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ABSTRACT
Compared with normal modalities, the representations of paint-
ings are much more complex due to its large intra-class and small
inter-class variation. This poses more di�culties in the task of
authorship identi�cation. In this paper, we propose a multi-task
multi-range (MTMR) representation framework and try to resolve
this issue in two ways. First, we investigate how to improve the
representation through multi-task learning. Speci�cally, we attempt
to optimize authorship identi�cation with subtly correlated iden-
ti�cation tasks such as style, genre and date. Second, in order to
make the representation more comprehensive and reduce the infor-
mation loss from image scaling, we propose a multi-range structure
which is composed of local, regional and global representations.
Experiments on the two most representative large-scale painting
datasets, Rijksmuseum Challenge and Wikiart, have shown that our
method signi�cantly outperforms the existing methods. To give bet-
ter understanding and provide more e�ective predictions, we utilize
random forest as the feature ranking method to analyze the impor-
tance of di�erent features and apply external knowledge matching
to further examine the predictions. Moreover, the framework’s ef-
fects of identifying the authorship are visualized on the paintings’
artist-characteristic regions and t-SNE is further applied to perform
artist-based cluster analysis. Extensive validation has demonstrated
that the proposed framework yields superior performance in the
chanllenging task of painting authorship identi�cation.
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1 INTRODUCTION
In the past few years, digitized �ne-art collections have been grow-
ing rapidly due to the popularity of digital technology. In the evolu-
tion of fast growing large art work datasets, �ne art categorization
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(a) Sunrise, Whiting Fishing (b) Battle of Krasnaya Gorka

(c) The barges in Bezons (d) Norman city

Figure 1: The author of (b)(d) is Alexey Bogolyubov, which
shows the large variation within the paintings of the same
artist. (a)(c) are drawn by Charles-Francois Daubigny and
William Turner, respectively. From (a)(b)(c), we can see the
similar content(sky, ship) in di�erent artists’ paintings.

problem becomes an emerging research area in computer vision re-
search. In particular, for online galleries, there is an urgent need to
analyze, classify and understand the paintings in an automatic way.
One of the crucial information is the authorship, which plays an
important role in the process of unknown-painting identi�cation.

Many researchers have been trying to solve painting identi�-
cation problem by computational methods. Some of them [1, 11,
18, 19, 22, 23, 27] utilized low-level features encoding with color,
shadow, boundaries and shapes. Li et al. [11] designed a novel ex-
traction method by exploiting an integration of edge detection and
clustering-based segmentation to distinguish van Gogh’s paint-
ings in di�erent time periods. Tseng et al. [27] proposed a ranking
method for style identi�cation based on random forests. In addi-
tion, Puthenputhussery et al. [18, 19] proposed a fusion method
of di�erent �sher vector encodings and achieved remarkable per-
formance. These studies have shown low-level features, especially
typical local features, are useful in painting identi�cation.

Recently, deep networks [3, 7, 8, 10, 20, 26, 28, 29] have brought
about more interesting applications in this topic. Firstly Karayev
et al. [10] observed that Convolutional Neural Network (CNN)
features outperform hand-crafted features like color histogram and
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Figure 2: An overview of the proposed MTMR representation framework. Here, the local, regional and global features are ex-
tracted from the SIFT-based �sher vector, multi-size region encoding structure andmulti-task learning structure, respectively.
The network structure in green dashed box employs the residual network. RF represents random forest.

GIST for �ne-art classi�cation. Then Chu et al. [3] designed and
transformed various layer-correlation inside CNN into style vectors
and investigated classi�cation performance brought by di�erent
variants. More recently, Noord et al. [29] designed a multi-scale
network to obtain scale-invariant features of paintings. And Jangtjik
et al. [8] proposed a new weighted scheme to adaptively combine
the decision results from di�erent scales. From these studies, we
can �nd that deep networks achieve promising performance in
painting identi�cation from the global perspective.

However, a single modality representation is less su�cient to
express the entire painting, as an artist may own many di�erent
styles of paintings and di�erent artists may create similar contents.
For example, Pablo Picasso presented good interest in very rich
subjects of every kind and demonstrated a great stylistic versatility
that enabled him to work in several styles at once. As shown in
Fig. 1, we select several representative paintings from Wikiart. It is
extremely di�cult to exactly identify the authorship and distinguish
paintings of the same artist solely from their styles.

To overcome this problem, some researchers paid more atten-
tions to the combination of local and global features [20, 24]. Saleh
et al. [20] proposed a uni�ed framework consisting of GIST and
CNN features for painting classi�cation. Sheng et al. [24] designed
a method of combining histogram-based local and global features to
characterize di�erent aspects of art styles. Though these methods
have achieved promising performance, most of them are still in the
circle of traditional local features and global CNN features, ignor-
ing the impact of regional features. Moreover, we �nd that current
works just treat the authorship identi�cation task as a single and
independent problem, but actually, authorship identi�cation is a
complex procedure involving with many related tasks like paint-
ing’s style, genre and canvas material. In addition, we �nd that
though the accuracy can be improved by combined features, it is

still unclear which kind of features are more e�ective in the pro-
cedure of classi�cation. Therefore, evaluating the importance of
features in a technically solid way and visualizing the role of di�er-
ent representation are also meaningful for painting classi�cation.

In this paper, to address these issues, we propose a multi-task
multi-range (MTMR) representation framework. On the one hand,
we aim to enhance the network’s representation ability by joint
learning with related tasks (style, material, date and etc.). On the
other hand, we are trying to make the paintings’ representations
richer and more diverse with multi-range features. Our main con-
tributions are summarized as follows:

1) We propose a comprehensive multi-range representation struc-
ture, composed of local, regional and global representations to
identify paintings at a �ne granularity. To the best of our knowl-
edge, this is the �rst attempt of investigating how painting’s
authorship identi�cation task can be addressed in an optimal
way, together with heterogeneous but subtly correlated tasks.

2) We evaluate the individual role or importance of the proposed
three multi-range features in painting identi�cation by random
forest, and have revealed their complementarity e�ects.

3) Extensive experimental results have shown that our framework
achieves superior performance on the authorship identi�cation.
Moreover, the artist-cluster results further demonstrate that the
proposed representation framework is also appropriate to be
further applied in painting retrieval.

The rest of this paper is organized as follows. We �rst introduce
our multi-task learning part in Section 2. Section 3 presents the
details of multi-range representation part. And appraisal methods
are described in Section 4. Then we demonstrate its performance
on two large-scale datasets, Rijksmuseum Challenge dataset and
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Figure 3: Speci�cation for multi-task learning structure in MTMR representation framework. The part in grey dashed box
indicates the multi-task split. The structure in green dashed box is residual network. The grey solid arrows represent identity
shortcuts and dashed arrows show a 1x1 convolution with stride 2 to match spatial resolution and feature dimension. The
right grey strips are fully connected layers and their lengths are �exible with the class number of related tasks.

Wikiart dataset, and further analyze the in�uences of this frame-
work on the representation of the paintings. Finally, we conclude
this paper in Section 6.

2 MULTI-TASK LEARNING
In this section, as shown in Fig. 3, we investigate how to improve
the representation for paintings by multi-task learning.

2.1 Joint Loss Formulation
Here we aim to optimize the main taskm, which is on authorship
identi�cation, with the assistances of several related/auxiliary tasks
a ∈ A. Examples of related tasks include the recognition of paint-
ings’ styles, dates, materials and so on. To this end, we design a
weighted joint loss L as:

L = − 1
N

N∑
i=1
(Lm +

∑
a∈A

λaLa ), (1)

where N denotes the total number of training images, Lm and La

represent the loss function of main task and relative auxiliary tasks.
λa denotes the importance coe�cient of task a. Let f̂mi and f̂ ai
denote the predicted scores of i-th painting for its ground-truth
labels of main task and related tasks in softmax function. Thus the
weighted joint loss L can be rewritten as:

L = − 1
N

N∑
i=1
(log( f̂mi ) +

∑
a∈A

λa log( f̂ ai )). (2)

During training, the errors propagated backwards from these branches
are linearly combined and the weights of the shared layers will be
updated accordingly.

2.2 Architecture Analysis
There’re several typical multi-task learning structures mentioned
in previous works [2, 5, 32], such as parallel model, cross-product
model, late branching model and early branching model. In this
paper, inspired by these structures, we prefer to branch from the
last average pool layer of the network and add one target-speci�c
fully connected layer prior to multi-task prediction. The learning
procedure is guided by joint softmax loss. Since our main target is

to learn a better representation for authorship identi�cation, we
take residual network [6] owing to its state-of-the-art performance
on several challenging recognition tasks.

Another signi�cant point is the choice of related/auxiliary tasks.
Originally we plan to take painting’s style, genre, date and mate-
rial into consideration, but there are not enough labels in existing
datasets. With careful comparison, we focus on how to leverage
the in�uence of style and date in authorship identi�cation. In addi-
tion, as shown in Fig. 2, there’re two residual networks trained by
multi-task learning in MTMR framework. One is a 10-layer residual
network trained with certain cropped painting patches for extract-
ing regional features, while the other is a 50-layer residual network
trained with scaled paintings for extracting global features.

3 MULTI-RANGE REPRESENTATION
In this section, we introduce the multi-range representation struc-
ture, as shown in Fig. 2. The typical SIFT-based �sher vector is ap-
plied for extracting local representation, and deep residual networks
with �sher vector is employed to obtain more e�cient regional and
global representations.

3.1 SIFT-Based Fisher Vector
As an advanced encoding method, �sher vector(FV) [21] has out-
performed the other encoding approches on many image challenge
benchmarks. We adopt Fisher vector to encode the local features
(i.e. SIFT [13]) to form the local representation of paintings.

The FV encoding starts from extracting dense SIFT descriptors,
which have been popularly used for image classi�cation task. We
extract dense features from sampled patches (every 8 pixels) with
�xed scale and upright orientation. They are �rst de-correlated by
PCA (from 128 to 64) to make the dense features more amenable to
the FV description based on the diagonal-covariance GMM. Then
we train a Gaussian Mixture Model (GMM) with diagonal covari-
ances, and only the derivatives with respect to the Gaussian mean
and variances (64 centroids) are considered. This leads to the repre-
sentation which captures the average �rst and second order di�er-
ences between the features and each GMM centre. Speci�cally, the

Session: Engagement 2 – Digital Society & Multimedia Art, 
Entertainment and Culture MM’17, October 23-27, 2017, Mountain View, CA, USA

1176



derivation of FV is as follows,

Φ(1) =
1

N
√
wk

N∑
p=1

αp (k)
(
xp − µk
σk

)
, (3)

Φ(2) =
1

N
√
2wk

N∑
p=1

αp (k)
(
(xp − µk )2

σk
− 1

)
, (4)

where {wk , µk ,σk } are the mixture weights, means, and diagonal
covariances of the GMM, and αp (k) is the soft assignment weight
of the p-th feature xp to the k-th Gaussian. The FV ϕ is obtained
by stacking the di�erences: ϕ =

[
Φ
(1)
1 ,Φ

(2)
1 , ...,Φ

(1)
K ,Φ

(2)
K

]
. Finally,

following [17], the performance of an FV can be further improved
by passing it through power normalization and `2-normalization.

3.2 Regional Feature Encoding
In contrast to dense SIFT, the image patches are expected to be
represented from a higher perspective with deep networks, which
motivates us to design this structure to extract deep regional fea-
tures. It is related to the one proposed by Cimpoi et al. [4]. Here
we apply the global average pooling layer of residual network to
extract dense features. It is much more e�cient because global
average pooling makes it possible to produce �xed-length features.

In addition, the choice of the region size is �exible. The paintings
are �rst split into regions with size s , then we put each region
into a pre-trained 10-layer residual network and obtain features
fs from the last дlobal_pool layer. With the change of region size,
we are able to obtain �xed-length multi-scale regional features.
Considering the variation of painting size, the number of patches
may vary, we apply �sher vector to produce a single representation.
This process is similar as the procedures discussed in Section 2.1, we
�t the features into GMM and encode these features by FV. Here it
should be noted that this structure is able to get rid of the limitation
of image size and produce much more robust regional features.

4 APPRAISAL METHOD
In this section, the importance of each feature is evaluated by ran-
dom forest and the capacity of the framework for painting identi�-
cation is analyzed. Moreover, we propose an external knowledge
matching method to further examine the predictions.

4.1 Fusion Strategy
The classi�cation ability of our framework is analyzed in this subsec-
tion. For fair comparison, we apply linear support vector machine
as the classi�er. Owing to the promising properties of SVM for
dealing with high dimensionality data, we choose concatenation as
our main fusion method. Suppose the local, regional and global fea-
tures as fl , fr and fд , respectively. We �rst do PCA and whitening
operation to reduce the redundancy:

f ′ = diaд(1./sqrt(v1,v2, ...,vh )) ∗U ∗ f , (5)

where U is the PCA transformation matrix, h is the number of
retained dimensions and vi is the ith corresponding singular value.
Then we perform `2 normalization f ′′ = f ′

‖f ′ ‖2
, and concatenate

Figure 4: An example of external knowledge matching. The
information of these artists are collected from wikipedia. It
takes the matched prediction as positive prediction and un-
matched prediction as negative prediction.

them directly. It can be represented as:

ff inal = [f ′′l , f
′′
r , f

′′
д ]. (6)

Finally, a zero mean-unit variation feature normalization is pre-
formed on ff inal to obtain the �nal representation for a painting.

4.2 External Knowledge Matching
Since the painting’s authorship identi�cation is a comprehensive
subject involving with the judgement of date, style, genre, material
and so on, we try to increase the prediction’s reliability by matching
the predictions with external knowledge. As shown in Fig. 4, the
painting’s prediction is examined by the matching result. It should
be mentioned that this is a posteriori procedure.

Speci�cally, we design a simpli�ed matching rule. If the paint-
ing’s predicted date is in the range of predicted artist’s lifetime, we
judge it matched and take it as a positive prediction. It’s hard to take
style into consideration because we are not sure whether the pre-
dicted artist once tried the predicted style or not. More professional
knowledge of art is required to design a more reasonable matching
rule. Here we examine the predictions with this simpli�ed rule and
the results are listed in the following experiments.

4.3 Feature Ranking
It is necessary to �nd a way of assessing the importance of these
three di�erent kinds of features. Random forest [12] is among the
most popular machine learning methods thanks to its relatively
good accuracy, robustness and ease of use.

Random forest consists of a number of decision trees. Each node
in the decision trees is a condition on a single feature, designed
to split the dataset into two so that similar response values end
up in the same set. The measure based on which the (locally) opti-
mal condition is chosen is called impurity. For classi�cation, it is
typically either Gini impurity or information gain/entropy and for
regression trees it is variance. When training a tree, the weighted
impurity decrease in a tree for each feature can be computed. For
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Table 1: Performance comparisons onWikiart dataset (evaluated by accuracy, r_x indicates that the size of the region is (x,x)).

Saleh[20] Tan[26] ResNet-50 flocal fr_64 fr_128 fr_224 fr_mix fglobal fl + fr fl + fд fr + fд ff inal

63.1 76.1 80.6 51.6 63.8 71.4 78.4 80.1 82.2 80.4 82.5 88.3 88.6

Table 2: Performance comparisons on Wikiart dataset with
di�erent auxiliary tasks (here A, S, D represents Artist, Style
and Date, respectively).

Task A A+S A+D A + S + D
Result 80.6 81.9 81.0 82.2

Table 3: Performance comparisons on Rijksmuseum Chal-
lenge dataset (evaluated bymean class accuracy, the number
of artist refers to the data split in [28]).

Method
Artist

34 97 197 958
Noord’15[28] 78.3 74.5 68.2 52.5

ResNet-50 92.3 87.1 80.7 61.7
flocal 76.2 73.9 65.4 51.3
fr_32 79.2 74.3 67.1 50.1
fglobal 92.9 88.2 81.5 62.7
fl + fr 86.6 81.4 74.6 56.7
fl + fд 93.3 88.7 84.4 69.2
fr + fд 93.7 89.1 85.3 69.1
ff inal 94.0 89.8 85.5 69.6

a forest, the impurity decrease from each feature can be averaged
and the features are ranked according to this measure.

In our experiments, we choose 300 decision trees to compose
the random forest and �nally top-1000 features are treated as the
representation of the painting.

5 EXPERIMENTS
5.1 Datasets and Metrics
Rijksmuseum Challenge dataset [15] and Wikiart dataset 1 are the
two most representative large-scale online public collections of
digitized artworks. The Rijksmuseum Challenge dataset consists of
112,039 digital photographic artworks by 6,629 artists exhibited in
Rijksmuseum in Amsterdam, and the Wikiart dataset has images
of 81,449 �ne-art paintings from 1,119 artists ranging from �fteen
centuries to contemporary artists. The splitting of the datasets in
our experiments is identical with the settings in [20, 28].

For fair comparison, we apply mean class accuracy as the com-
parison protocol on Rijksmuseum Challenge dataset, which is the

1http://www.wikiart.org/

Figure 5: Feature importance evaluated with random forest
on Wikiart dataset. From left to right, they are global fea-
tures, regional features and local features, respectively.

same as [28] and we choose accuracy as the comparison standard
on Wikiart dataset, which is the same as [20, 26].

5.2 Implementation Details
Ca�e [9] is adopted as our deep learning platform. The mentioned
50-layer and 10-layer residual networks [25] are both trained for
100,000 iterations on 4 Nvidia K80 GPUs with multi-task learning
framework. Regional and global features are extracted from the
дlobal_pool layer in ResNet-10 and ResNet-50. Moreover, we apply
the vlfeat toolbox [30] to extract dense SIFT descriptors and per-
form FV encoding for these descriptors. The linear support vector
machine is implemented by scikit-learn [16].

5.3 Results and Analysis
5.3.1 Comparision and evaluation. Our MTMR framework is

compared with the representative existing methods on these two
datasets. In particular, we set a 50-layer residual network as baseline
for better comparison. The experimental results are presented in
Tables 1 and 2. The best performance is shown in bold.

It is not surprising to see that deeper structure can yield better
performance. Compared with general networks, residual network
achieves an obvious performance improvement on both datasets.
Moreover, comparing the results of single resnet-50 and multi-task
resnet-50 (shown as fglobal), we can �nd that multi-task learning
is able to further provide better performance with around 1.6%
in Wikiart dataset. From the results in Table 2, we can see the
contribution of style information is much more obvious than date
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Figure 6: Confusionmatrix ofWikiart dataset. The color cor-
responds to the percent of the artist on vertical axis having
been predicted as the artist on horizontal axis. Please zoom
in to see details.

information with around 0.9% gain. It should be mentioned that a
preferable coe�cient setting is 0.6, 0.35 and 0.05 for artist, style and
date, respectively. We can also observe the in�uences of region’s
size for regional presentation. In Wikiart dataset, the average size
of the paintings is around 1500x1500, and therefore we investigate
the performance impact of 64x64, 128x128 and 224x224 regions.
From the results, we can �nd that relatively bigger size brings
better results and the multi-size feature achieves the best. Here
we take the multi-size feature fr_mix as fr for subsequent fusion.
As Rijksmuseum Challenge dataset contains many extremely thin
paintings (only 42 pixels), we could just take 32x32 regions for test.
So the role of regional features is limited in Rijksmuseum Challenge
dataset.

Subsequently, we investigate the in�uences for unbalanced data
distribution. As described in [28], we split the Rijksmuseum Chal-
lenge dataset according to the number of paintings per artist. Thus
the smaller number of artists implies the larger number of the paint-
ings per artist. There is no doubt that unbalanced data distribution
may make the training more di�cult, which is also exactly what
we are facing in reality. From the results in Table 3, we can �nd the
increasing performance with the growth of the number of artist.
It shows that our framework is quite e�ective to deal with this
under-training situation. Regional information can make further
distinctions on the recognition of the artists who own few paint-
ings. Finally, the complementary e�ect of fused features is studied.
The results on these two datasets show that the combination of
di�erent range features obviously boosts the performance further,
which achieves nearly 8.0% improvement. All the above-mentioned
observations show that, just as the procedure of professional art
authentication in reality, observing the painting in multiple views
is better than single view.

Besides the numerical results, we also evaluate the importance
of the features by random forest. As mentioned, global features
are extracted from дlobal_pool layer of multi-task resnet-50 with
dimensionality of 2048. For fair comparison, local and regional
features are also compressed to 2048 with PCA operation. The eval-
uation results are depicted in Fig. 5. It shows that, from the view
of single feature’s e�ect, global features are much more e�ective
than others. But it can not fully represent multiple features’ mutual
e�ects because di�erent features’ recognizing ranges are di�erent.
Regional and local features tend to be more e�ective for certain
kinds of paintings. Recalling the results on Table 1, we can con-
clude that for large-size painting classi�cation, global features and
regional features play dominant roles for authorship identi�cation,
while the in�uence of traditional local features is very limited.

In summary, from above results, we can �nd that multi-task
learning makes the representation more robust and e�ective. Multi-
range representation is able to improve identi�cation capacity on
unbalanced datasets and shows remarkable performance improve-
ment for high-resolution paintings.

5.3.2 Results with external knowledge matching.

P =
TP

TP + FP
= 90.1%, R =

TP

TP + FN
= 75.6%. (7)

The matching is implemented in Wikiart dataset. Here TP , FP , FN
represents true positive predictions, false positive predictions and
false negative predictions, respectively. P denotes precision and
R denotes recall. From the results, we can �nd that positive pre-
dictions (90.1%) show better performance than normal predictions
(88.6%) with 1.5%. However, the recall is just 75.6%, indicates the
matching rule is insu�cient to examine false predictions. In sum-
mary, the external knowledge is useful to examine predictions, but
the matching rule is too simpli�ed and it still owns a lot of room
for improvements.

5.3.3 Confusionmatrix analysis. The confusion matrix on Wikiart
dataset is shown in Fig. 6, and we can observe that there is a rela-
tively obvious misclassi�cation. We have observed that the author-
ships of Boris Kustodiev’s paintings are of considerable possibility
to be predicted as Ilya Repin, but Repin’s paintings are of smaller
possibility to be predicted as Kustodiev’s. It seems that Kustodiev
once learnt from Repin in a certain period. Thus we search for
the background information of these two artists and �nd out their
relationship on wikipedia. It is amazing to see that, from 1896 to
1903, Boris Kustodiev attended Ilya repin’s studio at the Imperial
Academy of Arts in St. Petersbug. Moreover, when Repin was com-
missioned to paint a large-scale canvas to commemorate the 100th
anniversary of the Stete Council, he ever invited Kustodiev to be his
assistant. Therefore, they are in a great relation and their paintings
both actually own certain similar drawing skills and styles.

5.4 Further Analysis
5.4.1 Visualization of artist-characteristic regions. In order to

gain better understanding of the attribution performed by enhanced
deep structure, we adopt the occlusion sensitivity testing method
proposed by [31] to visualize the art-characteristic regions in a
global view. By systematically occluding a small image region of a
painting, the importance of the occluded region is determined by
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(a) The artist-characteristic regions in global view.

(b) The artist-characteristic regions in regional view.

Figure 7: The painting is Boating Couple (Aline Charigot
and Renoir) by Pierre-Auguste Renoir. The heatmap from
global view is visualized by occlusion sensitivity testing. The
heatmap from regional view is visualized by belief score. In
both two heatmaps, red color corresponds to the greater im-
portance in correctly identifying the author.

observing the change in the certainty score for the correct artist.
Speci�cally, the occlusions are performed with a grey block of 8x8
pixels, to indicate approximate regions which are characteristic
of the artist. The regions of importance can be visualized using
heatmap color coding, as shown in Fig. 7. The region with red color
is of greater importance in correctly attributing the painting.

As for the regional view, we pass the split regions into the net-
work in region encoding structure, and take the predicted score
at softmax layer of target class as belief score. Then we visualize
these belief scores with heatmap. The region with red color is of
greater importance in correctly attributing the painting.

For Fig. 7, �rst it should be noted that both two views assign
little weights to the background. It illustrates the importance of the
transparency of automatic attribution to allow human experts to
interpret and evaluate the visual characteristic. Second, the empha-
sis of these two views is di�erent. The attention of the global view
is centered. By contrast, the attention of the regional view is disper-
sive, mainly focusing on the outlines of the characters. Therefore,
each view in its own way has made important contributions in this
task, and multi-range representation is more appropriate.

5.4.2 Artist-based cluster analysis. Since we choose top-1000
features as the representation of the paintings, the visualization
techniques are utilized to delineate the space distribution of the
whole dataset. Therefore, in Fig. 8, we compute the t-distributed
stochastic neighborhood embeddings [14] for the features provided
by our MTMR framework. Then we use the embeddings to project

Figure 8: t-SNEplot of paintings in theWikiart test setwhere
spatial distance indicated the similarity as resolved by our
proposed analytic framework.

each feature into 2-D space, and plot the embedded features by
representing them with their corresponding paintings.

Scrupulous observers may �nd that many artists’ individual
drawing styles are unitary, but some may not. It is also worth
mentioning that the representation produced by our framework
is e�ective to distinguish paintings of di�erent artists. As can be
observed in Fig. 8, each cluster represents an artist, and there are
clear margins between di�erent clusters. Moreover, some clusters
contain paintings of same style, some are able to contain paintings
of di�erent styles. It provides useful evidence that our framework
is robust to deal with multi-style artist. In addition, more speci�c
information is shown in Fig. 9.

6 CONCLUSIONS
In this paper, we propose a robust MTMR representation framework
composed of multi-task learning and multi-range representation.
It obviously outperforms the state-of-the-art methods on the two
large-scale datasets. Moreover, we evaluate the importance of indi-
vidual features and analyze the internal function of our framework.
In the future studies, the generative methods will be incorporated
to solve the unbalanced data distribution problem. It is a promising
choice to pay more attention to the combination of our representa-
tion framework and generative adversarial networks.
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Figure 9: The grid version of Fig. 8, the same color in top-left corner of each painting means the same author. Please zoom in
to see more details.
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