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ABSTRACT
Hashing is a promising technique to tackle the problem of
scalable retrieval, and it generally consists two major com-
ponents, namely hash code generation and hash functions
learning. The majority of existing hashing fall under the
shallow model, which is intrinsically weak on mining ro-
bust visual features and learning complicated hash func-
tions. In view of the superiority of deep structure, espe-
cially the Convolutional Neural Networks (CNNs), on ex-
tracting high level representation, we propose a deep self-
taught hashing (DSTH) framework to combine deep struc-
tures with hashing to improve the retrieval performance by
automatically learning robust visual features and hash func-
tions. By employing CNNs, more robust and discrimina-
tive features of the images can be extracted to benefit the
hash codes generation. Then, we apply CNNs and Multi-
layer Perceptron under deep learning scheme to learn hash
function in supervised process by using the generated hash
codes as labels. The experimental results have shown that
the DSTH is superior to several state-of-the-art algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; I.5.2 [Pattern Recognition]: Design
Methodology; classifier design and evaluation

Keywords
Data Hashing; Deep Learning; Self-taught; Convolutional
Neural Networks

1. INTRODUCTION
Hashing is a promising technique in terms of similarity

search over large scale dataset. Actually, it is a special way
of dimensionality reduction, mapping high dimensional fea-
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ture to compact hash code. Since the Hamming distance
between two binary hash codes can be computed efficiently
by using bit XOR operation and counting the number of
non-zero bits, an ordinary PC today would be able to do
millions of Hamming distance computation in just a few
milliseconds. As a result, hashing shows incomparable su-
periority in fast similarity search. Currently, the research
on hashing confronts two challenge: first, how to precisely
extract representative image features; second, how to tackle
the problem of semantic gap, leading to accurate transfor-
mation from image feature to hash code.

Aiming at ensuring the effectiveness of hashing, hash code
should preserve the property of discrimination, i.e., objects
with similar semantic should be mapped into similar hash
codes and vise versa. Several data-aware hashing methods
have been proposed by introducing the machine learning
tricks into the field of hashing to enhance the effectiveness
of hash codes [2, 5, 10]. Self-taught hashing (STH) [7] is
proposed and considered as one of state-of-the-art works.
However, it suffers from overfitting problem since the oper-
ations of generating hash codes for training data and hash
function for testing data are independently handled, which
leads to poor generalization ability. Minimal loss hashing
(MLH) [8] have shown higher search accuracy than unsu-
pervised hashing approaches, but they all impose difficult
optimization and slow training mechanisms. Spectral hash-
ing (SpH) [6] uses a separable Laplacian eigenfunction (LE)
formulation that ends up assigning more bits to directions
along which the data has a greater variance. However, this
approach is somewhat heuristic and relies on an unrealis-
tic assumption that the data is uniformly distributed in a
high-dimensional rectangle. To summarize, the majority of
existing hashing fall under the shallow model, which perform
poor in discovering semantic information. The drawback de-
rives from two aspects: (1) For feature extraction, existing
hashing methods are mainly based on hand-crafted feature,
such as Color Histogram, GIST, SIFT, BoW, etc. However,
those features are limited in aspect of reflecting image se-
mantic information, because they represent the semantical
content in just one aspect, either global or local view. (2)
For semantic preservation, shallow model intrinsically could
not explore the high level semantic information contained in
feature data.

To avoid the shortcoming of hashing method of shallow
model, a few deep hashing method have been proposed.
Comparing to shallow learning based hashing, deep learning
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Figure 1: DSTH framework

has shown good performance on image applications. Con-
volutional neural networks(CNNs), have already achieved
great success in various visual tasks such as image classifica-
tion, retrieval and object detection [1] due to their powerful
capability on mining high level semantic image representa-
tion. Through assuming the stationarity of statistics and the
locality of pixel dependencies in images, CNNs have much
fewer connections and parameters than standard deep neu-
ral networks, making it easier to train while the performance
is nearly not affected. There are a few hashing methods that
also use deep models. Given approximate hash codes learned
from pairwise similarity matrix decomposition, Xia et al. [3]
learn hash functions through using CNNs to fit the learned
hash codes and class labels. Xia et la. [3] proposed a super-
vised hashing method, which firstly factorizes the pairwise
semantic similarity matrix into approximate hash codes for
the training images, and then trains a deep convolutional
network with the approximate hash codes as well as the im-
age tags. However, the in-sample hash codes are trained
using the classification labels, which are coarse on measur-
ing similarity among objects and makes the hashing model
inaccurate for image representation.

Inspired by the successes of deep learning, in this pa-
per, we explore deep learning techniques with application to
image representation and establish a deep learning frame-
work which learns hash functions by itself and yields ac-
curate hash codes using extracted discriminative features.
Meanwhile, we relate the hash value on each dimensional
to representative features respectively. Although the frame-
work seems similar to STH, we have two fundamental dif-
ferences: (1) The image feature for training is automatically
generated, while STH extracted hand-crafted visual features
which do not necessarily preserve the accurate semantic rela-
tionship among images, degrading the performance of learn-
ing hashing model; (2) We learn hashing model by applying
deep learning structure, while STH applied shallow SVM
learning. The rest of this paper is organized as follows: In
section 2, we illustrate our deep learning hashing framework.
Extensive experimental results are presented in Section 3.
Finally, we provide a conclusion in Section 4.

2. APPROACH
We propose an unsupervised and supervised learning al-

gorithm under deep learning scheme, called deep self-taught
hashing (DSTH), which is composed of unsupervised and
supervised learning stages. The framework is shown in Fig.
1. In unsupervised learning stage, we adopt CNN and com-
bination of LE and Binarization to learn hash labels with
unsupervised constraints. In supervised learning stage, we
use CNNs again with the hash labels acquired in the unsu-
pervised learning stage, and apply Multi-layer Perceptron
(MLP) to approximate acquired hash value. Finally, we get
the hashing model learned from deep learning framework,
aiming to efficiently map new images into hash codes for
large scale image retrieval.

2.1 Unsupervised learning stage
In unsupervised learning stage, we mainly focus on gener-

ating hash labels. First, to capture discriminative fine fea-
tures, we introduce CNNs to promote fine grained feature
extraction with class labels. Second, we apply LE for dimen-
sion reducing and binaryzation for generating hash lables.

CNNs exploit spatially-local correlation by enforcing a lo-
cal connectivity pattern between neurons of adjacent layers.
Additionally, weight sharing increases learning efficiency by
greatly reducing the number of free parameters to be learned.
The constraints on the model enable CNNs to achieve bet-
ter generalization on vision problems. In our algorithm, we
adopt three layers, which contain convolution layer and sub-
sampling layer respectively, to generate fine features.

After that, we use LE and binarization to transform the
feature matrix consists of fully connected fine features to
hash labels which retain relative distances among data from
high dimension to low dimension. In practice, we collect
n fully connected picture features as m-dimensional vectors
{xi}ni=1 ∈ R

m. We use xi and yi to represent ith sample and
its hash label where yi ∈ {−1,+1}l with l desired length of
code. We set yρ

i is the ρ-th element of yi where +1 if the ρ-th
bit of code is on, or -1 otherwise.The hash code for the i-th
image in n samples set can be represented as [y1, . . . , yn]

T .
An excellent semantic hash for image retrieval should pre-
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serve Hamming distance of mapped codes to protect fea-
ture similarity from high dimension to low dimension. This
method is based on graph structure and we focus on the local
similarity one [9]. Therefore, we apply k-Nearest Neighbor
(KNN) algorithm to construct data graph. Our n× n local
similarity matrix W is

Wij =

⎧⎨
⎩
0 if Nk(xi, xj) is false,

xT
i xj

‖xi‖ · ‖xj‖ otherwise.
(1)

where Nk(xi, xj) represents the ith and the jth samples are
neighbours in k-nearest set. Furthermore, we apply diagonal
matrix

Dii =

n∑
j=1

Wij (2)

Meanwhile, we use the number of different bits for calculat-
ing Hamming distance between yi and yj as

Hij = ‖yi − yj‖2/4 (3)

As in SpH, we define an object function ζ to minimize the
weighted average Hamming distance.

ζ =

n∑
i=1

n∑
j=1

WijHij (4)

To calculate ζ, we transform it to ξ = tr(Y TLY )/4, where
L = D − W is Laplacian matrix and tr(·) means trace of
matrix. The last, we transform ξ to LapEig problem ψ with
slacking constraint yi ∈ {−1,+1}t, and obtain the optimal
t-dimensional real-valued vector ỹ to represent each sample.
ψ is the following:

ψ = arg min
Ỹ

Tr(Ỹ TDỸ ) s.t.

{
Ỹ TDỸ = I

Ỹ TD1 = 0
(5)

where Tr(Ỹ TLỸ ) gives the real relaxation of the weighted
average Hamming distance Tr(TTLY ). The solution of this

optimisation problem is given by Ỹ = [v1, . . . , vt] whose
columns are the t eigenvectors corresponding to the small-
est eigenvalues of following generalised eigenvalue problem.
The solution of ψ can be transformed to

Lv = λDv (6)

where vector v are the t eigenvectors corresponding to the
smallest eigenvalues (nonzero) of it.

Then, we convert the t-dimensional real-valued vectors
ỹ1, . . . , ỹn into binary codes according to threshold. We set
ε to present default threshold and yp

i equivalent to p-th ele-
ment of ỹi. The value of yp

i is

yp
i =

{
+1 yp

i � ε,

−1 otherwise.
(7)

2.2 Supervised learning stage
In supervised learning stage, we mainly focus on using the

hash labels acquired in the unsupervised learning stage to
get hashing model. First, using hash labels acquired in un-
supervised learning stage, we employ CNNs again to receive
fine grained features.

Then, we take advantage of single-hidden-layer MLP, which
is an artificial neural network (ANN) and consists of input

layer, hidden layer and output layer. It can adjust input to
approximate output according to change weights on different
nodes in hidden layer.

Formally, we set a function f : RI → R
O, where I is the

size of input vector x and O is the size of the output vector
f(x). The formulation is

f(x) = b(2) +W (2)h(b(1) +W (1)x) (8)

where b is bias vector, W is weight matrix and h(x) is func-
tion in hidden layer. In addition, the core of h(x) is logistic
function sigmoid(α) = 1/(1 + e−α).
In the learning process, MLP converges according to per-

ceptron rules. We set trainset D = {(I1, O1), . . . , (Im, Om)},
where Ii denotes ith input and Oi denotes ith objective out-
put. The perceptron function is

E(W ) = −
∑
Ii∈M

(WT Ii)Oi (9)

where M is a set of input vectors who were classified wrong.
Moreover, this function subjects to

Oi =

{
+1 WT Ii � 0,

−1 WT Ii � 0.
(10)

Therefore, E(W ) is summary of positive numbers. If all
input vectors were classified correctly, E(W ) = 0. In the
practice, we use upper bound of E(W ) and times of iteration
to control MLP convergence.

The reason why we select single-hidden-layer MLP to con-
tinue learning hash label after CNNs because CNNs is also
a kind of transformation model of MLP. Therefore, we can
construct integrate deep learning framework of ANN on the
multi-output condition. However, single-hidden-layer MLP
has a disadvantage of slow convergence rate and easy to fall
into local optimum with effect to final result from initial con-
dition. In the experiment, we will reset some cases by default
condition to ensure computing efficiency. Sometimes, if we
may never obtain W satisfied the upper bound of E(W ), we
will stop iteration by default iteration times.

3. EXPERIMENT
To evaluate the retrieving performance of our approach

DSTH, we test our approach and compare it with SpH,
STH, ITQ and CNNH on the MNIST digit dataset and STL-
10 dataset in this section. We use precision-recall curve to
measure the performance of our approach. In addition,we
choose 10 samples respectively and randomly in each cate-
gory to calculate precison and select mean of their values
of precison as final result. Meanwhile,we apply k = 25 for
retrieving original nearest neighbours.

3.1 MNIST Digits
MNIST is a handwriting image set which contains 60000

training images and 10000 test images, each of size 28×28
pixels, with a label from 0 to 9. It is used as baseline for
measurement. We randomly select 30,000 images and cor-
responding labels for establishing CNN models, then apply
combination of LE and binarization to generate hash labels.
After that, the hash labels are used to tune the CNN models
and learn MLP mapping matrix. Finally, we map 10,000 test
images into hash codes using the learned hash model, and
evaluate the accuracy of retrieval. Figure 2 shows the 64-bit
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Figure 2: Precision-Recall curve of the comparative
algorithm on MNIST with 64bits

codes retrieving accuracy of our approach DSTH compared
to other algorithms.

From Figure 2, it is obvious that DSTH and CNNH are
better than other algorithms on P-R curve. The differ-
ence between them is whether using CNNs to extract fea-
ture. Meanwhile, we find that curves of DSTH and CNNH
are twined, and the former is better until recall achieves
0.7. When the recall exceeds 0.7, both curves decrease dra-
matically. The superiority of our approach mainly derives
from the fine grained analysis on images, which yields fine
grained image representation. However,due to low dimen-
sion of MNIST, the structure of deep learning is not deep
enough to get excellent hash labels, making the retrieval re-
sults not good enough. Therefore, we select another image
set STL-10 with high resolution to highlight the capability
of our approach.

3.2 STL-10 dataset
STL-10 is a sub-set of ImageNet dataset for image recog-

nition, which consist of 5000 training images (500 images per
class), 8000 test images (800 images per class) and 100000
unlabeled images, each of size 96×96 pixels, in 10 classes.
We select 10000 of 100000 unlabeled images randomly to ob-
tain hash model and test. We calculate 48 bits for compari-
son. Figure 3 shows the quantitative evaluation of different
approaches with 48 bits.

According to the Figure 3, it can be observed that DSTH
performs best over the STL-10 dataset(which have large size
images) and the second is CNNH. The gain of performance
maybe stem from two reasons: (1) The visual feature gener-
ated by CNN performs better than hand-crafted feature; (2)
The deep hash function have superior generation ability than
SVM shallow learning[4]. For image retrieval, the larger the
image is, the more accurate the image feature should be. In
our scheme, we promote deep CNNs layer architecture in
both unsupervised learning and supervised learning to mine
the high level semantic features, using fine grained hash la-
bels to learn hashing model for image representation. In
addition, using hash labels acquired in unsupervised stage
to tune the deep neuron net yields accurate hashing models,
which map new image samples to be precise hash codes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec
isi
on

SpH
ITQ
STH
CNNH
DSTH

Figure 3: Precision-Recall curve of the comparative
algorithm on STL-10 with 48bits

4. CONCLUSION
In this paper, we propose Deep Self-taught Hashing(DSTH)

learning algorithm on deep learning framework and intro-
duce hash labels derived from image feature into hashing
model learning. First, using CNNs in unsupervised learn-
ing stage to generate hash labels successfully maximized the
value of image itself, leading to much more accurate image
representation than hand-crafted extracted feature used in
shallow model. Second, in terms of both feature extrac-
tion and hash label generation, utilizing deep architecture
simultaneously to promote the hash models leads to excel-
lent performance on big size images dataset.
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