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ABSTRACT
In the literature of cross-modal search, most methods employ linear
models to pursue hash codes that preserve data similarity, in terms
of Euclidean distance, both within-modal and across-modal. How-
ever, data dimensionality can be quite different across modalities. It
is known that the behavior of Euclidean distance/similarity between
datapoints can be drastically different in linear spaces of different
dimensionality. In this paper, we identify this “variation of dimen-
sionality” problem in cross-modal search that may harm most of
distance-based methods. We propose a semi-supervised nonlinear
probabilistic cross-modal hashing method, namely Neighborhood-
Preserving Hashing (NPH), to alleviate the negative effect due to
the variation of dimensionality issue. Inspired by tSNE [19], rather
than preserve pairwise data distances, we propose to learn hash
codes that preserve neighborhood relationship of datapoints via
matching their conditional distribution derived from distance to that
of datapoints of multi-modalities. Experimental results on three
real-world datasets demonstrate that the proposed method outper-
forms the state-of-the-art distance-based semi-supervised cross-modal
hashing methods as well as many fully-supervised ones.
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1. INTRODUCTION
Nowadays heterogeneous data are ubiquitous. For example, it

is common to see an article on a webpage elucidating topics by
embedding images, video clips and/or hyperlinks into text. Hence,
there emerges a high demand on retrieving one type of data us-
ing data of another modality about similar topics, e.g., using text
to search for relevant images, or vice versa. Consequently, many
cross-modal or cross-view retrieval methods have been proposed to
solve the heterogeneous data retrieval problem e.g., [30, 15, 32].
With the explosive growth of data, how to efficiently retrieve from
large-scale datasets is a big challenge. Hashing based methods are
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proposed as an efficient means to tackle the challenge. However,
most existing hashing methods (e.g., [22, 12, 4, 24, 31, 9, 14]) are
unimodal.

Recently, quite a number of cross-modal hashing methods have
been proposed, e.g., [2, 34, 27, 11, 33, 13, 35, 28, 29, 10, 5, 21, 23,
8]. Cross-modal hashing may be divided into supervised methods
and semi-supervised ones by whether a method is using semantic
information or not. In this paper, we propose a semi-supervised
cross-modal hashing method for large-scale search. In the last
years, several semi-supervised methods have been proposed. For
example, Cross-View Hashing (CVH) [10] extends spectral hash-
ing [24] to the cross-modal setting by preserving within-modal-
similarity and cross-modal-similarity. Collective Matrix Factoriza-
tion Hashing (CMFH) [5] and Semantic Topic Multimodal Hash-
ing (STMH) [21] pursue a single set of hash codes to preserve data
distance across modalities. CMFH method learns shared codes by
collective matrix factorization with a latent factor model from dif-
ferent modalities. STMH method learns a set of hash codes of the
text modality in accordance with the topics learned by a clustering
based method. Similar to CVH and CMFH, Partial Multi-Modal
Hashing (PM2H) [23] also learns shared hash codes by linear ma-
trix decomposition to preserve data distance across different modal-
ities. The within-modal-similarity is preserved using graph Lapla-
cian as in CVH. Recently, many deep cross-modal hashing method-
s [36, 20] have been proposed. Most of them achieve outstanding
performance, but they needed a large number of semantic labels.
Whereas, in practice it is very hard or laborious to obtain complete
and accurate semantic tags for all the objects in large-scale dataset-
s. The only easy-getting cross-modal correlation is the datapoints
belonging to the same object. The method, NPH, proposed in this
paper falls into this category.

Most cross-modal hashing methods are linear models using tech-
niques such as linear subspace learning and graph Laplacian to pur-
sue hash codes that preserve data similarity both within-modal and
across-modal. However, there is an important issue that requires
further attention, i.e., the variation of dimensionality across modal-
ities may be drastic. We know that in spaces of different dimen-
sionality the behavior (e.g., distribution) of Euclidean distance be-
tween datapoints can be drastically different which prevents many
projection-based/distance-based algorithms from being effective.
This is a key reason inducing the curse of dimensionality [1]. How-
ever, this “variation of dimensionality" issue is largely ignored in
the literature of cross-modal search.

In the literature of data visualization, dimensionality reduction
and the like, people study methods to map high dimensional da-
ta to low dimensional space such that the local/global structure of
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data is preserved as well as possible. They also confront the above
“variation of dimensionality" challenge. Rather than preserving the
distance, “stochastic neighborhood embedding" [19] are proposed
to place objects in a low dimensional space so as to optimally pre-
serve neighborhood identity.

In this paper, motivated by [19], we propose a nonlinear proba-
bilistic cross-modal hashing method, namely Neighborhood-Preserving
Hashing (NPH) to alleviate the negative effect due to a large vari-
ation of dimensionality across modalities. Specifically, in order
to preserve neighborhood relationship, we first convert the pair-
wise Euclidean distance between datapoints in each modality into
conditional probabilities that represent their similarities, then learn
a hashing function for each modality that projects datapoints to a
common hash space. In the hash space, the shared hash codes pre-
serve the data similarity, in terms of neighborhood relationship, in
multi-modalities jointly. This is realized by minimizing the Kullback-
Leibler divergence between the conditional distribution of hash codes
and the collective conditional distributions of the datapoints from
each modality. As in [19], we observe that taking different types
of distributions (e.g., heavy-tailed or light-tailed) can greatly com-
pensate for the variation of dimensionality during matching the dis-
tributions across modalities. Hence we propose distribution selec-
tion when converting pairwise distance of datapoints/hash codes
into conditional probabilities. Experiment results demonstrate that
the proposed method outperforms the state-of-the-art cross-modal
search methods by a notable margin. Especially on a large-scale
dataset, CIFAR-580K, the proposed method achieves on average
about 7% performance gain over the second best method.

2. NEIGHBORHOOD PRESERVING HASH-
ING

Assuming that there are n objects, each is described by data of
M modalities, oi = (x

(1)
i ,x

(2)
i , ...,x

(M)
i ), where i = 1, · · · , n,

m = 1, · · · ,M . x
(m)
i ∈ Rdm denotes the datapoint of the m-

th modality of the i-th object, and dm is the dimensionality of the
m-th modality. The data of each modality are zero-centered, i.e.∑n
i=1 x

(m)
i = 0, ∀m.

The goal of cross-modal hashing is to learn M hash functions
that map the data of each modality to binary hash codes B(m) ∈
{−1, 1}c×n, where c denotes the length of the hash codes. For
example, the mapping/hash function can be defined as f(x(m)

i ) =

sgn(W(m)Tx
(m)
i ), where W(m) ∈ Rdm×c denotes a projection

matrix.
There areM(M−1) tasks in aM -modal cross-search, i.e., using

data of one modality the model should be able to search for data of
the other M − 1 modalities.

The overall procedure of NPH is as follows: (i) In order to pre-
serve neighborhood relationship, the pairwise Euclidean distances
between datapoints in each modality are converted into condition-
al probabilities that represent their similarities in terms of probable
neighbors. (ii) Optimal hash codes for training set are learned via
minimizing M KL-divergences between the conditional distribu-
tion of the data from each modality (denoted as P(m)) and that of
the hash codes (denoted as Q(m)). (iii) Learning hash functions to
map datapoints to the hash codes for each modality via learning c
binary classifiers of kernel logistic regression.

2.1 Formulation
Similar to SNE [6], we convert Euclidean distances between dat-

apoints x
(m)
j and x

(m)
i into conditional probabilities p(m)

j|i as fol-

lows:

p
(m)

j|i =
T (x

(m)
i ,x

(m)
j ; θ)∑

k 6=i T (x
(m)
k ,x

(m)
i ; θ)

, (1)

where T (x(m)
i ,x

(m)
j ; θ) returns the probability from the distance

between the two datapoints. θ denotes the parameter. The condi-
tional distribution can be of different types:

(i) For Gaussian distribution,
T (x

(m)
i ,x

(m)
j ;σi) = exp(−||x(m)

i − x
(m)
j ||2/2σ2

i ) (2)
where σi denotes the variance of the Gaussian that is centered on
datapoint x

(m)
i . The details of computing its value can be found in

[6].
(ii) For Student t-distribution with one degree of freedom

T (x
(m)
i ,x

(m)
j ) = (1 + ||x(m)

i − x
(m)
j ||2)−1 (3)

We can adopt more type of distributions, e.g., χ2-distribution. In
this paper, we only choose from Gaussian and Student t-distribution
to demonstrate the idea. The conditional probability pj|i signifies
the probable neighborhood relationship of the datapoints. We dis-
cuss distribution selection in Section 2.4. To simplify the problem,
we make the relationship symmetric by pij = (pj|i + pi|j)/2, also
we set p(m)

ii = 0.
Similarly, the distribution of hash codes Q can be computed as

q
(m)

j|i =
T (bi,bj ; θ)∑
k 6=i T (bk,bi; θ)

, (4)

where bi ∈ {−1, 1}c and bj denote the i-th and the j-th hash
codes, T(.,.) returns the probability from their Hamming distance.
We set q(m)

ii = 0.
The objective of NPH is to learn a shared set of hash codes

B = (b1, · · · ,bn) that can match its distribution Q(m) to the
datapoint distributions of each modality P(m) jointly as well as
possible. This matching optimizes the preservation of the neigh-
borhood relationship between the hash codes and the datapoints in
each modality.

We match the two distributions of the m-th modality, P(m) and
Q(m), by minimizing their Kullback-Leibler(KL) divergence de-
fined as follows

KL(P(m)||Q(m)(B)) =
∑
i6=j

p
(m)
ij log

p
(m)
ij

q
(m)
ij

(5)

To purse hash codes of m-th modality that preserves the neigh-
borhood relationship in original space, we define the objective func-
tion as

Om(B) = KL(P(m)||Q(m)(B)) (6)
Hence, the final objective function which pursues the shared hash
codes for all modalities is defined as

minO(B) =

M∑
m=1

αmOm(B)

s.t.
1

n
BBT = Ic×c

(7)

where αm are empirical parameters and
∑M
m=1 αm = 1, n is the

number of training data. The constrain 1
n
BBT = Ic×c requires

the hash codes to be uncorrelated. Since B is binary, optimizing the
above objective is NP hard. Hence, we relax B to be real-value. To
make the orthogonal constrain more concise, we denote the relaxed
B as B̂ = 1√

n
B. The constrain turns to be B̂B̂T = Ic×c.

2.2 Optimization
The gradient of the objective function O with respect to b̂i is

distribution dependent. For Gaussian distribution, the gradient of
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Task Method Wiki NUS-WIDE CIFAR-580K
c = 16 c = 32 c = 64 c = 96 c = 128 c = 16 c = 32 c = 64 c = 96 c = 128 c = 16 c = 32 c = 64 c = 96 c = 128

Task 1:
Modality 1

to
Modality 2

CMSSH∗ 0.2005 0.1938 0.1936 0.1861 0.1931 0.4544 0.5024 0.5024 0.4780 0.4942 0.1832 0.1694 0.1656 0.1652 0.1677
SCM∗ 0.2359 0.2445 0.2520 0.2558 0.2553 0.5104 0.5114 0.5084 0.5065 0.5087 0.1723 0.1773 0.1780 0.1793 0.1791
QCH∗ 0.2540 0.2566 0.2584 0.2455 0.2217 0.5571 0.5715 0.5713 0.5660 0.5620 0.1770 0.1934 0.1961 0.1950 0.1951
CVH 0.2153 0.1743 0.1710 0.1767 0.1996 0.4712 0.4532 0.4510 0.4472 0.4461 0.1916 0.2380 0.2831 0.2481 0.2263

CMFH 0.2458 0.2565 0.2623 0.2622 0.2636 0.5238 0.5219 0.5244 0.5165 0.5169 0.1587 0.1575 0.1565 0.1566 0.1557
STMH 0.2006 0.2054 0.2343 0.2216 0.2255 0.5272 0.4776 0.4581 0.4374 0.4263 0.1819 0.1749 0.1664 0.1599 0.1596
NPH 0.2649 0.3358 0.3990 0.4172 0.4205 0.5167 0.5059 0.5115 0.5176 0.5072 0.2055 0.2434 0.3269 0.3850 0.4086

Task 2:
Modality 2

to
Modality 1

CMSSH∗ 0.2397 0.2397 0.2486 0.2290 0.2254 0.4767 0.5175 0.5469 0.5278 0.5148 0.1650 0.1726 0.1650 0.1632 0.1697
SCM∗ 0.3679 0.4026 0.4370 0.4432 0.4518 0.5624 0.5764 0.5909 0.5949 0.5968 0.1751 0.1766 0.1774 0.1765 0.1783
QCH∗ 0.4176 0.4152 0.4034 0.3739 0.2895 0.5668 0.5900 0.5775 0.5708 0.5678 0.1709 0.1862 0.1917 0.1941 0.1940
CVH 0.3127 0.2513 0.2194 0.2083 0.2341 0.4609 0.4472 0.4465 0.4496 0.4520 0.1911 0.2386 0.2837 0.2473 0.2246

CMFH 0.6190 0.6461 0.6589 0.6526 0.6641 0.6565 0.7008 0.7218 0.7252 0.7277 0.1595 0.1578 0.1561 0.1566 0.1571
STMH 0.6036 0.6157 0.6291 0.6496 0.6450 0.6536 0.6849 0.7071 0.7220 0.7252 0.1837 0.1746 0.1678 0.1662 0.1622
NPH 0.6715 0.6985 0.7132 0.7140 0.7172 0.6566 0.7421 0.7598 0.7688 0.7696 0.2033 0.2403 0.3193 0.3891 0.4144

Table 1: Comparison of the Mean Average Precision (MAP) values of the state-of-the-art cross-modal hashing methods in different code-
lengths on three datasets. The fully supervised cross-modal hashing methods are marked by ∗. The best MAP values of all the methods
(semi-/full-supervised) are underlined, and the best semi-supervised results are highlighted in black-boldface.

Om of the m-th modality is
∂Om

∂b̂i
= 4αm

∑
j

(p
(m)
ij − q

(m)
ij )(b̂i − b̂j). (8)

For Student t-distribution with one degree of freedom, the gradient
∂Om

∂b̂i
= 4αm

∑
j

(p
(m)
ij − q

(m)
ij )(b̂i − b̂j)(1 + ||b̂i − b̂j ||2)−1.

(9)
Hence, the gradient of the objective functionO can be computed

∂O

∂b̂i
=

M∑
m=1

αm
∑
j

∂Om

∂b̂i
(10)

The Lagrange of our objective function with orthogonal con-
strain is

L(B̂,Λ) = O(B̂)− 1

2
tr(Λ(B̂B̂T − I)) (11)

Then we set the gradient of Eqn.11 w.r.t. B̂ to be 0.
∂L(B̂,Λ)

∂B̂
=
∂O(B̂)

∂B̂
−ΛB̂ = 0 (12)

For convenience, denote G = ∂O(B̂)

∂B̂
. As Λ is symmetric, we can

get Λ = GB̂
T

= B̂G
T

and ∂L(B̂,Λ)

∂B̂
= G − B̂GT B̂ = B̂A,

where A = B̂TG − GT B̂. Then B̂ can be updated by Crank-
Nicolson-like method [17] as

B̂ = B̂− τ

2
(B̂ + B̂Q)A, (13)

where τ is the step size and Q = (I + τ
2
A)−1(I − τ

2
A). We

update B̂ with Barzilai-Borwein (BB) method as in [25]. After
learning the relaxed hash codes B̂, the median vector of B̂ can be
obtained

u = median(B̂) ∈ Rc. (14)

Then the shared binary hash code can be determined by the median
vector, where Bij = 1 when Bij ≥ ui; Bij = −1, otherwise.
We binarizing B̂ with the median vector rather than directly using
the sign function because balancing the labeled data can improve
the classification performance when learning the hash function in
Section 2.3.

2.3 Learning Hash Functions
After getting the hash codes B by optimizing Eqn. 7, here we

introduce about how to learn a set of efficient hash functions to map
data to the hash codes.

For each modality, we train c binary classifiers, each of which
maps a datapoint x

(m)
i to the corresponding bit of its hash code.

The classifiers are embodied by the Kernel Logistic Regression
model [7], which is defined as

w
(m)∗
k =argmin

n∑
i=1

log(1 + exp(−Bki
s∑
j=1

W
(m)
jk

· κ(m(m)
j ,x

(m)
i ))) + λ||w(m)

k ||22

(15)

where Bki ∈ {−1, 1} denotes the k-th row and the i-th colum-
n of B, i.e., the k-th bit of the i-th hash code, k = 1, · · · , c.
κ(m

(m)
j ,x

(m)
i ) is the kernel function that measures similarity be-

tween any pair of data m
(m)
j and x

(m)
i , here, we utilize the RBF

kernel. In order to reduce the computation in training and testing,
m

(m)
j is the j-th cluster center of the training data obtained by k-

means. We set s = 500 in each modality and set λ = 0.01. We
learn w

(m)
k with the minFunc implemented by M. Schmidt ∗.

Given a datapoint in the m-th modality, say x(m), using the
learned Logistic function we obtain the probability of a hash bit
b
(m)
k being 1 and −1. Then the hash bit b(m)

k can be determined as

b
(m)
k = sign

(
p(b

(m)
k = 1|x(m))− p(b(m)

k = −1|x(m))
)

(16)

In this way, we can generate the hash code for any given datapoint.

2.4 Distribution Selection
As in [19], we also observe that different types of distribution-

s (e.g., heavy-tailed or light-tailed) possess unique capabilities in
depicting the neighborhood relationship of data in different dimen-
sional spaces.

We employ two types of distributions — a heavy-tailed distri-
bution (Student t-distribution) and a light-tailed distribution (Gaus-
sian distribution) — and propose to choose distribution type for
matching the neighborhood distributions between hash codes and
datapoints of each modality. Notice that even for the same set
of hash codes, when matching to different modalities, the type of
Q(m) may be different w.r.t its matched modality. During training,
we adopt 5-fold cross-validation to choose the best combination of
distributions for all modalities data and the hash codes.

Moreover, we find that the proposed NPH can achieve better per-
formance on different tasks with different distribution selection. So
for each task we learn a particular set of hash codes. Experiments
show that this method greatly improves the performance.

∗M. Schmidt. minFunc: unconstrained differentiable multi-
variate optimization in Matlab. http://www.cs.ubc.ca/ schmidt-
m/Software/minFunc.html, 2005.
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(a) On Wiki dataset (b) On NUS-WIDE dataset (c) On CIFAR-580K dataset

Figure 1: MAP results of different methods on three datasets with various hash code length.

3. EXPERIMENT
In this section, we will compare NPH with some state-of-the-art

semi-supervised as well as fully-supervised cross-hashing method-
s on two widely used cross-modal datasets Wiki [16] and NUS-
WIDE [3], and also on a large-scale cross-view dataset CIFAR-
580K [26] sampled from 80M-Tiny image dataset [18].

In our experiment, ten runs of independent experiments are per-
formed. In each run, training and testing sets are randomly sam-
pled. The Mean Average Precision (MAP) is reported in this paper.
All our experiments are conducted on a workstation with Intel(R)
Xeon(R) E5-2620@2.0GHz CPUs, 128 GB RAM and 64-bit Ubun-
tu system.

3.1 Datasets and Evaluation
The Wiki dataset [16] contains 2,866 objects (which are described

as image-text pairs) and ten semantic labels for each object. Each
image is represented by a 128-dimensional Bag-of-Visual-Word
(BoVW) feature and each text is denoted by a 10-dimensional vec-
tor. In our experiment, 80% of the data are randomly sampled for
training and the rest are for testing.

The NUS-WIDE dataset [3] consists of 269,648 images and 5,018
raw tags in text. The semantic labels of 81 concepts are provided.
We select 186,643 image-tag pairs belonging to 10 largest classes.
Each image is denoted by a 500-dimensional Bag-of-Visual-Word
(BoVW) vector, and each tag is 1000-dimensional most frequent
tags from the raw tags. In our experiment, 1% of the data are ran-
domly selected for testing. For training, the CMFH and STMH use
99% of the data and other algorithms use 5000 data.

The CIFAR-580K dataset consists of 580,804 images with ten
class labels. As in [26], in order to construct multi-modal data,
from each image a 384-dimensional GIST descriptor is extracted
as one view and a 496-dimensional HOG descriptor is extracted as
the other view. Similar to the NUS-WIDE dataset, we randomly
select 1% data for testing. Due to large-scale, we randomly select
30% data as the training set for CMFH and STMH, and 5000 data
as training set for other algorithms.

Since NPH is a semi-supervised method of cross-modal search, it
is compared with the state-of-the-art semi-supervised cross-modal
hashing methods including CVH [10], CMFH [5] and STMH [21].
Besides, we also compare it to some state-of-the-art fully super-
vised models including CMSSH [2], SCM [29] and QCH [26].

To evaluate the methods, we adopt widely used criterion, namely
Mean Average Precision (MAP) with retrieval range R. In our ex-
periment, we set R = 50, the same as [5, 21]. We set α1 = α2 =
0.5 in Eqn. 7 for all experiments of NPH. For distribution selec-
tion, we adopt 5-fold cross-validation to select from 22×2 = 16
distribution combinations in total (see Section 2.4).

3.2 Results on the Three Datasets
From Table 1 and Figure 1(a), it can be seen that on the Wi-

ki dataset NPH outperforms all other methods for all bits on all

Task Method Wiki
c = 16 c = 32 c = 64 c = 96 c = 128

Modality 1
to

Modality 2

NPH-SNE 0.2624 0.3324 0.3997 0.4199 0.4160
NPH-tSNE 0.2502 0.2497 0.3016 0.3590 0.4005

NPH 0.2649 0.3358 0.3990 0.4172 0.4205
Modality 2

to
Modality 1

NPH-SNE 0.5294 0.5878 0.6415 0.6594 0.6696
NPH-tSNE 0.6602 0.6890 0.6946 0.6955 0.6951

NPH 0.6715 0.6985 0.7140 0.7172 0.7725

Table 2: MAP values of NPH with different distribution selection.
The best values are highlighted in boldface.

Tasks. NPH outperforms the second best method CMFH over 10%
on Task 1 and over 5% on Task 2. From Figure 1(a), we can observe
that on Task 1 the performance of NPH improves considerably with
the increase of code length compared to the other methods.

From Table 1 and Figure 1(b), it can be seen that on NUS-WIDE
the performance of NPH is comparable to CMFH and STMH on
Task 1. However, when code length is over 32, NPH outperform-
s CMFH (the 2nd best semi-supervised method) by about 3% on
Task 1. Meanwhile, NPH outperforms all other cross-modal hash-
ing methods on Task 2 for all code lengths.

CIFAR-580K is a large-scale dataset, which is used to evaluate
the scalability of the methods. Table 1 shows that NPH outperforms
all the compared methods on both tasks by a large margin - over
7% gain on average of both tasks compared to CVH (the 2nd best).
Particularly, the performance gain increases with the code length
notably even compared to the supervised methods.

3.3 Effect on Distribution Selection
The results of NPH in Table 1 and Figure 1 are the results of dis-

tribution selection for each modality and the hash codes. Here we
compare distribution selection to two methods that adopt fixed dis-
tributions based on NPH, namely, NPH-SNE which adopts Gaus-
sian distributions for both modality data and hash codes (as in SNE
[6] for data visualization) and NPH-tSNE which adopts Gaussian
distributions for modality data and Student t-distribution for hash
codes (as in tSNE [19]). We report the results on Wiki dataset in Ta-
ble 2. It can be seen that NPH achieves the best performance with
the distribution selection and the strategy of training a particular set
of hash codes for each task.

4. CONCLUSION
In this paper, we propose a semi-supervised cross-modal hash-

ing, called Neighborhood Preserving Hashing (NPH). We propose
to learn hash codes that preserve data neighborhood relationship
via matching their distribution derived from distance to that of dat-
apoints of multi-modalities. We further utilize cross-validation to
select distributions to better match the modalities data and hash
codes. Experiments show that the proposed model achieves superi-
or performance over state-of-the-art cross-modal hashing methods.
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