
Local Selection of Features for Image Search and
Annotation

Jichao Sun
New Jersey Institute of Technology

Newark, New Jersey
js87@njit.edu

ABSTRACT
In image applications, direct representations of images typ-
ically involve hundreds or thousands of features and not all
the features are relevant for any given object. Errors intro-
duced into similarity measurements by irrelevant or noisy
features are detrimental to the semantic performance of content-
based image retrieval. Feature selection techniques can be
used to identify indiscriminative features from the entire
image database. However, such global approach neglects
the possibility that the feature importance may vary across
different images or classes of images. We propose several
techniques for the local selection of features for image data-
bases. By checking the local neighborhood of each image,
our methods determine the feature importance with respect
to the image and select different feature sets for individual
images. We also design methods based on the proposed lo-
cal selection schemes for K -NN graph construction, image
search, and graph-based image annotation. We provide ex-
perimental results on two image datasets to demonstrate the
effectiveness of our methods.
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1. INTRODUCTION
Nearest neighbor search is a fundamental component of

many established methods for content-based image retrieval
(CBIR) and automated image annotation. The semantic
quality of the search results, which can be measured as the
proportion of images in the query result sharing the same
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class label as their query images, relies heavily on the rep-
resentation of images. The existence of irrelevant features
in the image representation may overwhelm the contribu-
tions of the relevant ones in similarity search. Image feature
selection which constructs a reduced feature set from the
original feature space is a well-known approach for boosting
the effectiveness of semantic image retrieval.

Traditional feature selection approaches are global in the
sense that they compute a single set of features across the
entire database. In image retrieval, supervised feature se-
lection is widely used when image labels are available. The
quality of a candidate feature set can be evaluated using a
learning algorithm such as the Bayesian classifier adopted
in [8]. Distribution-based approaches are popular in scor-
ing the importance of individual features. For example, the
mutual information which measures the degree of mutual de-
pendence between two variables was adopted in [3] to guide
feature selection.

Supervised feature selection has its limitations on image
databases when the semantic labels are few or missing. An
unsupervised feature selection method was proposed in [2]
for medical image retrieval. However, the computational
cost is high due to the use of a clustering wrapper for fea-
ture evaluation. Laplacian Score (LS), an unsupervised
method for feature selection of generic data, ranks indi-
vidual features according to their locality-preserving abili-
ties [4]. Spectral feature selection (SPEC ) [10] presents a
unified framework based on spectral graph theory for both
supervised and unsupervised feature selection. The unsuper-
vised discriminative feature selection (UDFS) algorithm in-
corporates discriminative analysis and L2,1-norm minimiza-
tion into a joint framework [9]. Better results were achieved
by LS , SPEC and UDFS in clustering and classification
tasks, although no evidence was provided to indicate that
their direct use in CBIR improves the performance of re-
trieval tasks.

The methods mentioned above discard noisy features from
all data points to reduce the dimensionality of the database.
Such global approaches, however neglect the possibility that
a feature that is relevant for one image (or one image class)
may be irrelevant for another. It is reasonable to find a
feature set local to each image in an effort to reduce the
negative impact of locally irrelevant features. To this end,
we study the following two problems in this work: (1) de-
signing methods for the detection of locally noisy features
with respect to individual images; and (2) utilizing the com-
puted (different) feature sets in applications to image search
and annotation.
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In Section 2, we present three supervised/unsupervised
techniques for the local selection of image features. These
techniques are then incorporated into different algorithms
for K -NN graph construction, image search and graph-based
image annotation. We provide experimental results on two
image datasets to demonstrate the effectiveness of the pro-
posed methods for different image applications in Section 3.
A summary of the proposed methods and a discussion on
the ongoing work and other possible research directions are
given in Section 4.

2. LOCAL SELECTION OF IMAGE FEA-
TURES AND ITS APPLICATIONS

We propose techniques for the local selection of image
features, based on which several methods are developed for
the applications to CBIR and image annotation.

2.1 Local Laplacian Score and Feature Spar-
sif cation for K-NN Graph Construction

K -NN graphs are an essential component of many estab-
lished methods for CBIR and image annotation. The per-
formance of these methods relies heavily on the semantic
quality of the K -NN graphs, which can be evaluated by:
graph correctness = (#correct neighbors)/(#images×K),
where a correct neighbor is one whose class label coincides
with that of the query image. For example, in image label
propagation, each graph edge connecting two unrelated im-
age nodes is a source of error, in that it suggests that these
two images should share the same label.
To enhance the semantic quality of the K -NN graph, in

[5] we propose the Local Laplacian Score for the detection
of locally noisy features, and embed it into an approximate
K -NN graph construction framework NN-Descent [1].
Given a dataset D consisting of n data points represented

bym-dimensional feature vectors, we denote the r-th feature
by fr = (fr1, fr2, . . . , frn)

T , where r = 1, . . . ,m, and fri
(i = 1, . . . , n) is the feature value of fr taken from data point
xi ∈ D. Given a nearest neighbor graph G of dataset D, the
Laplacian Score [4] of the r-th feature can be computed as:

LS(r) =

∑
ij
(fri − frj)

2Sij

var(fr)
, (1)

where var(fr) is the estimated variance of the values of fea-
ture fr, and Sij is the RBF kernel on feature vectors xi and
xj representing the i-th and j-th data points, respectively.
For the identification of noisy features relative to each

data point, we define as follows the Local Laplacian Score
(LLS) of the r-th feature for item xi which represents the
contribution to the LS in Eq. 1 that can be attributed to xi:

LLS i(r) =

∑
j
(fri − frj)

2Sij

var(fr)
. (2)

It can be found that, if a feature is noisy for a given class,
many data points from this class would tend to agree on
its identification as such. A consensus, however, does not
in general occur among data points drawn from different
classes. We adopt a straightforward method for the detec-
tion of noisy features local to node i using LLS , in which the
m features are sorted in descending order of LLSi(r), and
returns the first z (z > 0) features. We refer to these z fea-
tures as the locally noisy features of xi, and to the remaining
(m− z) features as the subjective features of xi.

Traditional feature selection methods cannot be applied
to the reduction of the locally noisy features identified by
LLS , as the importance of a feature varies from one data
point to another. Instead of discarding a feature from the
entire dataset, we modify the noisy feature values for in-
dividual data points in an effort to reduce intra-class dis-
tances. As a heuristic solution, we propose to change the
values of the locally noisy features to 0, which is the the
global mean for standardized features. We refer to this pro-
cess as sparsification. The LLS feature ranking and spar-
sification is then integrated into an iterative K -NN graph
construction method NN-Descent . The combined method,
named NNF-Descent , first computes an approximate K -NN
graph based on the standardized feature vectors. In each
iteration of NNF-Descent , a small number of locally noisy
features detected by LLS are sparsified for each image. One
NN-Descent-based iteration is then performed, which essen-
tially involves the re-computation of the distance values from
each image to its current neighbors, and the K -NN updat-
ing through checking whether two neighbors of a same im-
age could serve as better neighbors in each other’s K -NN
list. During the sparsification, the centers of the classes can
change. However, the data points in each class converge to-
wards their new centers as the sparsification rate increases.

The iterative feature ranking and K -NN updating are mu-
tually beneficial: an updated K -NN graph improves the ac-
curacy of feature ranking, and the sparsification of noisy
features improves the semantic quality of the K -NN graph
in return. We refer the reader to [5] for a detailed analysis
of the complete algorithm.

2.2 Generalized Laplacian Score and Image
Ranking in Subjective Feature Spaces

In this section, we propose a method that takes advan-
tage of the different feature sets computed for individual
images without modifying the original feature values. First,
we define the Generalized Laplacian Score (GLS) of the r-th
feature for xi as a linear combination of LLS i(r) with the
average contribution to LS(r):

GLS i(r) = (1− β) ·
LS(r)

n
+ β · LLS i(r), (3)

where β is a weighting factor in the range of [0, 1], controlling
the contributions of LS and LLS .

The selection of a subset of features for data point i can
be accomplished in the same way as in Section 2.1. We
can represent the subjective feature set of xi by a mask
vector: Fi = (b1, b2, . . . , bm) ∈ {0, 1}m, where Fi[r] = br
(r = 1, . . . ,m) is a boolean value equal to 1 if and only if
the r-th feature is a subjective feature of xi. Fi also straight-
forwardly defines an (m−z)-dimensional feature space for xi.
We refer to this space as a subjective feature space of item
xi, and use Fi to denote both the subjective feature set and
the corresponding subjective feature space for xi.

Let d(·, ·) be a distance function over the items of D with
respect to the full set of features. Given a subjective feature
space Fi for xi, we denote the distance between xi and xj

in Fi by dFi
(xi, xj) = d(Fi(xi), Fi(xj)), where Fi(·) is the

projection of a feature vector from the full feature space to
the subspace Fi.

To utilize the different sets of features computed by GLS

in an image search application, we propose a novel query-
ing strategy which ranks the query image in the subjective
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feature spaces of the candidate images and selects the can-
didate images which correspond to the subjective feature
spaces wherein the query image is ranked highly.
First, a subjective feature space Fi is computed for each

item xi ∈ D. Given a query q, the distance values dFi
(xi, q)

are computed for all xi ∈ D. A direct comparison of these
distance values would have no intuitive meaning, as they are
computed from different feature spaces. To make proper use
of these distances, we first compute dFi

, the mean distance

from xi to the other items of D with respect space Fi, then
normalize dFi

(xi, q) by dFi
. The ratio — referred to as the

ranking score (RS) of q in Fi with respect to xi — is used
as the rank of q in the subjective feature space Fi.
Based on GLS and RS , we outline an image search pro-

totype (GLS+RS) as follows: (1) Compute an approximate
K -NN graph for the image database in the full feature space
for GLS ; (2) Compute a subjective feature space for each
database image, and the ranking scores of the query im-
age in the computed subjective feature spaces; (3) Return
the images corresponding to the subjective features spaces
wherein the query image is ranked highly.

2.3 Local Selection of Features for Labeled Im-
ages

In typical graph-based image annotation algorithms, a
nearest neighbor graph (for example, a K -NN graph) is built
based on the similarities between image feature vectors. The
image labels are propagated from the labeled images to the
unlabeled images along the graph edges according to certain
weighting and combination rules. The quality of the edges
leading from labeled images to unlabeled images is critical
for the success of these algorithms.
To improve the quality of the edges from labeled images,

we propose a supervised method for computing reduced fea-
ture sets for individual labeled images. The idea is that
each feature of a labeled image is used in isolation to rank
other labeled images; the features that assign high ranks to
related neighboring images are treated as more important.
By deleting the least important features, a different feature
set is computed for each labeled image, and is used in the
ranking of unlabeled images.
This idea is adopted as a preprocessing step in a graph-

based image annotation method SW-KProp+ [6]. When the
proportion of correct edges leading from labeled images in-
creases, better annotation performance can be achieved.

3. EXPERIMENTS

3.1 Datasets
We provide experimental results on two image datasets

MNIST and Google-23, to show the effectiveness of our local
selection schemes on image search and annotation. MNIST
has 70, 000 images of handwritten digits [7]. The 784 pixel
values of each image were treated as its image features. Ex-
cept for the experiments in Section 2.2, we constructed a
reduced subset of MNIST containing 10,000 images, by ran-
domly selecting 1000 images for each digit. Google-23 is
described in [6], which consists of 6686 faces extracted from
web images of 23 celebrities. The total dimension of each
feature vector is 1937.
We also conducted experiments on some other datasets

including web images and non-image data; the experimental
results are omitted in this abstract due to the space limit.
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Figure 1: NNF-Descent vs. competing methods.

3.2 Similarity Graph Construction
We comparedNNF-Descent with principle component anal-

ysis (PCA), LS , SPEC -φ1 and SPEC -φ3 with respect to the
correctness of produced K -NN graphs.

The neighborhood size for the target graph was set at
10, 20, 30, 50 and 100. The number of features sparsified in
each iteration was 5. For each experimental run ofNNF-Descent ,
we computed the best graph correctness score over 50 iter-
ations. The average computed from 5 runs was reported for
each dataset. For the other methods, for each data point, 5
least important features were discarded per iteration, and an
exact K -NN graph was computed from the resulting set of
reduced feature vectors. Over allK -NN graphs produced the
best correctness value achieved was reported. The perfor-
mance of the exact K -NN graph computed from the original
feature vectors is plotted as a baseline.

It can be seen from Fig. 1 that for all choices considered
for the value of K, NNF-Descent achieved graph correct-
ness scores better than those of the exact K -NN graphs. In
almost all cases, our method clearly outperformed its com-
petitors. When K is large, PCA outperformed the other
methods. This outcome can be explained by the semantic
quality of the K -NN graphs upon which NNF-Descent , LS
and SPEC rank features — when the semantic quality of
the K -NN graph degrades, the detection of noisy features
becomes less reliable.

3.3 Image Similarity Search
We compared GLS+RS with approaches based on LS ,

data variance and random feature selection. In each exper-
imental run, MNIST and Google-23 were firstly split into
a query set containing 100 random images and a candidate
set containing the rest images. We also collected 100K faces
from Wikipedia Commons as noise (referred to as Wiki-
Faces) and appended them to the candidate set of Google-23.
Except for GLS+RS , the other methods selected features
globally — that is, if a feature was identified as a noise fea-
ture in the candidate set, it was also discarded from the
query image, and the original distance function was used
directly on the lower-dimensional feature vectors.

The results reported in Fig. 2 are the averages over 5 test
runs. The proportion of features identified as noise was var-
ied from 0 to 50%. As a baseline for comparison, the per-
formance of sequential search in the full feature space was
plotted as a dashed line in each figure (labeled as ‘Full ’).

It is clear from Fig. 2 that GLS+RS achieved consistently
better results over its competitors which used the original
distance function. This improvement can be attributed to
two aspects: the image ranking strategy (when z = 0), and
the GLS feature selection (when z > 0). On the other hand,
traditional methods for filter-based unsupervised feature se-
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Figure 2: GLS+RS vs. competing methods.
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Figure 3: SW-KProp vs. SW-KProp+.

lection yield little or no improvement in the semantic quality
of CBIR results.

3.4 Graph-based Image Annotation
We compared SW-KProp with SW-KProp+ in an image

labeling task. Both methods propagate label scores from
labeled images to unlabeled images in a similarity graph;
SW-KProp+ extends SW-KProp by utilizing the technique
described in Section 3.3 in the computation of the similarity
graph [6]. The number of prelabeled images ranged from 1
to 7. The overall annotation performance is evaluated, that
is: recall = (#correctly labeled test items)/(#test items).
The results can be found in Fig. 3. On Google-23, SW-KProp+

outperformed SW-KProp, when the number of prelabeled
images per category was larger than 1. This implies that
with only a few images of the same category, SW-KProp+

can effectively select a subset of features with better discrim-
inative ability for each prelabeled image, and enhance the
quality of the similarity graph by recomputing the neighbor-
hood of prelabeled images.
However on MNIST, the use of the feature selection tech-

nique for prelabeled images did not lead to a significant
improvement for this dataset. One possible reason is that
MNIST is a relatively easy dataset whose original image de-
scriptors are already of sufficient quality. The improvement
on the edges from labeled images had little effect on the
overall performance of label propagation.

4. DISCUSSION AND FUTUREWORK
In this thesis work, we summarize the methods we pro-

posed for the local selection of image features. We pro-
posed Local Laplacian Score (LLS) and Generalized Lapla-
cian Score (GLS) as two unsupervised methods to construct
a reduced feature set for each database image. LLS is em-
bedded into NN-Descent for efficient and effective K -NN
graph computation; a new ranking scheme is applied to the
feature sets produced by GLS in an image search prototype.
For graph-based image annotation, a supervised method is

proposed for the computation of a discriminative feature
set for each labeled image, by which, semantically related
labeled-unlabeled image pairs are more likely to be con-
nected in the similarity graph. Note that we are proposing
methods for the identification of important feature dimen-
sions for individual images rather than a new type of image
feature.

Our ongoing work is focused on the extension of GLS+RS ,
which suffers from large computational cost as the query im-
age is ranked with respect to all database images. One pos-
sible solution is to utilize an index structure to filter similar
images of the query image. The query image is then ranked
in the subjective feature spaces of the filtered images for
query refinement. Other possible research directions include:
(1) the applications of the proposed methods to other types
of data; (2) a combination of query expansion and GLS+RS

in CBIR approaches; (3) a study of the local selection meth-
ods on sparse feature vectors, such as bag-of-visual-words;
and (4) the use of the MapReduce framework in the paral-
lization of the graph construction.
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