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ABSTRACT
In multimedia analysis, the task of domain adaptation is to adapt
the feature representation learned in the source domain with rich
label information to the target domain with less or even no label
information. Signi�cant research endeavors have been devoted to
aligning the feature distributions between the source and the target
domains in the top fully connected layers based on unsupervised
DNN-based models. However, the domain adaptation has been
arbitrarily constrained near the output ends of the DNN models,
which thus brings about inadequate knowledge transfer in DNN-
based domain adaptation process, especially near the input end.
We develop an attention transfer process for convolutional domain
adaptation. The domain discrepancy, measured in correlation align-
ment loss, is minimized on the second-order correlation statistics
of the attention maps for both source and target domains. Then
we propose Deep Unsupervised Convolutional Domain Adapta-
tion (DUCDA) method, which jointly minimizes the supervised
classi�cation loss of labeled source data and the unsupervised cor-
relation alignment loss measured on both convolutional layers and
fully connected layers. The multi-layer domain adaptation process
collaborately reinforces each individual domain adaptation compo-
nent, and signi�cantly enhances the generalization ability of the
CNN models. Extensive cross-domain object classi�cation experi-
ments showDUCDA outperforms other state-of-the-art approaches,
and validate the promising power of DUCDA towards large scale
real world application.

KEYWORDS
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Correlation alignment

1 INTRODUCTION
As one of the fundamental technologies in multimedia research do-
main, technologies for visual recognition have been developed from
various aspects such as feature learning [20], kernel learning [22]
and classi�cation hierarchies [34]. To successfully construct a vi-
sual recognition system, a su�cient number of manually annotated
images for each speci�c target domain are required beforehand.
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(a) Source domain (b) Target domain

Figure 1: Attention maps of samples from source and tar-
get domain. Discriminative parts like handlebar, pedal and
saddle are allocated with higher attention in the source do-
main (a), while in the target domain (b), low-level textures
like strings of thewheels are allocatedwith higher attention
than those discriminative parts like pedal and saddle.

With a large amount of labeled training data and substantial compu-
tation resources, state-of-the-art performances have been achieved
by Deep Neural Networks (DNN) recently [19, 41]. Nevertheless,
in real situations, it is usually impractical to obtain su�cient man-
ually labeled training data for every new scenario. To alleviate this
problem, domain adaptation [1, 8, 9, 17, 28, 33], which aims to adapt
the feature representation learned in the source domain with rich
label information to the target domain with less or even no label
information, has received much attention in recent years.

Recent studies have shown that deep neural networks can learn
more transferable features for domain adaptation [7, 13, 48], and
potential results have been achieved on some cross-domain learn-
ing tasks. For example, the visual representations learned by deep
Convolutional Neural Networks (CNN) are known to be invari-
ant to low-level cues to some degree [29, 30], hence leveraging
the deep features pre-trained on a large generic domain (e.g., Im-
ageNet [6]) is believed to have good generalization ability to new
domains. However, the test error of supervised methods generally
increases in proportion to the discrepancy between the distribu-
tions of training and test examples in both theoretical [2, 3] and
practical results [28, 42].

To reduce the performance degradation in domain adaptation,
domain-invariant models [8, 15, 33, 37–39] are established to en-
courage appropriate knowledge transfer, which bridge the source
and target domains in an isomorphic latent feature space. In a simi-
lar research direction, a fruitful line of prior works have focused on
learning shallow features by jointly minimizing a distance metric
of domain discrepancy [1, 14, 25, 28, 45], measured by maximum
mean discrepancy (MMD) [24, 44] or correlation [40].
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However, based on the plausible common knowledge that fea-
tures of the top layers, i.e., the fully connected (FC) layers, deliver
richer domain independent information that is close to the human
cognitive knowledge, signi�cant research endeavors have been de-
voted to aligning the feature distributions between the source and
the target domains on the top FC layers based on unsupervised
DNN-based domain adaptation models. Despite of the promising
results on various benchmark cross-domain visual recognition ex-
perimental evaluation, the domain adaptation has been arbitrarily
constrained near the output ends of the DNN models, which thus
brings about inadequate knowledge transfer in DNN-based domain
adaptation process, especially near the input end. In this paper, to
encourage a more su�cient knowledge transfer for deep unsuper-
vised domain adaptation, we study CNN-based domain adaptation
from a new perspective, i.e., to minimize the domain discrepancy
measured on the feature responses of the convolutional lay-
ers. The reasons can be addressed in details as follows.

First, activations of convolutional layers are crucial for visual
analysis tasks such as image categorization, object detection and
semantic segmentation. For example, in Faster RCNN [31], the con-
volutional feature maps can be used by region-based detectors to
generate region proposals. The state-of-the-art GoogLeNet [41] and
ResNet [19] contain large number of well-designed fully convolu-
tional layers except for the last task-speci�c FC layers. Convolu-
tional feature retains spatial information which is very important to
describe the semantic context of an image and reduce the ambigu-
ity. Unfortunately, such spatial information and semantic context
are neglected when we only perform domain adaptation in FC
layers. Therefore, it is necessary to extend the domain adaptation
mechanism to convolutional layers to capture the spatial context
information.

Second, the FC representations are constructed upon the con-
volutional feature representations. Existing methods that perform
domain adaptation in FC layers implicitly assume that all discrimina-
tive information is well captured in convolutional layers. However,
this assumption is not always true. As shown in Figure 1, discrimi-
native parts like handlebar, pedal and saddle are well captured in
the source domain. While in the target domain, these discriminative
parts are not highlighted. On the contrary, the wheel strings are
captured because of their rich texture in appearance. This infor-
mation incompleteness in convolutional layer will be propagated
to FC layers which can not be recovered by any well-designed
FC-layer-based knowledge transfer mechanism. In this situation,
encouraging domain adaptation in convolutional layer will ensure a
better FC representation and a more su�cient domain discrepancy
minimization.

The main challenge of convolutional domain adaptation is the
high dimensionality of the convolutional feature responses. For ex-
ample, the dimension of conv4 activation of AlexNet is 64896 (13 ×
13 × 384) when �attened into a vector. Characterizing the distribu-
tions of such high dimension convolutional features requires large
number of training data, and thus may lead to ill-posed solutions.

Inspired by the activation-based attention model [49], we de-
velop an attention transfer process for convolutional domain
adaptation. For a speci�c convolutional layer, the activation maps

for both source and target domains are �rst calculated by Lp -
norm pooling on all the convolutional response channels. Then
domain discrepancy minimization is performed on the second-order
correlation statistics of the attention maps, which describes the
correlation between discriminative parts of an image or a visual
scene. Compared to existing FC-layer-based domain adaptation
techniques [1, 14, 24, 25, 28, 45], the informative spatial context in
the convolutional attention maps can be preserved and transferred
from the source domain to target domain. Consequently, more dis-
criminative object parts can be e�ectively discovered in the target
domain rather than only those with rich textures, thus the discrim-
inative representation power in the convolutional responses can be
signi�cantly enhanced to obtain more e�ective feature response for
both source and target domains. Even without label information in
the target domain, more perception-level knowledge can be trans-
ferred from the source to target domain in the lower convolutional
layers of a CNN, providing appropriate guidance to enhance the
generalization ability of the deep CNN models.

In this paper, based on the above carefully designed attention
transfer mechanism, we propose Deep Unsupervised Convolutional
Domain Adaptation (DUCDA), which jointly minimizes the super-
vised classi�cation loss of labeled source data and the unsupervised
correlation alignment loss. As shown in Figure 2, the domain adap-
tation is performed in both convolutional layers and FC layers. The
multi-layer domain adaptation process provides reinforcement to
each individual domain adaptation component [24]. On one hand,
adaptation in convolutional layers enforces better convolutional
representations and thus better supports the domain adaptation in
FC layers. On the other hand, the high-level semantic information
of the source domain encoded in FC layers may guide the domain
adaptation in convolutional layers to capture more discriminative
patterns of images and reduce the in�uence of useless background
information. The proposed DUCDA can be e�ciently trained in an
end-to-end fashion, which facilitates large scale real-world applica-
tions.

In summary, the key contributions of this paper are summarized
as follows.
• We develop an attention transfer process for convolutional

domain adaptation, which performs domain discrepancy mini-
mization on the second-order correlation statistics of the attention
maps. To the best of our knowledge, our work is the �rst to
consider the domain adaptation in the convolutional layers.

• We design an end-to-end DUCDA network to perform domain
adaptation in both convolutional layers and FC layers. The multi-
layer domain adaptation process provides reinforcement to each
individual domain adaptation component.

• Extensive cross-domain object classi�cation experiments show
that DUCDA outperforms state-of-the-art methods. Both quan-
tity and quality results verify the promising power of our ap-
proach towards large scale real-world applications.

2 RELATEDWORK
In domain adaptation, we focus on deep unsupervised domain
adaptation methods which are closely related to our study. Another
related literature is attention model which plays a critical role in
human visual cognition.

Most deep domain adaptation methods follow a Siamese archi-
tectures [5] with two streams, representing the models for source
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Figure 2: An illustration of DUCDA architecture. Weights of all layers are shared for both source and target domains. In this
architecture, attention maps are extracted from conv5, while incorporating other convolutional layers is possible. We apply
the correlation alignment loss to measure the domain discrepancy on the fc8 layer and vectorized attention maps extracted
from conv5 and minimize it for aligning distributions between source and target domain.

and target domain, respectively. Apart from classi�cation loss that
depends on the labeled source data, deep domain adaptation models
are trained in combination with an additional loss such as discrep-
ancy loss [11, 24, 25, 40], adversarial loss [10, 32, 44] and reconstruc-
tion loss [51]. We roughly divide these methods into four categories
according to the additional loss for incorporating with classi�cation
loss in domain adaptation.

Discrepancy-based methods explicitly measure the discrep-
ancy between corresponding activation layers of the two streams of
the Siamese architecture, i.e., the discrepancy between source and
target domain. A single linear kernel was applied to only one layer
to minimize Maximum Mean Discrepancy (MMD) in DDC [44]
while the sum of MMDs de�ned between several FC layers, includ-
ing the soft prediction layer, is considered in Deep Adaptation Net-
work (DAN) [24]. Furthermore, multiple kernels for adapting these
deep representations is used in DAN to substantially enhance adap-
tation e�ectiveness compared to a single kernel method used in [11]
and [44]. In Joint Adaptation Networks [25], the joint distribution
discrepancies of the multi-layer activations are considered instead
of separate adaptations of marginal and conditional distributions
which often require strong independence and/or smoothness as-
sumptions on the factorized distributions. Instead of MMD, domain
discrepancy is measured by the di�erence of covariance matrices
between the corresponding activation layers of the two streams
of the Siamese architecture in DCORAL [40]. In contrast to the
above methods that adopt sharing weights of the two streams of
the Siamese architecture, Rozantsev et al. [32] relaxed the sharing
weight constraint but assumed that the weights of corresponding
layers in the two models remain linearly related.

Adversarial discriminative models aim at encouraging do-
main confusion via an adversarial objective with respect to a do-
main discriminator. The Domain-Adversarial Neural Networks

(DANN) [10] integrates a gradient reversal layer into the standard
architecture in order to push the learnt features to maximize the
loss of the domain classi�er. The Adversarial Discriminative Do-
main Adaptation [43] uses an inverted label GAN loss rather than
directly using the minimax loss to split the optimization process
into two independent objectives for generator and discriminator,
respectively.

Adversarial generative models combine the discriminative
model with a generative component in general based on GANs [16].
The Coupled Generative Adversarial Networks (CoGAN) [23] con-
sists of a tuple of GANs, each corresponding to one domain. Utiliz-
ing a weight sharing constraint, CoGAN can learn a joint distribu-
tion of multi-domain images without existence of corresponding
images in di�erent domains. Moreover, by enforcing the layers that
decode high-level semantics in all GANs to share the weights, it
enforces all GANs to decode the high-level semantics in the same
way. The model proposed in [4] also exploits GANs that adapt
source-domain images to appear as if they are drawn from the
target domain. To penalize large di�erences between source and
generated images for foreground pixels only, Bousmalis et al. [4]
proposed to minimize a masked Pairwise Mean Squared Error which
only calculates the masked pixels (foreground) of the source and
the generated images. Furthermore, it is able to generalize to object
classes unseen during the training phase as the model decouples the
process of domain adaptation from the task-speci�c architecture.

Data reconstruction basedmethods incorporate a reconstruc-
tion loss that minimizes the di�erence between input and recon-
structed input. The Deep Reconstruction Classi�cation Network [12]
combines the standard convolutional network for source label pre-
diction with a de-convolutional network [51] for target data recon-
struction which can be viewed as an auxiliary task to support the
adaptation of the label prediction.
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As another related literature mentioned above, attention is proved
to be useful in computer-vision-related tasks such as image cap-
tioning [46], visual question answering [47], as well as in weakly-
supervised object localization [27] and classi�cation [26]. Gradient-
based attention model computes a Jacobian of network output w.r.t.
the input [35], and guided backpropagation [36] is proposed to
improve gradient-based attention. In [50], Zeiler used "deconvnet"
which shares weights with the original network to project certain
features onto the image plane. In [49], Zagoruyko et al. proposed
activation-based attention model to guide the training of a weak
CNN model by forcing it to mimic the attention maps of a powerful
teacher network. Regarding the activation-based attention maps of
convolutional layers as middle level features, adaptation strategies
on FC layers can also be applied to convolutional layers as shown
in this paper.

3 METHOD
We consider the unsupervised domain adaptation scenario where
labels for target domain data are not available. Despite of the large
domain discrepancy between source and target domain and the
absence of labels of target domain data, we want to learn a single
deep CNN that performs well on both source and target domains.
We focus on domain adaptation in convolutional layers which is
equally important as the domain adaptation in FC layers. Based
on activation-based attention model, activations of convolutional
layers can be distilled into lower-dimensional features which en-
ables e�ective domain adaptation in convolutional layers. We adopt
correlation alignment loss (CAL) in our method as the semantic
context of attention maps can be e�ectively modeled via correla-
tion. Intuitively, adaptation in convolutional layers will boost the
adaptation in FC layers as better convolutional representations are
learnt, and thus lead to better representations of FC layers. The CAL
loss is also applied to FC layers to construct a multi-layer domain
adaptation process in both convolutional layers and FC layers. The
DUCDA architecture is shown in Figure 2.

3.1 Common Notations
We �rst introduce some common notations used in this paper. Sup-
pose we are given NS source-domain training examples DS =

{zsi }
NS
i=1 with labels LS = {yi },yi ∈ {1, . . . ,L}, and NT unlabeled

target examples {ztj }
NT
j=1, where zs and zt are the raw images from

source and target domain respectively and L is the number of
categories. As our network is extended from AlexNet, we use
the symbols in AlexNet here for simplicity. Let ϕconv5(·;θconv5)
be the subnetwork composed of conv1∼conv5 parameterized by
θconv5 and let AS = {a

s
i }

NS
i=1 and AT = {a

t
j }

NT
j=1 be the sets of ac-

tivations of conv5 layer where asi = ϕ(zsi ;θconv5), z
s
i ∈ DS and

atj = ϕ(z
t
j ;θconv5), z

t
t ∈ DT . Denote by ψ (·;θcls ) the subnetwork

composed of fc6∼fc8 parameterized by θcls that maps conv5 acti-
vations to a class-conditional distribution. Let vec(·) be the �atten
operation that transforms the attention map into vectorized form
and let XS = {x

s
i }

NS
i=1,xi ∈ Rd and XT = {x

t
j }

NT
j=1,x j ∈ Rd be

the sets of attention maps in vectorized form. Let FS = { f si }
NS
i=1

and FT = { f
t
j }

NT
j=1 be the sets of fc8 activations where f si =

ψ (asi ;θcls ),a
s
i ∈ AS and f tj = ψ (atj ;θcls ),a

t
j ∈ AT . Let BS be a

batch randomly selected from XS (or FS ) with nS examples, and BT
be a batch randomly selected from XT (or FT ) with nT examples.

3.2 Activation-based Attention Model
As revealed by Yosinski et al. [48], feature transferability gets worse
on conv4∼conv5 of AlexNet. Hence, adaptation in convolutional
layers is as important as adaptation in FC layers. Adaptation in
convolutional layers is essential since FC layers activations are
computed on the basis of convolutional layers activations. If use-
ful information can not be captured in convolutional layers, the
representation incompleteness will be propagated to FC layers and
can not be recovered. In this circumstance, adaptation merely in FC
layers will not work. However, adaptation in convolutional layers is
rarely considered in previous study. One reason may be attributed
to the high dimension of convolutional layer activations. One way
to solve this problem is to distill the convolutional layer activa-
tions into low dimensional representations via activations-based
attention mapping [49]. Speci�cally, given an activation tensor

Algorithm 1 The DUCDAconv5 learning algorithm.

Input: Labeled source data: DS = {z
s
i ,yi }

NS
i=1; Unlabeled target

data: DT = {ztj }
NT
j=1;

Output: DUCDAconv5 learnt parameters:θ̂conv5 and θ̂cls ;
1: Initialize parameters θconv5 and θcls with pretrained AlexNet.

Re-initialize the weight of fc8 layer with N(0, 0.005).
2: repeat
3: for each source batch BS_imд and target batch BT _imд do
4: Calculate B′S = ϕ(BS_imд ;θconv5)
5: Calculate B′T = ϕ(BT _imд ;θconv5)
6: Calculate BS = Att(B′S )
7: Calculate BT = Att(B′T )
8: Calculate LCLS
9: Calculate ∂LCLS

∂θcls
10: Update θcls using SGD
11: Calculate ∂LCLS

∂B′S

∂B′S
∂θconv5

12: Calculate LCALconv5

13: Calculate ∂LCALconv5
∂BS

∂BS
∂B′S

∂B′S
∂θconv5

14: Calculate ∂LCALconv5
∂BT

∂BT
∂B′T

∂B′T
∂θconv5

15: Update θconv5 using SGD
16: end for
17: until Converдence Or Reach Maximum Iterations

A ∈ RC×H×W which consists of C channels with spatial dimen-
sions H ×W , a mapping function Fatt that takes the above con-
volutional layer activations A (3D tensor) as input and outputs a
spatial attention map is de�ned as

Fatt : RC×H×W → RH×W (1)

As the absolute value of a hidden neuron activation indicates the
importance of that neuron w.r.t. the speci�c input, we can construct
spatial attention map by computing statistics of these absolute
values across the channel dimension. Speci�cally, we consider the
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following spatial attention mappings:

(Fatt (A))i, j =
C∑

ch=1
|Ach,i, j |

p (2)

where i ∈ {1, 2, ...,H } and j ∈ {1, 2, ...,W } are spatial indexes.
To e�ectively estimate the covariance matrices described in next

subsection, we apply a logarithmic function Loд(·) over the above
attention maps. Therefore, the element xsi and xtj in XS and XT
are actually computed as xsi = Loд(vec(Fatt (a

s
i ))),a

s
i ∈ AS and

xtj = Loд(vec(Fatt (a
t
j ))),a

t
j ∈ AT . We replace Loд(vec(Fatt (·)))

with Att(·) for simplicity. Note that, Att(·) is di�erentiable. Now,
the knowledge of convolutional layer activations is distilled into
a d-dimensional feature with appropriate values and can be well
adapted similar to methods that adapt in FC layers like [24] and [40].

3.3 Correlation Alignment
Aligning the second-order statistics-correlation of the source and
target distributions has shown superior performance to MMD-based
domain adaptation methods like [44] and [24]. The goal is to trans-
fer such correlations from source domain to the target domain. As
some discriminative parts of objects are usually e�ectively captured
in attention maps and these parts are usually positively correlated,
CAL is more appropriate for adapting attention maps of convolu-
tional layers. Hence, we also adopt CAL in our method.

The CAL is de�ned as the distance between the covariances of
the vectorized attention maps of conv5 (or fc8 features) of source
and target samples:

LCAL =
1
4d2
| |CS −CT | |

2
F (3)

where | | · | |2F denotes the squared matrix Frobenius norm and CS
and CT are covariance matrices of the source and target samples
denoted by:

CS =
1

nS − 1
(BTS BS −

1
nS
(1T BS )T (1T BS )) (4)

CT =
1

nT − 1
(BTT BT −

1
nT
(1T BT )T (1T BT )) (5)

where 1 is a column vector with all elements equal to 1. Applying
chain rule, the gradient w.r.t. the input features can be calculated
as:

∂LCAL

∂B
i j
S

=
1

d2(nS − 1)
((BTS −

1
nS
(1T BS )T 1T )T (CS −CT ))i j (6)

∂LCAL

∂B
i j
T

=
−1

d2(nT − 1)
((BTT −

1
nT
(1T BT )T 1T )T (CS −CT ))i j (7)

The gradients ∂LCAL
∂BS

and ∂LCAL
∂BT

can be easily propagated back
to conv5 (or fc8) which enables end-to-end training. Note that, CAL
can be applied to other convolutional layers and FC layers.

3.4 End-to-end Domain Adaptation in
Convolutional layer

As mentioned above, adaptation in convolutional layers is essen-
tianl. Adaptation in FC layers will not help if e�ective information
can not be captured in convolutional layers. The learnt representa-
tions are required to be both discriminative and domain invariant.

Joint training with the classi�cation loss combined with CAL on
on convolutional attention maps is likely to learn representation
that work well on both the source and target domain. On one hand,
over�tting to the source domain often occurs by merely minimizing
the classi�cation loss, which limits the performance on the target
domain. On the other hand, minimizing the CAL alone might lead
to degenerated representations. To well understand the e�ective-
ness of adaptation in convolutional layers, we design a deep CNN
model that adapts only in conv5 denoted by DUCDAconv5. Our
objective for DUCDAconv5 for a mini-batch is:

Lconv5 = LCLS + λ1LCALconv5
= lc (ψ (B

′
S ;θcls ),LB′S ) + λ1LCALconv5

(8)

where LCALconv5 is calculated according to equations (3)∼(5) with
BS and BT randomly selected from XS and XT respectively and B′S
is the batch selected from AS corresponding to BS . Let B′T is the
batch selected from AT corresponding to BT . That is, BS = Att(B′S )
and BT = Att(B′T ). λ1 is a weight that can be tuned to achieve better
trade-o� between the adaptation and classi�cation accuracy on the
source domain and lc is the cross-entropy loss. ∂LCLS

∂θcls
, the gradient

of θcls can be used to train fc6∼fc8 and ∂LCLS
∂B′S

, and the gradient
of B′S can be propagated back to conv1∼conv5 to update θconv5 in-
corporated with ∂LCALconv5

∂BS
∂BS
∂B′S

and ∂LCALconv5
∂BT

∂BT
∂B′T

using chain
rule. That means DUCDAconv5 can be trained in an end-to-end
fashion. The whole training algorithm of DUCDAconv5 is shown
in Algorithm 1.

3.5 End-to-end Domain Adaptation both in
conv5 and fc8

Adaptation in convolutional layers enforces the network to learn
e�ective �lters and results in more domain-invariant and discrimi-
native convolutional features which helps FC layers to learn better
representations. Therefore, in addition to applying adaptation in
conv5, we also add CAL to fc8 to adapt fc8 and we call this model
as DUCDA. Moreover, adaptation in fc8 layer may penalize the
activations of some irrelevant neurons which in turn enforces the
conv5 layer to pay less attention to irrelevant patterns of input im-
ages. Hence, adaptation in convolutional layers and FC layers will
mutually reinforce each other and �nally boost the performance.
Our objective for DUCDA for a mini-batch is:

L = Lconv5 + λ2LCALf c8 (9)

where LCALf c8 is calculated according to equations (3)∼(5) with
BS and BT selected from FS and FT respectively. The gradient of
LCALf c8 w.r.t. fc8 features can be calculated and propagated to fc8
layer incorporated with the gradient brought by classi�cation loss
LCLS . λ2 is the weight together with λ1 that can be tuned to achieve
better trade-o� between the adaptation and classi�cation accuracy
on the source domain.

3.6 Discussions
Compare to methods that adapt merely in FC layers such as DDC [44],
DAN [24] and DCORAL [40], DUCDA performs adaptation in con-
volutional layers that contain spatial information which is lost in
FC layers. Correlated semantic context can be well transferred from
source domain to target domain via adaptation in convolutional
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layers in DUCDA. Such semantic context is very useful for object
recognition in target domain.

By utilizing adaptation both in convolutional layers and FC lay-
ers, DUCDA leverages the power of multi-layer adaptation where
adaptation in convolutional layers and FC layers mutually reinforce
each other. On one hand, adaptation in convolutional layers en-
forces better convolutional representations to be learnt which leads
to better representations in FC layers. On the other hand, high-level
semantic information of FC layers will guide the convolutional
layers to capture more discriminative patterns of images and ignore
irrelevant patterns.

Moreover, DUCDA is computationally e�cient and simpler to
optimize compare to DAN which needs to investigate optimal kernel
parameter via quadratic programming.

4 EXPERIMENT
Extensive experiments on two domain adaptation benchmarks were
conducted to evaluate our methods. Analysis is focusing on the
e�ectiveness of adaptation in convolutional layers and the e�cacy
of adaptation both in convolutional and FC layers.

4.1 Setup
We conducted our experiments on O�ce31 and O�ce-10 + Caltech-
10 datasets.

O�ce-31 [33] is a standard benchmark for visual domain adap-
tation, which contains 4,652 images in total within 31 categories
collected from o�ce environment in three image domains: Amazon
(A), comprising images downloaded from amazon.com, Webcam
(W) and DSLR (D), comprising images taken by web camera and dig-
ital SLR camera with di�erent photographical settings, respectively.
Following the standard protocol [7, 9, 14, 24, 44], all the source data
with labels and all the target data without labels were used. All six
domain adaptation tasks A→W, A→D, W→D, W→A, D→A, and
D→W were evaluated for unbiased evaluation.

O�ce-10 + Caltech-10 [14] that comprises of images selected
from the 10 common categories shared by the O�ce-31 and Caltech-
256 (C) [18] is also widely adopted to evaluate domain adaptation
methods. Another six domain adaptation tasks A→C, W→C, D→C,
C→A, C→W, and C→D can be built for unbiased evaluation.

The original top FC layer (fc8) of the pre-trained AlexNet was
removed and a new FC layer with 31/10 hidden neurons (the num-
ber of categories for O�ce-31/O�ce-10 + Caltech-10) was added.
The weights of the added fc8 layer ware randomly initialized with
N(0, 0.005). The learning rate of the added fc8 layer was set to 10
times that of the lower layers. We used stochastic gradient descent
(SGD) with 0.9 momentum and the weight decay was set to 0.0005.
The batch size and base learning rate were set to 256 and 0.001
respectively. Note that the activations of conv5 (behind relu5 and in
front of pool5) were used to calculate attention maps whose dimen-
sion is 169. The batch size should be su�ciently large to e�ectively
estimate the covariance matrices CS and CT as the dimension of
attention map is large. As suggested in [40], the weight λ2 of the
LCALf c8 was set in such way that at the end of training the clas-
si�cation loss is the same order of magnitude as LCLS . However,
there is no heuristic way to set the weight λ1 of LCALconv5 applied
in conv5 layer. Therefore, we extensively investigated appropriate

λ1 via grid search. All of our experiments were implemented with
Ca�e [20].

We comparedDUCDA to a variety of published methods: GFK [15],
TCA [28], CNN [21] (no adaptation), DDC [44], DAN [24] and DCO-
RAL [40]. Speci�cally, GFK and TCA are not end-to-end deep meth-
ods. TCA aims at learning some transferable components across do-
mains in a reproducing kernel Hilbert space regularized with MMD.
GFK is a widely-adopted method for our datasets which bridges the
source and target domain by interpolating them across intermediate
subspaces along a geodesic path. DDC is a cross-domain variant
of CNN with single-layer adaptation via single-kernel MMD. DAN
utilizes a multi-kernel selection method for better mean embedding
matching and adapts in multiple layers to undo the dataset bias
as feature transferability signi�cantly drops on fc6∼fc8. Domain
distributions is aligned via second order statistic-correlation in
DCORAL. For fair comparison, we also reported the performances
of DANf c7 and DANf c8, variants of DAN that adapt in single FC
layer as DUCDAconv5 just adapts in single convolutional layer as
well.

As revealed in [37], fc7 feature �ne-tuned on the source do-
main (FT7) achieved better performance than generic pre-trained
features. Therefore, for O�ce-31, FT7 was used to train a linear
SVM [8, 37] in GFK and TCA. For O�ce-10 + Caltech-10, accuracies
for TCA, GFK, DCC and DAN reported in [24] are directly reported
here. In [24], instead of FT7, SURF features were used to a linear
SVM in GFK and TCA.

4.2 Result and Analysis
The results on the �rst six O�ce-31 unsupervised domain adap-
tation tasks are shown in Table 1, and the results on the other six
O�ce-10 + Caltech-10 adaptation tasks are shown in Table 2.

From Table 1 and Table 2 we can see that DUCDAconv5 is com-
parable to DDC, DANf c7, DANf c8 and DCORAL. Note that these
methods apply adaptation in fc7 or fc8 layers, whose representa-
tions are more discriminative than conv5 layer activations. This
validates the e�ectiveness of adaptation in convolutional layers.

From Table 1, we can see that DUCDA shows better average
accuracy than DCORAL and the other six baseline methods, prov-
ing that adapting in convolutional layer signi�cantly boosts the
adaptation in FC layers. In three out of six tasks, DUCDA achieves
the highest accuracies. For the other three tasks, the margin be-
tween DUCDA and the best baseline method is small. However, as
shown in Table 2, DUCDA does not outperform DAN in average.
We attribute this to the small size of O�ce-10 + Caltech-10 dataset
as we need su�cient samples to e�ectively estimate the covariance
matrices in DUCDA. In this setting, DUCDA outperforms DCO-
RAL similar to O�ce-31 setting which validates that adaptation in
convolutional layer boosts the adaptation in FC layers.

To get a better understanding of DUCDA, in Figure 3, we visual-
ized the attention maps extracted with several networks, including
the pre-trained AlexNet, AlexNet �ne-tuned (AlexNetFT ) on source
domain (Amazon), DCORAL, DUCDAconv5 and DUCDA to see
what e�ects that adaptation in convolutional layer brings. DCO-
RAL, DUCDAconv5 and DUCDA were learnt speci�cally to A→D
task and the two input samples were drawn from DLSR dataset.
Filters general to 1000 classes were learnt in the original AlexNet
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Table 1: Accuracy on O�ce-31 dataset with standard unsupervised adaptation protocol [40].

Algorithms A→W A→D D→A D→W W→A W→D Avg
GFK 54.7±0.0 52.4±0.0 43.2±0.0 92.1±0.0 41.8±0.0 96.2±0.0 63.4
TCA 45.5±0.0 46.8±0.0 36.4±0.0 81.1±0.0 39.5±0.0 92.2±0.0 56.9
CNN 61.6±0.5 63.8±0.5 51.1±0.6 95.4±0.3 49.8±0.4 99.0±0.2 70.1
DDC 61.8±0.4 64.4±0.3 52.1±0.8 95.0±0.5 52.2±0.4 98.5±0.4 70.6

DANfc7 63.2±0.2 65.2±0.4 52.3±0.4 94.8±0.4 52.1±0.4 98.9±0.3 71.1
DANfc8 63.8±0.4 65.8±0.4 52.8±0.4 94.6±0.5 51.9±0.5 98.8±0.6 71.3

DCORAL 66.8±0.6 66.4±0.4 52.8±0.2 95.7±0.3 51.5±0.3 99.2±0.1 72.1
DAN 68.5±0.4 67.0±0.4 54.0±0.4 96.0±0.3 53.1±0.3 99.0±0.2 72.8

DUCDAconv5 62.6±0.6 64.7±0.6 52.4±0.5 96.0±0.5 49.6±0.6 99.4±0.2 70.8
DUCDA 68.3±0.4 68.3±0.6 53.6±0.4 96.2±0.2 51.6±0.6 99.7±0.2 73.0

Table 2: Accuracy on O�ce-10 + Caltech-10 dataset with standard unsupervised adaptation protocol [14].

Algorithms A→C W→C D→C C→A C→W C→D Avg
GFK 41.4±0.0 26.4±0.0 36.4±0.0 56.2±0.0 43.7±0.0 42.0±0.0 41.0
TCA 42.7±0.0 34.1±0.0 35.4±0.0 54.7±0.0 50.5±0.0 50.3±0.0 44.6
CNN 83.8±0.3 76.1±0.5 80.8±0.4 91.1±0.2 83.1±0.3 89.0±0.3 84.0
DDC 84.3±0.5 76.9±0.4 80.5±0.2 91.3±0.3 85.5±0.3 89.1±0.3 84.6

DANfc7 84.7±0.3 78.2±0.5 81.8±0.3 91.6±0.4 87.4±0.3 88.9±0.5 85.4
DANfc8 84.4±0.3 80.8±0.4 81.7±0.2 91.7±0.3 90.5±0.4 89.1±0.4 86.4

DAN 86.0±0.5 81.5±0.3 82.0±0.4 92.0±0.3 92.0±0.4 90.5±0.2 87.3
DCORAL 84.7±0.3 79.3±0.6 82.8±0.5 92.4±0.2 91.1±0.6 91.4±0.6 87.0

DUCDAconv5 84.7±0.5 79.4±0.5 83.0±0.6 92.7±0.6 85.6±0.6 90.0±0.4 85.9
DUCDA 84.8±0.5 80.2±0.1 82.5±0.6 92.8±0.6 91.6±0.6 91.7±0.4 87.3

-

(a) Input (b) AlexNet (c) AlexNetF T (d) DCORAL (e) DUCDAconv5 (f) DUCDA

Figure 3: Attention maps of two samples of target domain DSLR. These attention maps are extracted from conv5 layers in
several networks, including the original AlexNet, AlexNet �ne-tuning on source domain (Amazon), DCORAL, DUCDAconv5
and DUCDA. The values of attention maps on objects in (e) and (f) are generally larger than those extracted from other three
methods. Moreover, attention maps on objects in (e) and (f) tends to cover the whole object.

while we want the �lters adapted to our task (31 categories). Intu-
itively, applying adaptation in convolutional layer will enforce the
�lters to learn to capture more e�ective patterns which means the
�lters will have high response to some speci�c patterns. In Figure
2, we can see that with adaptation in conv5 layer ((e) and (f)), the
�lters have higher level attention on objects in general compare
to other networks without adaptation in conv5 layer. This phe-
nomenon indicates that adapting in conv5 layer enforces the �lters

to capture discriminative parts of objects. As mentioned above, if
useful information cannot be captured in convolutional layers, the
representation incompleteness will be propagated to FC layers and
cannot be recovered. We showed that there are some samples that
can be correctly classi�ed by DUCDAconv5 but misclassi�ed by
DCORAL in Figure 4. DCORAL and DUCDAconv5 were also learnt
speci�cally to A→D task and all samples were drawn from DLSR
dataset in Figure 4.
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Figure 4: Samples misclassi�ed by DCORAL (red) while correctly classi�ed by DUCDAconv5 (green) for A → D.
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Figure 5: Sensitivity of λ1. We evaluated DUCDAconv5 in
A→D tasks. Green line shows results of AlexNet �ne-tuned
on Amazon.

The most important thing is that comparing to methods that do
not adopt adaptation in conv5 layer, DUCDAconv5 and DUCDA
push the attention maps to cover the entire objects. There are more
isolated clusters in the attention maps extracted with AlexNet,
AlexNetFT and DCORAL. On the contrary, the isolated clusters are
grouped together to nearly cover the entire object in the attention
maps extracted with DUCDAconv5 and DUCDA. Utilizing these
semantic context, DUCDA signi�cantly outperforms DCORAL.

Moreover, compared to DUCDAconv5, attention maps extracted
with DUCDA are smoother, which indicates that adaptation in FC
layers also boosts the adaptation in convolutional layers. High-level
semantic information in FC layers prevents convolutional layers to
paying too much attention to some speci�c parts.
4.3 Parameter Sensitivity
We investigated the e�ects of the hyperparameter λ1. Figure 5 gives
an illustration of the variation of transfer classi�cation performance
as λ1 ∈ {0.001, 0.002, 0.003, 0.004, 0.005, 0.006} on tasks A→D. We
can observe that the DUCDAconv5 accuracy �rst increases and
then decreases as λ1 varies. This con�rms the validity of jointly
learning deep features and adapting distribution discrepancy, since
a good trade-o� between them can enhance feature transferability.

4.4 Feature Visualization
To demonstrate the e�ectiveness of the learned features of DUCDA,
similar to DAN [24], we plotted in Figures 6 the t-SNE embeddings
of the images in task A→D with DCORAL features and DUCDA
features, respectively. We visualized only 10 categories for clarity.

(a) DCORAL (b) DUCDA -
Figure 6: t-SNE visualization of DCORAL features and
DUCDA features of target domain DSLR (Best viewed in
color). Blue squares, green triangles and yellow squares in
(b) are better separated than those in (a).
We can observe that with DCORAL features, the target points are
not discriminated very well compared to DUCDA features. For
example, classes represented with blue square, green triangle and
yellow square in (b) are better separated than those in (a). Appar-
ently, DUCDA learns better representations than DCORAL which
validates the e�ectiveness of adaptation in convolutional layers.

5 CONCLUSION
We study unsupervised domain adaptation from the convolutional
perspective and develop an attention transfer process for convolu-
tional domain adaptation. The domain discrepancy is minimized
on second-order correlation statistics of the attention maps for both
source and target domains. Then we propose DUCDA, which jointly
minimizes the supervised classi�cation loss of labeled source data
and the unsupervised correlation alignment loss measured on both
convolutional layers and FC layers. Extensive experiments show
that DUCDA outperforms state-of-the-art approaches, and validate
the promising power of DUCDA towards large scale real world
application. In future research, it is interesting to extend DUCDA
to ResNet or GoogLeNet. Another promising direction is to apply
dimension reduction to produce more compact attention maps on
multiple convolutional layers.
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