Then, we extract from the dataset
the 10 patches showing the highest response on each de-
tector and collect them (arranged row-wise) in Figures 5-
8. Looking at Figures 5 and 6, we can see a prevalence
of residential single houses, and, in particular, windows of
residential houses. Another interesting aspect is the pres-
ence of trees and portions of gardens. Interestingly, Quercia
et al. [31] found residential trees and residential windows
as visual words associated with quiet images. The preva-
lence of residential trees and residential gardens is also in
line with the results obtained in environmental psychology
[38], highlighting the positive influence of vegetation, par-
ticularly gardens, parks and residential trees, on judgements
about urban spaces. Finally, in some of the patches are rep-
resented crosswalks. Turning now our attention to the four
most discriminative “unsafe” latent detectors (Figures 7 and
8), we can see the presence of gates, graffiti and other signs
of vandalism. As pointed out by the Broken Windows The-
ory, graffiti contribute to a perception of breakdown of social
order [17] and usually are associated with judgments of low
safety [35]. Moreover, Broken Windows Theory suggested a
positive relationship not only between signs of disorder and
perception of unsafety, but also between disorder and crime
rates. Another emerging sign from the images associated
with judgments of unsafety is the presence of empty roads,
electricity and communication pylons. Finally, the buildings
are mainly council houses and industrial buildings and their
selected portions represent usually the roofs.

As mentioned in Section 3.2.2, the output of the pooling
operator adopted in our rCNN networks only depends on a
portion of the input image. Depending on the η parame-
ter the size of this portion varies from a single patch to the
whole image. This observation suggests an effective way to
visualize the internal representation learned by each of our
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latent detectors, which is exploited to generate the images
in Figure 9. Here we chose three “safe” and three “unsafe”
detectors from rCNN2[m = 24, ηA], each having a different
pooling parameter, and study their output on some of the
images that exhibit the strongest response on each detector.
For each image we show the portions that concurred to the
detectors’ output and scale the pixel intensities according to
the local detector response. As expected, the images corre-
sponding to a small value of the pooling parameter depict
very localized features of the environment, like roofs and
windows. Increasing values of η shift the detectors’ atten-
tion towards bigger areas, comprising sidewalks, roads, fa-
cades or entire buildings. The same observations concerning
the nature of the features associated with safety and un-
safety reported in the previous paragraphs also apply here
(presence of residential gardens and trees, and residential
single houses for safety, while council houses and industrial
buildings for unsafety). It is also interesting to note how the
aspect ratio of the image regions selected by the“unsafe”de-
tectors tends to be wider, highlighting horizontal structures
typical of industrialized open areas.

5. CONCLUSIONS AND FUTURE WORK
We presented a novel approach for predicting the per-

ceived safety of urban scenes from Google Street View im-
ages. Our extensive experimental evaluation, conducted on
the publicly available Place Pulse dataset, demonstrates that
the proposed method, combining a ranking framework with
the representational power of CNNs, is more accurate than
state of the art methods. Moreover, our CNN-based ap-
proach permits to discover automatically mid-level visual
patterns correlated with urban perception. To our knowl-
edge, this is the first work that introduces a computational
model for addressing the issue: What makes a place look
safe?. Future works include extending the proposed ap-
proach to prediction of other high level attributes and an-
alyzing the difference among scenes of various geographic
areas (Europe vs USA).
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