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ABSTRACT

Metric learning is an important issue in the person verifica-
tion problem, which is to identify whether a pair of face or
human body images is about the same person. Due to low
running cost, the non-iterative statistical inference methods
for metric learning show their efficiency and effectiveness to
large scale datasets and on-line updating person verification
applications. The KISSME method is a typical one that con-
structs the metric based on two assumptions that both of
the discrepancy spaces of negative pairs and positive pairs
should be Gaussian structures. However, we find that, in fact,
the distribution of discrepancies of positive pairs might tend
to the Laplace distribution rather than the Gaussian distri-
bution. Based on this finding, we propose a metric learning
method by exploiting Gaussian-Laplace distribution statis-
tical inference, where the Gaussian distribution of negative
discrepancies and the Laplace distribution of positive dis-
crepancies are considered together. Experiments conducted
on two human body datasets (VIPeR and Market-1501) and
one face dataset (LFW) show its superiority in terms of effec-
tiveness and efficiency as compared with the state-of-the-art
approaches, no matter the appearance description is hand-
crafted or deep learned.

CCS CONCEPTS
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1 INTRODUCTION

Person verification trying to answer the question “Are you
the person you claim to be”, is an important task, which
can be exploited in a lot of critical applications [16], such
as long-term multi-camera tracking [13], forensic search [28]
and video retrieval systems [43]. The task is to verify whether
photos contain the same person, or re-identify persons in a
huge amount of surveillance cameras [14, 30–32, 35, 36], even
if the person is not seen before. There are two main visual
clues for person verification: face images and human body
figures. It is well known that the probe image and the other
images in the gallery are rarely collected in the same environ-
ment, which leads to large intra-person variations including
resolution differences, illumination changes, and viewpoint
transformations. As a result, person verification is a very
challenging task.

To overcome the difficulties in person verification, previ-
ous research efforts primarily focused on two aspects. One is
appearance representation [1, 5, 6, 17–20, 33, 34, 40], which
aims at constructing discriminative visual descriptors to rep-
resent the face or the human body. However, designing a
robust feature description which adapts to different realis-
tic conditions is challenging [44]. The other is distance met-
ric [12, 16, 17, 27, 44], which tries to learn a proper distance
metric function to calculate the distance of the former de-
scriptions. This paper focuses on the latter aspect, which
aims at designing an effective distance metric function for
person verification. Even though excellent visual description-
s could be found in the future, we believe that a well learned
metric function could still promote the results. Considering
formulation properties and optimization processes, we divide
those distance metric methods into two categories:

Iterative optimization. Most of the approaches are based
on the class of distance functions with an iterative optimiza-
tion scheme, such as Probabilistic Relative Distance Com-
parison (PRDC) [44], Locally-Adaptive Decision Functions
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(LADF) [16], Cross-view Quadratic Discriminant Analysis
(XQDA) [17], Multi-Kernel Metric Learning (MKML) [22],
Similarity Learning with Spatial Constraints (SCSP) [2]. These
methods pay attention to designing loss functions and regu-
larizing solutions by learning prior knowledge from abundant
labeled samples. However, almost all the algorithms are re-
quired to iteratively learn the optimal parameters of their
designed metric functions. Generally, repeated iterations are
computationally expensive especially for large scale datasets.
Hence, this kind of approaches are not proper when labeled
samples are increasing or a situation needs on-line training.

Non-iterative statistical inference. Another type of approach-
es tries to obtain the metric function with a non-iterative op-
timization way, such as Mahalanobis distance, KISSME [12],
RS-KISSME [24], DR-KISSME [23]. Motivated by a statis-
tical inference perspective, the KISSME based methods con-
sider the generation process for observed sample pairs. After
the distribution of sample pairs is discovered, given a new
pair (xi,xj), its impossibility of belonging to the same per-
son, δ(xi,xj), will be calculated by the likelihood of pair
discrepancies. δ(xi,xj) essentially represents the distance.
Without an iteration process, it just involves computation
of distributional parameters before verification, so it is scal-
able to large datasets and on-line tasks.

Nowadays, the explosion of data asks for a scalable dis-
tance metric function, which can quickly learn a new mod-
el and adapt to the data captured from new environments.
Once more labeled data are poured in, the models should
be quickly updated with the incremental data rather than
re-trained for a long waiting time. In this situation, we con-
sider that a non-iterative statistical inference metric learn-
ing method might be a better choice, which learns the mod-
el by non-iterative parameter calculation operation. Among
those non-iterative methods, the KISSME based methods
show their outstanding effectiveness [12, 42]. To construct
the distance function, the KISSME method decides whether
a feature pair (xi,xj) is negative or positive by a likelihood
ratio test as Eq. 1.

δ(xi,xj) =
p(xij , H−)
p(xij , H+)

. (1)

The formulation includes two independent generation pro-
cesses respectively for observed commonalities of negative
(the numerator part) and positive (the denominator part)
pairs, where xij = xi − xj denotes the discrepancy of fea-
tures, and H− and H+ are two hypothesises in the space of
pairwise discrepancies. It assumes that both discrepancy s-
paces of negative pairs and positive pairs should be Gaussian
structures.

However, we consider that the distributions of positive dis-
crepancies (intra-person variations) and negative discrepan-
cies (inter-person variations) should be different. The inter-
person variations are often large, hence the values of the dis-
crepancies are dense and random. Whereas, the intra-person
variations are often small, hence the values of the discrepan-
cies are sparse. Discrepancies of positive pairs are more like-
ly to have an empirical distribution that is highly peaked at
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Figure 1: Training speed vs. Accuracy at Rank 1
for the tested methods on the Market-1501 dataset.
XQDA [17] and NFST [39] are two iterative op-
timization based metric learning methods, and
KISSME [12] is a non-iterative statistical inference
based metric learning method, which are shown in
blue fond. Our GL method (shown in red) provide
both high speed and accuracy. More details are list-
ed in Sec. 4.

the mean vector and then asymptotically falls off more slow-
ly than the Gaussian distribution as the distance from the
mean vector increases. So the discrepancy space of positive
pairs is more likely to be the Laplace structure rather than
the Gaussian structure. This is verified by Fig. 2, and we
investigate the characteristics of the negative and positive
discrepancy space in Sec. 2. Considering that positive and
negative discrepancy spaces respectively follow a Laplace dis-
tribution and a Gaussian distribution, we construct the pro-
posed distance metric function by statistical inference, which
shows both considerable effectiveness and efficiency (as Fig.1
illustrates). The contributions of this paper are as follows:

(1) Observing the distributions of discrepancies through
preliminary experiments, we find the phenomena that the
distribution of the discrepancy space of negative pairs ap-
proximates to the Gaussian structure, while that of positive
pairs tends to the Laplace structure.

(2) Based on the above observations, we propose a metric
learning method exploiting statistical inference of Gaussian-
Laplace distribution (GL). Experiments conduct on three
public datasets have validated the effectiveness of the pro-
posed method, with a considerable improvement over state-
of-the-art methods with iterative and non-iterative learning.

(3) The proposed method is proved to be very simple
and in low running cost, which means that the non-iterative
learned distance metric function is more suitable for the large
scale and on-line person verification application.
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Figure 2: The distribution maps of positive discrep-
ancies and negative discrepancies in 2D space. (a)
The distribution map of randomly selected 2D posi-
tive discrepancies. (b) The distribution map of ran-
domly selected 2D negative discrepancies. (c) The
distribution map of PCA 2D positive discrepancies.
(d) The distribution map of PCA 2D negative dis-
crepancies.

2 INVESTIGATION ON
DISCREPANCY DISTRIBUTIONS

Intuitively, to construct the distance metric through a non-
iterative statistical inference way, we attempt to comprehend
the discrepancy distributions of positive pairs and negative
pairs. To investigate the issue, we not only perceptually
visualized the distributions of discrepancies, but also ratio-
nally took goodness of fit test.

For the perceptual part, several preliminary visualization
experiments were made to observe the distribution structure.
3000 positive and 3000 negative image pairs were obtained
from the LFW dataset [11]. For each image, a 256 dimension
feature was extracted by the Lightened CNN model trained
on MS-Celeb-1M by caffe-rc3 [33]. Then, for each image pair,
a discrepancy was computed by the difference of the two
corresponding image features. Hence, we obtained 3000 dis-
crepancies of positive pairs and 3000 discrepancies of neg-
ative pairs. To respectively understand the distributions of
positive and negative discrepancies, we visualized these two
distributions in 2D space. In order to get an comparatively
overall observation of the distributions of discrepancies in dif-
ferent dimensions, we selected typical dimensions by random
components and principle components.

First, we randomly selected two dimensions to view the
general distribution map of discrepancies. Fig. 2(a) and Fig. 2(b)

respectively show the distribution maps of positive discrep-
ancies and negative discrepancies. As can be seen from the
shape of these two maps, the distribution of positive dis-
crepancies does not look like the previous assumed Gaussian
distribution. The distribution, prone to the Laplace distri-
bution, is more highly peaked at the center than that of
negative discrepancies, extremely following the Gaussian dis-
tribution. Second, we chose two key dimensions by Principal
Component Analysis (PCA) to view the primary distribu-
tion map of discrepancies. Fig. 2(c) and Fig. 2(d) respectively
show the distribution maps of positive discrepancies and neg-
ative discrepancies. We can discover the same phenomenon
as the former general distribution maps demonstrate. Com-
paring the map shapes under these two different dimension
selection methods, we can also find that the distributions
generated by PCA discrepancies with principle dimensions
look more similar to Laplace or Gaussian distributions.

It should be clearly noted that the distribution maps demon-
strate similar shapes as described above, even if we exploit
different feature descriptors on different datasets. We do not
fully explore the distributions of all the datasets, but take
the Lightened CNN model and LFW dataset as representa-
tive, because the feature dimensions and the dataset volume
are moderate.

For the rational part, to prove this observation, we take
goodness of fit test to different distributions by utilizing the
tool Minitab1. We continually selected each corresponding
dimension of all the discrepancies, and study their distribu-
tions with Minitab.

Tab. 1, Tab. 2, Tab. 3, and Tab. 4 respectively show the
values of goodness of fit test on the distributions of negative
discrepancies and positive discrepancies with one dimension
and all dimensions in average. The tables include Anderson-
Darling (AD) statistics and the corresponding P-value for
each distribution. The AD statistic measures how well the
data follow a particular distribution. The better the distri-
bution fits the data, the smaller this statistic will be. In
addition, if the P-value (when available) for the AD test is
higher than the chosen significance level (usually 0.05), it
will conclude that the data follow the specified distribution.
We can see that P > 0.05 for the Gaussian distribution in
Tab. 1 and Tab. 3, which means that the distribution of neg-
ative discrepancies fits a Gaussian very well. We can also
see that AD = 8.658 and AD = 7.158 for the Exponential
distribution are respectively the lowest value in Tab. 2 and
Tab. 4, which means that the half part of the distribution
of positive discrepancies is more likely to be an Exponen-
tial, compared with the other distributions. Since a Laplace
distribution can be thought of as two Exponential distribu-
tions spliced together back-to-back, we consider the whole

1Minitab is a powerful statistical software, which is available at
http://www.minitab.com/. The tool can take goodness of fit test to
different distributions, such as Gaussian, Exponential, Smallest Ex-
treme Value, Largest Extreme Value and Logistic. Since no Laplace
test exists in the tool, we insteadly focus on whether the positive value
part follows Exponential distribution.

Session: Fast Forward 6 MM’17, October 23-27, 2017, Mountain View, CA, USA

1611



distribution of positive discrepancies is more likely to be a
Laplace distribution.

Based on the above analysis, to better verify persons, we
propose to learn a distance metric function by statistical
inference considering not only Gaussian distribution of neg-
ative discrepancies but also Laplace distribution of positive
discrepancies.

Table 1: Goodness of fit test on the distribution of
negative discrepancies with one dimension.

Distribution AD P

Gaussian 0.658 0.086
Exponential 714.426 < 0.01
Smallest Extreme Value 51.418 < 0.01
Largest Extreme Value 38.363 < 0.01
Logistic 1.348 < 0.005

Table 2: Goodness of fit test on the distribution of
positive discrepancies with one dimension (only use
the positive value part of discrepancy).

Distribution AD P

Gaussian 48.657 < 0.05
Exponential 8.658 <0.05
Smallest Extreme Value 94.172 < 0.010
Largest Extreme Value 10.241 < 0.010
Logistic 25.178 < 0.005

Table 3: Goodness of fit test on the distribution of
negative discrepancies with all dimensions in aver-
age.

Distribution AD P

Gaussian 0.612 0.092
Exponential 701.124 < 0.01
Smallest Extreme Value 53.312 < 0.01
Largest Extreme Value 40.112 < 0.01
Logistic 1.945 < 0.005

Table 4: Goodness of fit test on the distribution of
positive discrepancies with all dimensions in average
(only use the positive value part of discrepancy).

Distribution AD P

Gaussian 49.287 < 0.05
Exponential 7.158 <0.05
Smallest Extreme Value 98.123 < 0.010
Largest Extreme Value 13.932 < 0.010
Logistic 26.291 < 0.005

3 THE PROPOSED METHOD

Our method considers two independent generation process-
es for observed samples of positive and negative pairs. The
impossibility is defined by the possibility of belonging to
either one or the other. From a statistical inference point
of view the optimal statistical decision on whether a pair
(xi,xj) is positive or not can be obtained by a likelihood
ratio test. Thus, we test the hypothesis H− that a pair is
negative (yij = 0) versus the hypothesis H+ that the pair is
positive (yij = 1), following the KISSME method as Eq. 1.
A high value of δ(xi,xj) means that H− is recommended
and the pair is considered as negative, in contrast, a low val-
ue means that H− is rejected and the pair is considered as
positive. To facilitate the discussion, we make the following
definitions:

Σ− =
1

N

∑
yij=0

(xi − xj)(xi − xj)
�, (2)

Σ+ =
1

N

∑
yij=1

(xi − xj)(xi − xj)
�, (3)

φ(xij ,Σ−) = (xi − xj)
�Σ−1

− (xi − xj), (4)

φ(xij ,Σ+) = (xi − xj)
�Σ−1

+ (xi − xj). (5)

In these definitions, N denotes the number of positive or
negative training pairs. Σ−1

+ and Σ−1
− stand for the inversions

of Σ+ and Σ−. Based on the above discussion, we reform
Eq. 1 to the following form:

δ(xi,xj) =
p(xij , H−)
p(xij , H+)

=
fG(xij |Σ−)
fL(xij |Σ+)

. (6)

Here, fG(xij |Σ−) is a PDF (Probability Density Function)
with the parameter Σ− for hypothesis H− that the sample
pair (xi,xj) is negative. As discussed in Sec. 2, the discrep-
ancy space of negative pairs follows a Gaussian structure (E-
q. 7). Meanwhile, fL(xij |Σ+) is a PDF with the parameter
Σ+ for hypothesis H+ that the sample pair (xi,xj) is posi-
tive, where the discrepancy space of positive pairs follows a
Laplace structure (Eq. 8, the formulation refers to [4]).

fG(xij |Σ−) =
exp(− 1

2
φ(xij ,Σ−))√
2πΣ−

, (7)

and

fL(xij |Σ+) =
1

(2π)(d/2)
2

λ

K(d/2)−1(
√

2
λ
φ(xij ,Σ+))

(
√

λ
2
φ(xij ,Σ+))(d/2)−1

, (8)

where Km(x) denotes the modified Bessel function of the
second kind and order m, evaluated at x. d denotes the di-
mension of sample feature, and λ > 0 stands for a scale
parameter.

By substituting Eq. 7 and Eq. 8 into Eq. 6, and taking
the log operation, Eq. 6 can be transformed to Eq. 9, where
the terms independent to (xi,xj), such as the denominator
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Figure 3: The framework of the proposed method. First, training samples generate positive and negative
discrepancies. Second, following two different distributions, the parameters Σ+ and Σ− are calculated to form
the model of distance metric function. Third, this model is evaluated with verification samples.

term of Eq. 7, is omitted.

δ(xi,xj) ∼ log(
exp(− 1

2
φ(xij ,Σ−))(

√
λ
2
φ(xij ,Σ+))

(d/2)−1

K(d/2)−1(
√

2
λ
φ(xij ,Σ+))

).

(9)

Further, we strip constant terms as they just provide an
offset and Eq. 9 is simplified to

δ(xi,xj ,Σ+,Σ−) = (
d− 2

2
) log(

√
λ

2
φ(xij ,Σ+))

− log(K(d/2)−1(

√
2

λ
φ(xij ,Σ+)))

− 1

2
φ(xij ,Σ−).

(10)

This equation essentially defines the distance metric func-
tion, whose metric characteristic is decided by the parame-
ters Σ+ and Σ−. Hence, the whole process of the proposed
method can be described as follows (as Fig. 3 illustrates).
First, features are extracted from training samples by using
a handcraft or deep learning model. Positive pairs generate
positive discrepancies, and negative pairs generate negative
discrepancies. Second, the parameters Σ+ and Σ− are cal-
culated to construct the model of distance metric function.
Third, this model is evaluated with verification samples. The
algorithm is demonstrated in Alg. 1.

In particular, as Eq. 2 and Eq. 3 demonstrate, the param-
eters Σ+ and Σ− are calculated by the sum operation on
the outer product of pairwise discrepancies. It means that if
new labeled data are added, we only need to calculate the
parameters Σ′

+ and Σ′
−, and directly add them to the ini-

tial parameters Σ+ and Σ−. The model is very easy for the

Algorithm 1 Algorithm of the proposed method.

Input: training samples which include positive pairs
{(xi,xj)|yij = 1} and negative pairs {(xi,xj)|yij = 0},
and verification samples which include the probe image
xp and the gallery images {xg}.

Output: a ranking list of {xg} for the probe image xp.
1: calculate the matrix Σ+ by Eq. 3 with training positive

pairs;
2: calculate the matrix Σ− by Eq. 2 with training negative

pairs;
3: for each g in the gallery do
4: compute the distance δ(xp,xg,Σ+,Σ−) between xp

and xg by Eq. 10;
5: end for
6: rank the distances from low to high and generate the

ranking list.

incremental updating, hence the method is suitable for the
on-line application.

Complexity Analysis: First, the proposed method learn-
s the metric by non-iterative statistical inference, rather than
iterative optimization. It is well known that the algorithm of
training iterative optimization based metrics are more com-
plicated. So we can find that the iterative optimization based
metric learning methods cost more than 10, 000 times train-
ing time compared with the proposed method [12]. Second,
the parameters are calculated by statistical inference, and
the algorithm complexity is O(N) for calculating Σ+ and
Σ−, where N stands for the number of image pairs. As we
know, for the KISSME method, the calculated Σ+ and Σ−
should be combined together to form a new Mahalanobis-like
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metric. Whereas for the proposed method, the two param-
eters are used separately, and do not need to be fused into
one. Hence, the proposed method is the most efficient met-
ric learning method for on-line training in person verification.
Third, the testing algorithm complexity is O(M), where M
is the number of gallery images. However, it is reported that
only 2.5ms is cost for computing each pair of images, which
is pretty sufficient for real-time applications.

4 EXPERIMENTS

To evaluate the applicability of the proposed method, we
conduct experiments on various standard benchmarks with
rather diverse characteristics. We first conduct experiments
on human body figures on the widely used dataset VIPeR
in Sec. 4.1. Then, in Sec. 4.2, we expand the evaluation on
the largest dataset Market-1501. In Sec. 4.3, we study the
problem on faces in unconstrained environments. Finally, the
running cost of the proposed method is evaluated and com-
pared.

4.1 VIPeR dataset

The widely used VIPeR dataset [7] contains 1, 264 outdoor
images obtained from two views of 632 persons. Each person
has a pair of images taken from two different cameras re-
spectively. All images of individuals are normalized to a size
of 128 × 48 pixels. View changing, illumination and image
quality variations are the causes of appearance change. Some
example images are shown in Fig. 4(a). We respectively list
some positive pairs, where two images of each pair are from
the same identity, and some negative pairs from different i-
dentities. We followed the general evaluation protocol [12],
and split the set of 632 image pairs randomly into two sets
of 316 image pairs each, one for training and one for testing,
and computed the average over 5 runs. To indicate the per-
formance of the various algorithms, we report Cumulative
Matching Characteristic (CMC) [29] at different ranks. CM-
C represents the expectation of the true match being found
within the first n ranks.

To prove that the proposed method (GL) can improve
the effectiveness of different feature representations, no mat-
ter handcraft or deep learning, we conducted GL on two
handcraft feature methods SCNCD [34] and LOMO [17],
and one deep learning feature method FTCNN [20]. Mean-
while, these features were exploited and evaluated on the it-
erative optimization metric learning method XQDA [17] and
the non-iterative statistical inference metric learning method
KISSME [12]. Tab. 5 shows the results at different ranks.
From the bottom part of the table, we can find that the pro-
posed GL surpasses the KISSME with all the three
features, surpasses the XQDA with the FTCNN feature,
and performs not so well as the XQDA with the LOMO fea-
ture at the first 10 ranks. In particular, exploiting FTCNN
feature, the proposed method obtains a nearly 10% promo-
tion at rank one. We consider the reason is that the XQDA
metric is specially designed for LOMO in [17]. It should be
mentioned that we do not list the results of SCNCD+XQDA,

Table 5: Comparing results with the-state-of-the-art
person verification methods on top ranked matching
rate (%) on VIPeR dataset. We utilize the red font
to stand for the highest performance among all the
list methods, and the blue font to denote the second
highest performance. The rules are the same for the
following two tables.

Method(rank@) 1 5 10 20

PRDC 15.7 38.4 53.9 70.1
SDALF 19.9 38.4 49.4 66
BiCov 20.6 43.2 56.1 68
eSDC 26.3 46.4 58.6 72.8
DeepMetric 28.2 59.3 73.4 86.4
LADF 30 64 80 92
CPDL 34 64.2 77.5 88.6
MKML 37 69.9 80.7 90.1
DeepFeature 40.5 60.8 70.4 84.4

SCNCD+KISSME 34.81 66.77 80.38 89.56
SCNCD+GL 38.92 69.3 81.33 90.51

LOMO+XQDA 40 68.13 80.51 91.08
LOMO+KISSME 28.48 57.59 76.58 89.24
LOMO+GL 35.76 65.19 78.16 91.14

FTCNN+XQDA 31.2 59.8 74 83.5
FTCNN+KISSME 31.53 62.86 78.37 88.18
FTCNN+GL 40.39 67.97 81.9 91.66

because we have not seen any work combining this two meth-
ods. Hence, we believe that the proposed metric is effective
for different features on the VIPeR dataset.

In addition, we compared the results with the state-of-the-
art methods, which are PRDC [44], SDALF [5], BiCov [18],
eSDC [40], DeepMetric [37], LADF [16], CPDL [15], MKM-
L [22], and DeepFeature [3]. As can be seen, most of the
good performances are achieved by exploiting the proprosed
GL.

4.2 Market-1501 dataset

The Market-1501 dataset [41] contains 32668 annotated bound-
ing boxes of 1501 identities. Images of each identity are cap-
tured by at most six cameras. As far as we know, it is the
largest person re-identification dataset to date. Some exam-
ple images are shown in Fig. 4(b). We followed the general
evaluation protocol on this dataset [41]. To indicate the per-
formance of the various algorithms, we report not only CMC
values at different ranks, but also the mAP (mean Average
Precision [41]) value as described in [41]. We evaluate the
mAP values for the Market-1501 dataset, because multiple
target images exist in the gallery. Both of these two eval-
uation criterions demonstrate the effectiveness of different
methods.

To prove the effectiveness, similar to evaluations on the
VIPeR dataset, we conducted GL on the CaffeNet feature
and the ResNet-50 feature, which were proved to be the most
helpful representations for the Market-1501 dataset. Both of
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(a) VIPeR dataset (b) Market-1501 dataset (c) LFW dataset

Figure 4: Some typical samples of three public datasets. The three public datasets are respectively the human
body figures datasets (a) VIPeR and (b) Market-1501, and the face images dataset (c) LFW. For each dataset,
we list some positive pairs and negative pairs.

Table 6: Comparing results with the-state-of-the-art
person verification methods on top ranked matching
rate (%) on Market-1501 dataset.

Method(rank@) 1 10 50 mAP

BiCov 8.28 - - 2.23
LOMO 26.07 - - 7.75
BoW 35.84 60.33 75.8 14.75
Siamese CNN 65.88 - - 39.55
LSTM 61.6 - - 35.3
SCSP 51.9 - - 26.35
LOMO+NFST 55.43 - - 29.87

CaffeNet + L2 59.53 85.51 94.39 32.85
CaffeNet + XQDA 61.34 87.26 95.13 37.59
CaffeNet + KISSME 61.46 86.55 94.8 36.63
CaffeNet + GL 62.08 86.82 95.01 36.86

ResNet-50 + L2 75.62 91.89 96.97 50.68
ResNet-50 + XQDA 75.5 91.66 96.94 52.87
ResNet-50 + KISSME 77.52 92.93 97.48 53.87
ResNet-50 + GL 78.03 93.44 97.68 53.76

these features were designed and trained by [42]. Meanwhile,
these features were exploited and evaluated on the basic Eu-
clidean metric (L2), the iterative optimization metric learn-
ing method XQDA [17] and the non-iterative statistical infer-
ence metric learning method KISSME [12]. Tab. 6 shows the
CMC results at different ranks and the mAP results. From
the bottom part of the table, we can find that the GL sur-
passes the L2, KISSME, XQDA with both features
at the list ranks, and surpasses the KISSME and the XQDA
with the CaffeNet feature at mAP value. Hence, we believe
that the proposed metric is effective for the largest human
body figures dataset.

In addition, we compared the results with the state-of-the-
art methods, which are BiCov [18], LOMO [17], BoW [41],
Siamese CNN [25], LSTM [26], SCSP [2], and LOMO+NFST [39].
As can be seen from Tab. 6, most of the best performances
are achieved by exploiting the GL metric function with the
ResNet-50 feature.

4.3 LFW dataset

The LFW dataset [11] contains more than 13000 face images
of 5749 subjects collected from the web with large variations
in expression, pose, age, illumination, resolution, and so on.
We test our algorithm under the standard “image restricted”
setting that is particularly designed for verification. In this
setting, the dataset is divided into 10 fully independent folds,
and it is ensured that not the same person appears across
different folds. 300 positive and 300 negative image pairs are
provided within each fold. Each time we learn our distance
metirc on 9 training folds, and evaluate on the remaining fold.
Following [16], pairwise classification accuracy averaged over
10 runs is reported in general [11].

To prove the effectiveness, we conducted the proposed GL
and the compared KISSME on the Lightened CNN feature
representation with three different models. The three differ-
ent deep learning models are described in [33]. Tab. 7 shows
the classification accuracy results. From the bottom part of
the table, we can find that the GL surpasses the KISSME
with all the three kinds of features. Hence, we believe that
the proposed metric is effective for the face image verification
dataset.

In addition, we compared the results with the state-of-
the-art methods, which are MERL+Nowak [9], LBP + C-
SML [21], DML-eig combined [38], Convolutional DBN [10],
LADF [16], DDML [8], and HPEN + HD-Gabor + DDM-
L [45]. As can be seen from Tab. 7, the best performance
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Table 7: Comparing results with the-state-of-the-art
person verification methods on the LFW dataset un-
der the standard “image restricted”.

Method Accuracy (%)

MERL+Nowak 76.2
LBP + CSML 85.6
DML-eig combined 85.7
Convolutional DBN 87.8
LADF 89.6
DDML 90.7
HPEN + HD-Gabor + DDML 92.8

Lightened CNN (Model A)+KISSME 92.8
Lightened CNN (Model A)+GL 93.2
Lightened CNN (Model B)+KISSME 94.2
Lightened CNN (Model B)+GL 94.4
Lightened CNN (Model C)+KISSME 98.2
Lightened CNN (Model C)+GL 98.4

is achieved by exploiting the GL metric with the Lightened
CNN (Model C) feature. In particular, it is known that the
accuracy above 98% would be very high. Hence, we believe
that 0.1% promotion in the LFW dataset is challenging.

From the above evaluations on three typical datasets, we
conclude that the proposed method can make a considerable
improvement through introducing the Laplace distribution,
compared with the KISSME method.

4.4 Running cost

We compared the run time of our method with XQDA, NF-
ST and KISSME on the Market-1501 dataset. The Market-
1501 dataset are chosen to report the running time, because
the sample size of this dataset is the biggest. We calculate
the overall training time over 12,936 samples and test time
over 3,368 queries. All algorithms are implemented in Mat-
lab (CPU: Intel Core i3-4030U). Tab. 8 shows that for train-
ing, our method is the most efficient. Considering the testing
time over 3,368 queries, 2.5 ms for each query. The cost is at
the same level as the other methods, and is pretty sufficient
for real-time applications.

Table 8: Running time comparison on the Market-
1501 dataset (in seconds).

XQDA NFST KISSME GL (Ours)

Training 3233.8 393.1 0.123 0.0357
Testing 31.3 1.6 1.387 8.516

5 CONCLUSION

Based on the observations on distributions of discrepancies,
we proposed a noniterative metric learning method exploit-
ing statistical inference of Gaussian-Laplace distribution. The
method is very easy and fast, and suitable for the on-line

application. We evaluate the method on three person verifi-
cation datasets, and achieve the state-of-the-art results.
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