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ABSTRACT
Image search reranking has been an active research topic in
recent years to boost the performance of the existing web
image search engine which is mostly based on textual meta-
data of images. Various approaches have been proposed to
rerank images for general queries and argue that, they may
not necessarily be optimal for queries in specific domain, e.g.,
object queries, since the reranking algorithms are operated
on whole images, instead of the relevant parts of images.
In this paper, we propose a novel bag-of-objects retrieval
model for image search reranking of object queries. Firstly,
we employ a common object discovery algorithm to discov-
er query-relevant objects from the search results returned
by text-based image search engine. Then, the query and
its result images are represented as a language model on
the query-relevant object vocabulary, based on which the
ranking function can be derived. As the common object dis-
covery is unreliable and may introduce noises, we propose
to incorporate the attributes of the discovered objects, e.g.,
size, position, etc., into the ranking function through a lin-
ear model, and the weights on the object attributes can be
learned. The experiments on two subsets of Web Queries
dataset comprising object queries demonstrate that our ap-
proach can significantly outperform the existing reranking
methods on object queries.

Categories and Subject Descriptors
H.3.3 [Information Systems Applications]: Retrieval
models

General Terms
Algorithms, Performance, Experimentation
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Figure 1: A reranking example for query “Eiffel
Tower”. The first row is the result by text based
search and the second row is the result after rerank-
ing based on PRF assumption.
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1. INTRODUCTION
As the major image search engines index and rank images

mainly based on the surrounding text information, it usually
leads to unsatisfactory results being returned to users. This
is due to the mismatch between image content and the tex-
tual description. Image search reranking has been an active
research topic in multimedia retrieval, aiming to refine the
text-based search results based on cues from images’ visual
content.

The existing reranking approaches [6, 7, 28, 10, 11, 30,
31] are mostly based on the cluster assumption and PRF
(Pseudo Relevance Feedback) assumption. The cluster as-
sumption suggests that the relevant images are visually sim-
ilar while irrelevant images have different appearances. This
has been extensively adopted in various graph-based rerank-
ing algorithms based on the visual similarity graph [10, 11,
30, 31]. In the PRF assumption, the images ranked in the
top of the text-based search result are regarded as pseudo-
relevant, which can then be employed to learn a classifier
[17] or multiple classifiers [36]. While these assumptions
have been demonstrated as generally effective in the pre-
vious works [6, 7, 28], we can see that they are not suffi-
ciently appropriate for object queries, for which users are
likely to find images containing an object such as car. For
such queries, the images which users are interested in may
be partially related to the query. In other words, only some
parts of these images are relevant to the query while the rest
may not. Then, the cluster assumption or PRF assumption
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which operates on the whole image cannot sufficiently cap-
ture useful information from the initial text-based search
result.
Figure 1 shows an example for the query “Eiffel Tower”.

The upper row is the result from a text-based search engine.
The lower row is the reranking result by PRF assumption
where the first image is regarded as positive sample. In this
case, two irrelevant images are boosted to the top, because
image F and D have high visual similarity to image A.
We argue that the problem is mainly caused by the fact

that the existing reranking approaches based on above as-
sumptions usually employ the visual features on the whole
image, such as histogram of visual words [3, 37]. However,
for the object queries, i.e., the queries by which the user
intends to search for images containing desired objects, in-
cluding people/faces, logos, animals, buildings and industri-
al productions, images can be said relevant if only part of
the image is about the query object. Hence, the assump-
tions operating on the whole image may be too rigid. For
the above example, we may achieve a better performance if
the reranking algorithm is performed on object level, so that
images such as B, C and E containing the Eiffel Tower but
with distinct viewpoints (or with different backgrounds) can
still have a fair chance to be promoted.
Hence, we propose a bag-of-objects retrieval model to rep-

resent the query and its result images as a language model
based on the containing object appearances. To make the
models focus more on the query-relevant objects but be in-
sensitive to noises or backgrounds, we represent the image
and query language models on a query-relevant object vo-
cabulary.
To construct such a query-relevant object vocabulary. we

extend the iterative link analysis approach proposed in [15],
which tries to mine the common objects in a set of images
by a PageRank -like algorithm [15] on image regions. Since
the text-based intial ranking can provide useful information
on which image is more relevant than the others, we uti-
lize this to improve the algorithm in [15] by considering the
text-based ranking as a prior in PageRank to differentiate
the images at different rank positions. Although the query-
specific object discovery is generally effective, it may not be
sufficiently reliable in complex circumstances and leads to
irrelevant objects being discovered.
To estimate the relevance and confidence of discovered

objects to the query, we compute a set of attribute scores
based on the the position, size, and visual density of ob-
jects in containing images, etc. Then these attributes are
integrated into the retrieval model so that a linear weight-
ed ranking function is derived. The weights can be learned
through RankSVM [13] from a human labeled training set.
The proposed approaches are evaluated on two subset-

s of the publicly available Web Queries dataset [17]. One
comprises named person queries and the other comprises
the other object queries. The results show that the bag-of-
objects retrieval model outperform all the other reranking
methods. It improves the result from the search engine by
39.52% in the term of Mean Average Precision (MAP) and
the result from the state-of-the-art reranking method [36] by
6.84%.
The rest of this paper is organized as follows. After re-

viewing the related work on image search reranking, object-
based image retrieval and common object discovery in Sec-
tion 2, we describe the proposed bag-of-objects retrieval

model with an illustrative example in Section 3. Section
4 presents the experimental results and analysis of our ap-
proach. In Section 5, we complete this paper with remark-
able conclusions and a summary of future works.

2. RELATED WORK
In this section, we will review the related work on image

search reranking, object-based image retrieval and common
object detection and position the contribution of our paper
with regard to these existing work.

Image Search Reranking. The existing image search
reranking methods can generally be classified into unsu-
pervised and supervised ones. The unsupervised reranking
approaches are mostly based on assumptions on the struc-
ture of the initial text-based search result, among which the
most well-known are cluster assumption and PRF (Pseudo-
Relevance Feedback) assumption. The cluster assumption
suggests that the relevant images are mostly visually simi-
lar while irrelevant images are not [30]. As the assumption
can be naturally represented in a graph structure, various
graph-based reranking methods are proposed to interpret
this assumption from different viewpoints [30, 31, 11, 10].
Specifically, in these methods, a graph is firstly constructed
with images as nodes and the edges are based on the visual
similarity. Then image search reranking can be achieved by
the propagation of ranking scores or positions on the graph.
The main drawback of such approaches is that the visual
similarity is difficult to estimate, and most of the approaches
are based on the global visual features, which cannot han-
dle object queries well, since the image similarity should be
computed with regard to the relevant objects. The second
is the PRF assumption, which rigidly assumes that the top-
ranked images in text-based search result are relevant to
the query. Based on this assumption a number of reranking
models [33, 6, 7, 28, 21] are proposed, which learn a classifi-
er by taking the top-ranked images as positive and then use
this classifier to rank images. As the learned classifiers are
mostly on the whole image without regard to objects in the
image, these approaches will not perform sufficiently well for
object queries.

Supervised reranking methods are proposed to introduce
human labeling to train a reranking model which can better
accord with users’ perception. The different approaches dif-
fer mostly on how to derive the relevance features between
the textual query and images which are in different modal-
ities. In [35] and [17] the reranking features are usually
manually designed, based on the domain knowledge of the
authors on image search problem. While, in [36], the rerank-
ing features are automatically extracted by learning multi-
ple classifiers, assuming the different importance for images
with different text-based ranks. Our proposed approach fol-
lows the supervised reranking fashion, but with two major
contributions to extend the existing work. First, instead of
operating on the whole image as in the existing approaches,
we build an object-based model so that the reranking process
can be aware of the query-relevant objects. Second, in our
work, we are not attempting to learn models to combine dif-
ferent reranking features, but targeting to learn parameters
in the bag-of-objects retrieval model, where the parameters
indicate the usefulness of different object attributes.

Object-based Image Retrieval. Object-based image
retrieval is a well studied problem, for which the user usual-
ly provides a query image with the object of interest being
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specified through e.g., a bounding box. Different approaches
were proposed in the past years. In [26, 27, 23], objects on
database images are manually labeled and then indexed by
visual features such as color, texture and shape. In [9] im-
ages are firstly segmented into small regions and the query
object is modeled based on the regions using Latent Seman-
tic Analysis (LSA). In [34], images are represented as a bag
of visual words, and then the language modeling approach
to information retrieval is employed for ranking images. The
authors argue that the object context is important, and thus
visual words locating outside the object region should also be
taken into consideration in the retrieval process, but with a
discounted weight. The problem studied in our paper is dif-
ferent from object-based image retrieval, in which the query
is specified by a keyword, instead of an example image with
object of interest. Hence, our problem is more challenging
because we need to infer the representation of the object of
interest based on the user provided keyword query.
Common Object Discovery. Common object discov-

ery is a recently investigated topic which aims to find the
frequent objects in a group of images. The different ap-
proaches of common object discovery can be divided into
two classes: segmentation based methods [16, 14, 8, 32] and
bounding box based methods [15, 19, 4].
Segmentation based common object discovery, which is al-

so known as co-segmentation, segments the frequent objects
of each image simultaneously. Rother et al. [25], formulate
the problem as minimizing an energy function consists of
the Markov Random Field (MRF) smoothness for separat-
ing foreground and background and a histogram matching
term guarantees foreground of images to be similar. In [16],
the authors first segment each image into a group of su-
per pixels and then segment the common foreground by a
greedy expansion algorithm. The main drawbacks of these
method are two-fold, limiting their application in out work:
First, most of the co-segmentation methods are designed for
images with clear foreground, which may not be effective
on the web images with complicated background. Second,
co-segmentation methods are very time consuming, which
usually take hours when applied on hundreds of images.
Bounding box based methods aim to find the common

object in the form of bounding box. These methods usually
build a set of hypotheses regions of interest (ROI) based on
the saliency map. In [4] a conditional random field (CRF)
is built for all the candidate ROIs and the common object
discovery problem is transformed as finding an optimal con-
figuration in the CRF. In [15] a link analysis algorithm is
iteratively applied on all the ROIs to find the centrality as
the common objects. For image search reranking, since the
initial image ranking from the text-based search engine can
provide useful information on the usefulness of images to the
query, we extend [15] by incorporating such prior ranking in-
formation to build the query-relevant object vocabulary.

3. APPROACH
Our approach starts with the construction of query-relevant

object vocabulary by mining the query-relevant objects from
the images returned by the text-based search engine. Then,
a bag-of-objects retrieval model is proposed to formulate the
reranking problem based on the language modeling approach
for information retrieval. To compute the ranking scores for
each image based on the bag-of-objects retrieval model, we
estimate the image and query models based on the results

of query-relevant object discovery. Finally, we present the
approach which learns the parameters in the retrieval model.

3.1 Query-relevant object vocabulary
construction

The query-relevant objects are those different objects in-
stances or different appearances of one object which are rele-
vant to the query. For example, for the query“Eiffel Tower”,
the query-relevant objects may include the appearances of
Eiffel Tower from different viewpoints or with different light-
ing conditions. For the query “Car”, the query-relevant ob-
jects may comprise the different car instances such as “Audi
A6” ad “BMW Q5”.

The query-relevant object vocabulary is critical to our ap-
proach to serve as the foundation of the later processing. In
this paper, we propose an algorithm based on link analysis
[15] to discover those objects.

3.1.1 Algorithm overview
We first detect 30 ROIs with the highest saliency on each

image using saliency object detection method proposed in
[5], which are regarded as the hypotheses for query-relevant
objects.

Our method is composed of two steps. In the first step, we
select the qualified hypotheses that are highly confident to
be query-relevant objects. The second step is to cluster the
selected ROIs and use the clusters as query-relevant object
vocabulary.

In the ROI selection step, the algorithm iteratively refines
query-relevant ROI set until it becomes stable. In each iter-
ation, the algorithm first recommends several representative
ROIs which are considered to be the most query-relevant.
These ROIs are called “hubs”. Then, an ROI refinement
procedure is applied on each image, where those ROIs with
the highest similarity to the hubs are taken as query-relevant
ROIs. The query-relevant ROIs selected by the second pro-
cedure is taken as the input of the next iteration.

3.1.2 ROI selection
In iteration t, the “hubs” are obtained using link analysis

technique of PageRank [2]. Different from the hub-seeking
procedure adopted in [15], the hubs selected in our method
should not only be representative to an object, but also rel-
evant enough to the query.

To achieve this, we construct an augmented bipartite graph

G(t) between S(t−1) and C, where S(t−1) = {s(t−1)
i } denotes

the ROIs selected in the last iteration, and C is the image
ranking list of the current query returned by the search en-
gine. The Page Rank algorithm calculates the ranking score
for each vertex inG(t), where the ranking score on the vertex
of an ROI intuitively shows the object confidence and query
relevance. The augmented bipartite graph G(t) is written as
follows:

G(t) =

[
αGs (1− α)Gd

GT
d 0

]
, (1)

where Gs is a k-nearest neighbour (k-NN) self-similarity

graph constructed on S(t−1). Gd is a bipartite graph con-
structed between S(t−1) and the ranking list C, where each
image document is linked to all its containing ROIs appeared
in S(t−1) with edge weight set to 1. In our experiment we
set α = 0.8.

For PageRank algorithm, the score vector p is updated as
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follows:

p̃ = βGp+ (1− β)I. (2)

Here, I is the vector for priori probabilities and I = [Ik Id],
where Ik

i = 1

|S(t−1)| and Id
i = 1

log(i+1)M
with the normal-

ization term M =
∑|C|

i
1

log(i+1)
. The variable i indicates

the ranking position of the image. Vector Id is set in this
way because we assume images with higher ranking from
text-based search engine are more likely to be relevant to
the query. In each iteration, the text-based ranking score of
each image is propagated to all its linked ROIs through the
bipartite graph Gd.
After PageRank converges, we follow the hub-seeking method

in [15] to find the ROIs which are diverse and also represen-
tative to the query by choosing the ROI vertices with local
maxima of PageRank score.
The procedure of ROI refinement on each image is achieved

by applying the PageRank on an augmented bipartite graph
between the image’s belonging ROIs and the hubs. From
these ROIs, we selected the ones with the highest ranking
score as potential object instances and use them as the input
of the next iteration.

3.1.3 ROI Clustering
Since the “hubs”are regarded as typical for query-relevant

objects, we treat each selected hub in the last iteration as
the representation of a query-relevant object. Then, each
selected ROI is assigned to its nearest hub if the distance is
less than a threshold γ as the instance of the query-relevant
object.
We argue that the ROI’s distance to the hub is not ac-

curate enough in measuring its confidence of belonging to a
query-relevant object. Thus, we re-estimate this confidence
by PageRank. We first construct a k-NN self-similarity graph
among the ROIs within the cluster and apply the PageRank
procedure. For an instance ki of the object k, we denote
the score as S(ki,k). We call the set of discovered objects
as the object vocabulary, and denote it as K.

3.1.4 An illustrative example
Figure 2 (a) shows an example process of query-relevant

object discovery on the query “Arc de triumph”. From each
image, a group of ROI hypotheses is detected by the saliency
object detection approach in [5]. We can see from the figure
that the building of Arc de triumph is perfectly bounded
by a certain ROI among the hypotheses. After applying
iterative link analysis, these bounding boxes are selected due
to similar visual appearance. On the contrary, the image of
a leaf on the right has no selected ROI because it is not
similar to any of the extracted hubs thus regarded as an
outlier.
Figure 2 (b) shows the 4 object clusters extracted with

respect to the selected hubs, where the ROI list is sorted
by belonging confidence S(ki,k) in descending order. Ac-
cording to definition in the beginning of Section 3.1, query-
relevant objects can be different object appearances as well
as different objects. Due to the different view points and
illuminating conditions, ROIs of “Arc de triumph” are clus-
tered into 3 different categories. In Figure 2 (b), images
of object 2 show the exact front of the arch but object 1
is taken from a different viewpoint. Object 3 comprises the
images of query object in the night, and object 4 is irrelevant
and showing another famous landmark “Arc de ceil”. The

reasons that the object 4 is detected as a hub are two-fold.
First, several images of this arch exist in the search result,
thus the appearance of this arc is regarded as frequent. Sec-
ond, “Arc de ceil” is also an arch, and visually very similar
to the query object, thus some images of “Arc de triumph”
would also vote for this hub.

We can see that although above query-relevant object dis-
covery is effective, it will also fail in some cases. Besides
object 4, several ROIs not relevant to the query are also s-
elected as instances of query-relevant objects, as shown in
Figure 2 (b). Hence, we propose the bag-of-objects retrieval
model to resolve this problem in the following.

3.2 Bag-of-objects retrieval model
Given the discovered query-relevant object vocabulary in

the above, we can represent the images and the query as a
bag-of-objects. Then the reranking problem can be formu-
lated as a risk minimization following [18].

The ranking objective of an image d is related to the risk
of returning it for a given query q, which can be defined on
the query and document language models:

R(d; q) = R(a = d|q,G)

=
∑
r∈0,1

∫
θQ

∫
θD

L(θQ, θD, r)× p(θQ|q)

p(θD|d)p(r|θQ, θD)dθQdθD.

(3)

Here, a = d means the action of returning the document
d for the query q, and G is the document collection in the
database, r is the query-document relevance. θQ and θD are
the language models for the query and the document, which
are also called query model and document model respective-
ly. L is the loss function which can usually be modeled
by Kullback-Leibler divergence (KL divergence) between the
query model and document model, written as follows:

∆(θQ, θD) =

MK∑
i=1

p(ki|θQ) log
p(ki|θQ)
p(ki|θD)

. (4)

Then, based on some derivations we can obtain the following
ranking function:

R(d; q) ∝ −
MK∑
i=1

p(ki|θ̂Q) log p(ki|θ̂D) + ξq, (5)

where θ̂Q and θ̂D are the the maximum a posteriori estima-
tion of the query and document models, and ξq is a constant
which can be ignored for ranking. By sorting the image list
with respect to the ranking function in Equation (5), we can
get the reranked results.

In the following section, we are going to show how to es-
timate the document model in Section 3.3.1 and the query
model in Section 3.3.2.

3.3 Document and query modeling

3.3.1 Document Model
In this paper, we assume our document model follows the

following distribution

p(d|θD) ∝
Md∏
i=1

p(di|θD), (6)
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Figure 2: An example of Query dominant object extraction on the query “Arc de Triumph”.

where di stands for the ith object instance in image d. We
define

p(di|θD) =

MK∏
j=1

p(kj |d)S(di,ki)δ(di,kj), (7)

where function δ(di,kj) indicates whether di is associated
as an instance of object kj in the query-relevant discovery
and S(di,kj) is a score obtained by the PageRank applied
in Section 3.1.3, showing the confidence that the instance di
belongs to object kj .
Then, the maximum-likehood estimation (MLE) of the

document model is derived as follows:

p(ki|θD) =

∑Md
j=1 S(dj ,ki)δ(dj ,ki)∑Md

j=1 S(dj ,ki)
. (8)

3.3.2 Query Model
In this paper, the query is also modeled as a bag of ob-

jects. Since the text query itself does not have any visual
information, we estimate the query language model θQ with
respect to the query-relevant object vocabulary K and the
ranked image list C from text-based search. The distribu-
tion of each query-relevant object for query q is denoted as
p(ki|θQ), which we assume follows the following distribution:

p(q|θQ) = p(K,C|θQ)

∝
Mq∏
i=1

p(ki,C|θQ),
(9)

with

p(ki,C|θQ) = p(ki|θQ)S(ki,C). (10)

The function S(ki,C) computes the object relevance with
respect to the initial rank list C. With the distribution de-
scribed in Equation (9), the maximum likehood estimation
of the query’s object model θQ is then derived as follows:

p(ki|θ̂Q) =
S(ki,C)∑Mq

j=1 S(kj ,C)
. (11)

In this paper, we calculate the object relevance S(ki,C)
based on the attributes from each object. These attributes
are proposed below to indicate the object relevance to the
query. As the below attributes are extracted on each con-
taining instance of the object, we calculate the score of each
object based on the expectation and variance of the com-
prising instances’ attribute scores, such that each attribute
can capture not only the average information but also the
variance of the instances. To reduce the impact of noisy
ROIs, the score of each instance is weighted by its belonging
confidence S(ki,k) calculated in Section 3.1.3.

• Initial ranking: As stated in PRF based methods,
the initial ranking of each image is critical to its rele-
vance. Motivated by this, we assume that if an object
has a set of instance whose parent images are all high-
ly ranked by text-based search engine, the object can
be regarded as query-relevant with a high probability.
On the contrary, if all the instance of the object are
ranked at the bottom of the ranking list, the object
is probably irrelevant to the query. In this paper, we
calculate the ranking score of each image with respect
to its ranking position as follows:

IR(x) =
1

log(R(x) + 1)
, (12)

where R(x) stands for the ranking position of image x.

• Initial ranking of neighborhood: The information
from the visual neighborhood can be propagated to
improve the robustness of the estimation. Hence, we
propose to use the initial ranking of neighborhood of
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each instance. Which is calculated as follows:

NR(xi) =
1

|nn(xi; k)|
∑

xj∈nn(xi;k)

IR(xj), (13)

where nn(xi; k) stands for the k-nearest neighborhood
of object instance xi.

• Object size: Intuitively, if an ROI region occupies a
big part of an image, it is probably the topic of the
image. On the contrary, if an ROI is small, it is likely
to be a background object which is irrelevant to the
topic of the image and so to the query. Also, a small
ROI may not have reliable visual features to compute
the distance correctly, which misleads the ROI to be-
long to the query-relevant object category. To avoid
the influence of image size, we normalize the area of
bounding box by it.

• Object location: An ROI locating on the center of
the image intuitively tells that the photographer is tak-
ing a shot directly towards the object. Therefore, the
distance from the ROI to the image center indicates
the confidence that the object is representing the im-
age. In this paper, we adopt the shift of the ROI to
the image center along X and Y axis, as well as the
euclidean distance of the ROI to the center.

• Saliency: We assume ROI with high saliency is more
likely to be an object while low saliency suggests a
probability to be an scene. Hence, we use the average
saliency scores of an ROI as one dimensional attribute
score to reflect the relevance of the ROI to be relevant
to the object query.

• Visual density: We follow the assumption in [29]
that relevant images have higher density than irrele-
vant images. Thus, we argue that relevant object in-
stances may have higher density on visual appearance.
For each instance, its density is calculated by the Ker-
nel Density Estimation (KDE) [24] follows

p(xi) =
1

|nn(xi; k)|
∑

xj∈nn(xi;k)

χ(xi − xj), (14)

where nn(xi; k) suggests the k-nearest neighborhood of
region xi, and χ(x) is a kernel function with χ(x) > 0
and

∫
χ(x)dx = 1.

The attributes scores computed using the above approach-
es are formed into a feature vector Lq

i . Then, the function
S(ki,C) can be written as follows:

S(ki,C) = W TLq
i , (15)

where WT is the weight vector of the combination model.
We then substitute the Equation (15) into Equation (11),

then p(ki|θ̂Q) becomes

p(ki|θ̂Q) =
S(ki,C)∑|K|
j=1 S(kj ,C)

=
W TLq

i∑|K|
j=1 W

TLq
j

.

(16)

Since the denominator of Equation (16) is mainly for nor-
malization, it can be ignored for ranking. By integrating

Equation (16) into the ranking function (5), we can get the
final ranking function for the bag-of-objects retrieval model.

3.4 Learning
As the ranking function is a linear function we can natural-

ly employ Ranking SVM to learn the parameters. Ranking
SVM [13] is an adaptation of the classification SVM to the
ranking problem. It decomposes the rankings into a set of
pair-wise preferences and then reduces the ranking learning
problem into the classification of pairs. The optimization
problem of Ranking SVM is

min
W

1

2
W TW + C

∑
εix,y

s.t. ∀qi, kx ≻ ky : R(x; qi)−R(y; qi) ≥ 1− εix,y

∀x, y, i : εix,y ≥ 0.

(17)

The problem can be efficiently solved using SMO (Sequen-
tial Minimal Optimization) or cutting-plane algorithm. In
this paper, we particularly employ the software provided in
[12] for the learning process.

4. EXPERIMENTS
To demonstrate the effectiveness of our proposed approach,

we perform an experimental study on two subsets of a pub-
licly available dataset, comprising the queries of objects and
the queries for people. Various baseline approaches includ-
ing the result from the search engine, the existing unsuper-
vised and supervised reranking methods are compared to
show the superiority of our proposed approach.

4.1 Experimental Steps

4.1.1 Dataset
To make our experiment as reproducible as possible, we

employ a publicly available Web Queries dataset1 for eval-
uating our approach and comparing with the baseline ap-
proaches. The dataset contains totally 353 representative
image search queries, covering a wide range of topics includ-
ing products, celebrities, animals etc. Then, these queries
are issued to an image search engine to collect top ranked
image results. Finally 71478 images are obtained in total. A
binary relevance between label each query and the retrieved
images is provided by human as the ground-truth.

As proposed approach is designed for object queries, we
construct two subsets of the Web Queries dataset by se-
lecting those object queries. The WEB QRY OBJECTS
dataset comprises object queries including landmarks, prod-
ucts, flags and logos. To more comprehensively evaluate our
approach, the WEB QRY HUMAN dataset is constructed
by selecting those named person queries. Finally, the WE-
B QRY OBJECTS dataset is consisted of 101 queries with
19586 images, while WEB QRY HUMAN dataset contains
103 queries and 20398 images.

4.1.2 Experimental Settings
To demonstrate the effectiveness of our method, we com-

pare it with different baseline approaches, including text-
based search engine (“Text-baseline”) and the Bayesian r-
eranking(“Bayesian”) [30], pseudo relevance feedback rerank-

1http://lear.inrialpes.fr/~krapac/webqueries/
webqueries.html
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Table 1: The performance comparison of various reranking methods WEB QRY OBJECTS.
Methods MAP NDCG@10 NDCG@25 NDCG@40

Text-baseline 0.582 0.674 0.649 0.667
Bayesian 0.647 (+11.17%) 0.739 (+9.64%) 0.717 (+10.48%) 0.698 (+4.65%)
PRF 0.743 (+27.66%) 0.850 (+26.11%) 0.830 (+27.89%) 0.809 (+21.29%)
Letorr 0.746 (+28.18%) 0.809 (+20.03%) 0.833 (+28.35%) 0.812 (+21.74%)

Query-relative 0.750 (+28.87%) 0.859 (+27.45%) 0.839 (+29.28%) 0.817 (+22.49%)

L2 0.760 (+30.58%) 0.856 (+27.00%) 0.838 (+29.12%) 0.830 (+24.44%)
Proposed method 0.812 (+39.52%) 0.847 (+25.67%) 0.844 (+30.05%) 0.848 (+27.14%)

Table 2: The performance comparison of various reranking methods on WEB QRY HUMAN.
Methods MAP NDCG@10 NDCG@25 NDCG@40

Text-baseline 0.603 0.762 0.725 0.688
PRF 0.620(+2.89%) 0.761(-0.16%) 0.716(-1.18%) 0.682(-0.92%)

Bayesian 0.675(+11.94%) 0.876(+14.96%) 0.819(+12.97%) 0.772(+12.21%)
Letorr 0.680(+12.84%) 0.819(+7.57%) 0.784(+8.19%) 0.755(+9.70%)

Query-relative 0.640(+6.23%) 0.761(-0.04%) 0.737(+1.71%) 0.714(+3.78%)

L2 0.721(+19.69%) 0.888(+16.62%) 0.848(+17.01%) 0.813(+18.13%)
Proposed method 0.764(+26.70%) 0.861(+12.99%) 0.853(+17.66%) 0.827(+20.20%)

ing(“PRF”) [33], supervised-reranking(“Loterr”) [35], the query-
relative classifier (“Query-relative”) [17] and the L2 rerank-
ing (“L2”) [36]. For PRF reranking, top ranked images are
selected as positive samples while the negative samples are
sampled following [36]. When evaluating Bayesian rerank-
ing, the pair-wise ranking distance and the best performing
local learning consistency is adopted.
For the supervised reranking approaches including L2 r-

eranking, superived-reranking, query-relative classifier, and
ours, ranking models are trained by RankSVM[13]. To bet-
ter evaluate these approaches, we randomly split the dataset
into 10 folds and employ the cross validation strategy to
train and evaluate different queries in a round robin way. In
each round, 8 of 10 folds are used for training, one for pa-
rameter validation, and the rest one is used for evaluation.
For each image in our dataset, we extract the Pyramid

Histogram Of visual Words (PHOW) described in [1] as the
visual feature representation of images. Firstly, SIFT[22]
descriptors are extracted on the points based on dense sam-
pling in different image pyramids. Specifically, 4 SIFT de-
scriptors on 4 different scale levels are computed on each
sampled point. Then, descriptors are quantized into visu-
al words based on the k-means quantization. Finally, each
image is represented by a spatial pyramid histogram of the
quantized visual words. We adopt the histogram intersec-
tion kernel on PHOW feature for the computation of image
similarity, which has shown generally good performance for
object recognition. As a special case, we adopt linear ker-
nel for SVM in L2 reranking and query-relative classifier, as
suggested in the papers.
To better deal with the images in “WEB QRY HUMAN”

dataset, we employ a face detector embedded in OpenCV2

to obtain facial ROIs as a supplement to ROIs sampled from
saliency map.

4.1.3 Evaluation Measure
The ranking performance is measured by Averrage Pre-

cision (AP) and Normalized Discounted Cumulative Gain

2http://opencv.willowgarage.com

(NDCG), which are widely used to evaluate search and rank-
ing methods. AP is defined as average of precisions at vari-
ous recall levels, and MAP is the average of APs among all
queries. NDCG is defined as follows:

NDCG@k =
DCG@k

IDCG@k
, (18)

where

DCG@k =
k∑

i=1

2ri − 1

log2(i+ 1)
. (19)

In Equation (19), ri is the ground truth labeling of relevance
for the ith image, while k is the truncation level.

4.2 Experimental Results

4.2.1 Performance Comparison
Table 1 shows the performance comparison of the different

reranking on the WEB QRY OBJECT dataset, in terms of
MAP, NDCG@10, NDCG@25 and NDCG@40. It is obvious
that all reranking methods can outperform the text-baseline
in the term of MAP, for example L2 reranking improves
the text-baseline by 30.58%, and our method improves it
by 39.52%. This demonstrates that the reranking approach-
es are generally effective to boost the image search ranking
performance. Among all the evaluated reranking method-
s, our method outperforms the other 5 reranking methods.
Specifically, it can improve the Superived-reranking, query-
relative classifier and L2 reranking by 19.41%, 26.88% and
6.84%. This suggests the general effectiveness of our ap-
proach on object queries.

Table 2 compares all the evaluated methods on the dataset
WEB QRY HUMAN. We can see that the baseline rerank-
ing methods are much less effective on this dataset com-
paring to WEB QRY OBJECT, because of the specifica-
tion of human images. For example, the state-of-the-art
method L2 reranking can only achieve an improvement of
19.69% on MAP, while it can increase the performance on
WEB QRY OBJECT dataset by 30.58%. This is because
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Table 3: The performance of each individual object attribute.
Attribute mean Initial ranking Initial ranking of neighborhood Saliency Size Location Visual density

MAP 0.730 0.764 0.733 0.711 0.749 0.763
Attribute var. Initial ranking Initial ranking of neighborhood Saliency Size Location Visual density.

MAP 0.716 0.749 0.721 0.713 0.740 0.754

Table 4: The performance by leaving one attribute out.
Attribute mean Initial ranking Initial ranking of neighborhood Saliency Size Location Visual density

MAP 0.780 0.764 0.780 0.778 0.771 0.760
Attribute var. Initial ranking Initial ranking of neighborhood Saliency Size Location Visual density.

MAP 0.787 0.772 0.779 0.789 0.777 0.768

global features extracted from the whole image have a lim-
ited ability in identifying people. Our method achieves an
improvement of 26.70% in the term of MAP, with the help
of query-relevant objects and face detector. The proposed
method improves the Superived-reranking by 12.35% and
L2 reranking by 5.96%. This experiment shows that our
method is able to address the limitation of existing methods
on human queries.
We can see from both Table 1 and Table 2 that our method

has no improvement compared to L2 reranking in terms of
NDCG@10. One of the reasons is that in the training pro-
cess, we select the optimal parameter C for Ranking SVM
by validating MAP on the validation set.
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Figure 3: The average quality of objects on different
rank positions.

4.2.2 Object Ranking Analysis
In this section, we evaluate the performance of object rel-

evance prediction in our approach. To study the correlation
between the prediction sore and the object relevance, we
first calculate the precision of each object’s containing im-
ages, which roughly indicates the object relevance. Then,
the precisions of objects on the same ranking position from
different queries are averaged. From Figure 3, we can see
that the precisions on top positions are higher than those of
bottom positions. This suggests that highly relevant objects
are boosted by the proposed prediction model in Equation
(15), while irrelevant objects are suppressed by a low score.

4.2.3 Object Attribute Analysis
In this section, we will analyse the usefulness of the 6

proposed object attributes individually. We measure the
importance of each attribute using two strategies. One is to
evaluate the performance of each attribute feature individ-
ually. The other is to evaluate the performance of the pro-
posed approach by leaving each attribute feature out from
the model once a time. We can observe from Table 3 and

4 that the attribute “Visual density” and “Initial ranking of
neighborhood”are the two most important features. The im-
portance of “Initial ranking of neighborhood” suggests that
the ranking voted by visual neighbors is more reliable than
the ranking of the image itself. Besides, attribute “Object
Location” plays a very important role due to its high perfor-
mance. It is because human tends to locate the important
objects at the center of an image.

4.2.4 Performance Analysis over Different Queries
By comparing our result with that of L2 reranking, 74%

of queries in WEB QRY OBJECTS and 71% of queries in
WEB QRY HUMAN is improved in terms of MAP. Figure 4
shows several examples of the search result by L2 reranking
and our method. The query “Champions League” improves
because most of the“UEFA”logos lie on a small region of im-
ages. L2 reranking with global PHOW feature cannot deal
with such case. But in our method, this logo can be easi-
ly detected by query-relevant object discovery. The query
“Aircraft Carrier” shows a failure case of our method. It is
because the images for this query show too much different
postures of the aircraft carrier, and our query-relevant ob-
ject discovery method fails to detect any ROIs in common.

5. CONCLUSION AND FUTURE WORK
Image search reranking has been studied for several years

and various approaches have been developed recently to boost
the performance of text-based image search engine for gen-
eral queries. In this paper we argue that there is no single
method which can fit well all queries and the research on im-
age search reranking requires a new methodology developing
specific models for queries in different domains.

This paper serves as a first attempt on this direction. We
observe that the existing reranking methods which operate
on the whole image may not perform sufficiently well for ob-
ject queries where only part of an image is required to be rel-
evant. Motivated by that, we propose a novel bag-of-objects
retrieval model for reranking images for object queries. The
retrieval model is developed based on language modeling
techniques for information retrieval. By discovering com-
mon objects relevant to the query from the search results
returned by the text-based search engine, we can build ob-
ject language models for the query and images on this query-
relevant object vocabulary. The attributes of discovered ob-
jects are computed to represent how relevant and confident
the objects are to the query, which are incorporated with
weights into the ranking function, to address the possible
unreliability and noises in the query-relevant objects. Fi-
nally, a learning to rank approach is employed to learn the
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weights on object attributes from human labeled data. The
experimental results on two subsets of Web Queries dataset
demonstrate that the proposed approach can improve 6.84%
compared to the state-of-the-art reranking approaches.
We believe that this is a right and promising direction for

further advancing image search reranking. Regarding this
general direction as well as the specific work in this paper,
we envision the following future works. First, we will sys-
tematically classify queries into different domains regarding
the possibility of image search reranking, and then develop
algorithms to solve them respectively. Second, motivated
by the object bank image representation [20], we may com-
bine the object vocabulary discovered for the query and the
objects from the collection to seek a more comprehensive
representation of images and queries. Third, we hope to
identify and address the system challenges so as to most
efficiently integrate this algorithm into a real-world image
search engine.
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Figure 4: Six sample results of (a) L2 reranking and (b) the proposed method. Irrelevant images are marked
by red rectangle.
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