
Where are the Sweet Spots? A Systematic Approach to
Reproducible DASH Player Comparisons

Denny Stohr◦*, Alexander Frömmgen‡*, Amr Rizk‡,
Michael Zink⋄, Ralf Steinmetz‡, Wolfgang E�elsberg◦

◦DMS / ‡KOM ⋄ECE Department

TU Darmstadt University of Massachusetts Amherst

dstohr@kom.tu-darmstadt.de,alexander.froemmgen@kom.tu-darmstadt.de

ABSTRACT

The current body of research on Dynamic Adaptive Streaming over

HTTP (DASH) contributes various adaptation algorithms aiming

to optimize performance metrics such as the Quality of Experience.

Intuitively, the heterogeneity of the streaming environment and the

underlying technologies lead many of the developed approaches to

possess clear performance a�nities denoted here as sweet spots. We

observe, however, that systematic comparisons of these algorithms

are usually conducted within homogeneous player environments.

In this work, we show the substantial impact of player choice and

con�guration on the streaming performance. To this end, we sys-

tematically examine three established open-source DASH players,

i.e., DASH.JS, Google’s Shaka Player, and AStream, that implement

fundamentally di�erent con�gurations featuring various adapta-

tion algorithms. By establishing a large scale emulation framework

we (i) extract player sweet spots and (ii) achieve a direct, repro-

ducible comparison of real-world DASH players and algorithms. We

present empirical evidence demonstrating that an isolated analysis

of DASH player modules is insu�cient to capture the player stream-

ing performance. One of the major observations is that the choice

of the target bu�er size together with the player implementation

dominates the choice of the adaptation algorithms.

∗The two authors contributed equally to this work.

1 INTRODUCTION

With the ongoing and continued success of video streaming in the

Internet, it has become a daily used service by billions of users. Fa-

cilitated by the wide range of usage scenarios, such as on-demand

movies, advertising and user-generated video, a multi-billion dollar

industry formed. It is predicted that the high popularity of video

streaming applications will keep growing in the near future. Ac-

cording to the latest Sandvine report [19], 71% (forecasted 82% by

2020 [1]) of the downstream Internet tra�c at peak hours in North

America is generated by live streaming and Video on Demand (VoD)
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services. Thus, providing reliable video streaming services that

meet the Quality of Experience (QoE) demands of the viewers is of

paramount importance to VoD service providers, especially, given

heterogeneous access networks and devices.

A main technical enabler for VoD streaming is MPEG Dynamic

Adaptive Streaming over HTTP (DASH) [21], that is developed

to provide constantly high QoE in changing network conditions

using regular HTTP requests. It allows the client to request video

segments in di�erent qualities based on its current observations

of the network condition. The foremost goal of this adaptation

approach is the elimination of stalling events during playout that

have a strong detrimental impact on the viewer’s QoE [20]. The

MPEG-DASH standard does not dictate any speci�c Adaptation

Algorithm (AA) fueling the derivation of sophisticated AAs for

improved QoE in �uctuating network and environment conditions.

Many works on DASH set the focus on the development of AAs.

We notice that empirical evaluations of AAs are typically conducted

in a single player, e.g., as in [8, 18, 22, 23]. While this approach is

necessary for a systematic comparison, it neglects the impact of the

player implementation, its con�gurations, and its interaction with

the networking environment. This reduces the potential to gener-

alize the obtained results. In this work, we provide a systematic

comparison of three DASH players (AStream, DASH.JS and Shaka)

equipped with di�erent AAs (BOLA, DASH.JS default, Shaka de-

fault) under varying network conditions. To substantiate the impact

of the player and its con�guration Figure 1 shows an aggregated

stalling-based QoE metric from [6] for the players and AAs dis-

cussed in Sect. 2. Here, we compare the achieved Mean Opinion

Score (MOS) for di�erent network volatilities (modeled through

the variance of the available bandwidth) and for di�erent video

segment lengths. The �gure shows that the choice of the adaptation

algorithm is dominated by the choice of the player and its con�gura-

tion. Based on this illustrative example, we argue that the isolated

analysis of single DASH players or parameters is not su�cient to

evaluate the streaming performance.

In this paper, we propose an empirical evaluation methodology

for DASH players, given their executable implementation, for large

con�guration spaces in conjunction with extensive network em-

ulation. We provide a systematic approach for reproducible and

comparable DASH player performance evaluations. To this end,

we implemented a DASH player execution environment, which

supports di�erent DASH players in a wide set of Mininet-based

network emulations. Our results show the signi�cant impact of

the player and its con�guration on the streaming performance and
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Figure 1: Stalling QoE [6] (higher is better) of DASH Players

with various adaptation algorithms for di�erent available

bandwidth volatilities and segment length con�gurations.

The player and the segment length have a strong impact on

the Stalling QoE whereas the impact of the adaptation algo-

rithm is marginal.

provide evidence that the target bu�er size is the main driver for

high QoE. Further, we show that DASH players possess many con-

�guration sweet spots depending on the considered performance

metrics. In summary,

• we provide a publicly available execution environment for

a systematic comparison of DASH players and adaptation

algorithms for the community1

• we analyze the individual con�guration space of players

and its in�uence on target performance / QoE metrics

• we provide a multi-objective comparison between three

state-of-the art adaptation algorithms and DASH players

in a reproducible environment

The remainder of this work is structured as follows: In Sect. 2 we

revisit the required background on DASH players and algorithms.

In Sect. 3 we introduce the methodology used in this work, before

providing our main evaluation results in Sect. 4. We discuss related

work in Sect. 5 before concluding the paper in Sect. 6.

2 DISSECTING DASH PLAYERS

In this section, we discuss existing adaptation algorithms and present

three DASH players that follow di�erent designs and assump-

tions: (i) the DASH Industry Forum’s DASH.JS2, (ii) Google’s Shaka

Player3, (iii) an academic DASH simulator denotedAStream4. These

players are a representative choice of existing open-source players

with various adaptation algorithms.

1https://maci-research.net/DASH
2https://github.com/Dash-Industry-Forum/dash.js
3h�ps://github.com/google/shaka-player
4https://github.com/pari685/AStream

2.1 DASH Adaptation Algorithms

Given that DASH is a standard for client-driven video streaming

with multiple media quality representations, the client player re-

quires a logic (often denoted as adaptation algorithm) to decide

on the requested media bitrate and quality. DASH adaptation al-

gorithms can be classi�ed into two main categories: (i) Troughput-

based Adaptation (TBA) and (ii) Bu�er-based Adaptation (BBA).

TBA algorithms, such as [14], estimate the throughput of the

DASH streaming connection through the measured segment down-

load rate R(n) of the nth segment. In its basic form, TBA adapts

the quality of the next requested video segment to this throughput

estimate. This adaptation is either directly based on R(n) or on ag-

gregated metrics that take the measurement history {Rn−i , . . . ,Rn }

for i ≥ 1 into account. Such aggregated metrics range from simple

operations, e.g., averaging or �ltering, to �tting the measurements

to complex underlying stochastic models.

BBA algorithms choose the quality of the next segment based

on the bu�er �lling information B(t) at time t . Examples for these

adaptation algorithms comprise [9, 22], where the quality adapta-

tion behavior is controlled solely through the playout bu�er �lling.

A recent BBA algorithm that gained traction is the Bu�er Occupancy

based Lyapunov Algorithm (BOLA) which assumes, in contrast to

TBA, that the playout bu�er state is a su�cient statistic to control

the quality bitrate adaptation. BOLA maximizes the utility of the

playback as given by a weighted sum of the average quality bitrate

and the average stalling time. BOLA uses a Lyapunov optimization

technique to solve the segment quality decision problem at each seg-

ment request, i.e., either to skip downloading a new segment or to

download a utility maximizing new segment. BBA algorithms have

the advantage of utilizing a smoothed function of the connection

bandwidth estimates which may reduce the impact of connection

�uctuations. Some BBA algorithms were even shown to perform

strongly in steady state while completely neglecting throughput

estimates [8].

Note that a verity of hybrid algorithms exist that combine through-

put and bu�er information in aggregated models for bitrate adap-

tation such as in [2, 26]. Both TBA and BBA algorithms may com-

prise di�erent aggressiveness in quality adaptation. For example,

cautious adaptation algorithms that try to avoid stalling events

choose conservatively low qualities in down scaling direction, i.e.,

when choosing a lower quality than the previously requested video

segment. The same conservatism holds in up scaling direction, i.e.,

when increasing the quality of requested segments.

2.2 DASH Players and Con�gurations

In the following, we brie�y discuss the open-source DASH players

that we analyze and compare in this work. While many other DASH

players exist, such as the ones used by Net�ix and YouTube, the lack

of an open API prevents their direct use in the context of this work.

Other commercial players that provide an API, such as Bitmovin’s

HTML5 Player5, have been omitted due to licensing reasons.

DASH.JS is the reference implementation by the DASH Industry

Forum. We used release v2.3.0 in our experiments, which features

two types of adaptation algorithms: TBA (default) and BBA. TBA

uses a ThroughputRule that maintains an up-to-date list of

5https://bitmovin.com/html5-player/
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the previous four throughput and latency measurement periods

that determine upcoming adaptation decisions by passing them

on to a SwitchRequest class. The BBA algorithm embedded in

DASH.JS features BOLA as introduced in Sect.2.1.

Con�guration: DASH.JS comprises con�guration parameters for

both BOLA and TBA that include the target bu�er-levels

depending on the current playback state. If the player se-

lected the top quality, a target bu�er size of 30 seconds

(denoted BUFFER_TIME_AT_TOP_QUALITY) is used. Other-

wise, a smaller target bu�er size of 12 seconds (denoted

DEFAULT_MIN_BUFFER_TIME) applies. Thus, DASH.JS adds an

additional adaptation layer by changing the target bu�er size.

Google’s Shaka Player (version 2.0.6) features a TBA algorithm

that conservatively uses the minimum of two Exponentionally-

WeightedMovingAverage (EWMA) variables derived from through-

put measurements within a period of 2 and 5 seconds, respectively.

This aims at faster downscaling in case of bandwidth drops and

slower upscaling with increasing bandwidth measurements.

Con�guration: Two core settings control the playback bu�ers in

the Shaka Player. First, the rebufferingGoal, which is set to 2

seconds, provides the minimal bu�ered video duration before the

playback is started. Second, the bufferingGoal of 10 seconds

provides the maximum bu�er level that is loaded in advance.

AStream is a headless Python-based player that is introduced in

[11] to simulate DASH players, i.e., it does not natively playout the

requested video segments. AStream served as a rapid prototyping

environment for multiple TBA and BBA adaptation algorithm such

as [11, 25]. In this work, we consider an implementation of BOLA

within AStream in comparison to the BOLA implementation within

DASH.JS. The rationale behind this comparison is to evaluate the

impact of the player while keeping the adaptation algorithm �xed.

Con�guration: Like the other introduced players, AStream-BOLA

has an implementation dependent default target bu�er level, which

is set to 15 seconds. AStream also comprises additional con�gura-

tion parameters for which we refer to the source code [11].

2.3 Discussion

This section showed that each player provides a set of similar ap-

pearing con�guration parameters as well as support for multiple

adaptation algorithms. Existing players, such as AStream, DASH.JS,

and Shaka Player di�er regarding their adaptation algorithm API

and the provided level of abstraction. The API of DASH.JS, for ex-

ample, only enables the AA to choose the next quality. While this

provides a reasonable abstraction, it limits the expressiveness of the

AA, e.g., with regard to the request timing. This limits crucial as-

pects in adaptation strategies, e.g., when the algorithm is called and

how the algorithm can control parallel requests and request revoca-

tion. Also, the quality of network measurements can be strongly

a�ected by the way the player requests new video segments [25].

We note that general models for AA do not capture this impact

of player speci�c components. In contrast to player independent

studies of AA, a study on YouTube’s DASH player shows a close in-

teraction of requests and adaptation decisions, including a dynamic

adaptation of segment sizes, as well as, asynchronous and parallel

requests for multiple quality layers [16]. While all presented players

provide a set of similar appearing con�guration parameters, the
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Figure 2: DASH player execution environment architecture.

player’s con�guration, e.g., of the target bu�er size, directly a�ects

the behaviour of the AA. We leave the question of technical agency

for de�ning target bu�er sizes and other con�guration parameters

in DASH players as well as a design for generalized interfaces up

for discussion in future work.

3 METHODOLOGY

In this section, we provide an overview of the methodology em-

ployed in this work. First, we present the player execution environ-

ment, its architecture and the monitored key performance metrics.

Based on this, we describe our experimental design, including the

considered video content and network conditions.

3.1 Player Execution Environment

Driven by the goal to compare DASH-players in a reproducible

setup, we build a player execution environment that provides a

player abstraction interface to automatically load, con�gure and

monitor JavaScript, as well as, Python-based players, as illustrated

in Figure 2. The �rst setup layer of the experiment is built using

Python, and relies on Mininet [5] to con�gure a virtual network

setup consisting of a server, a client, and one or multiple bottleneck

links separated by switches and shaped according to Sect. 3.3. This

enables a future expansion of the experiment setup to arbitrary

topologies and more complex networking conditions.

On the server side, a webserver is launched using the Node.JS

http-server6 package. Initial comparisons with an Apachewebserver

did not show signi�cant di�erences. The client starts a Xvfb7 ses-

sion to allow for the execution of the Firefox 52 browser that sup-

ports Media Source Extensions (MSE)8. Further, the Geckodriver9

service provides control to the browser by Selenium-API calls from

the Python experiment description code. For the JavaScript-based

DASH players (DASH.JS and Shaka Player), the experiment is loaded

in the browser by requesting the webpage containing the DASH

player’s JavaScript application after the setup of the DASH player

execution environment. Here, the Webpack10 loading system is em-

ployed to dynamically instantiate the selected DASH player based

on the con�guration parameters. For each player, a loading script

was implemented that maps initialization routines and settings such

as bu�er levels, the Media Presentation Description (MPD), and

6https://www.npmjs.com/package/http-server
7https://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml
8http://caniuse.com/#search=mse
9https://github.com/mozilla/geckodriver/
10https://webpack.js.org/
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adaptation algorithms to corresponding function calls. Since AS-

tream, in contrast to DASH.JS and Shaka Player, is built entirely in

Python and does not playout the video, it is directly called with the

corresponding experiment parameters without browser interaction.

3.2 Monitoring Performance Metrics

To retrieve and analyze the system events and data structures which

vary depending on the selected player, we implemented a moni-

toring module. It maps the players’ monitoring events to a set of

callback functions and creates a universal data structure saved in a

JSON-format.

We set the playout duration for each experiment to 120 seconds

and continuously monitor the playtime. This is to ensure that, even

if stalling events occur, players are compared on a playback-time

instead of an experiment-time basis. After the given experiment

time, we collect and process the experiment metrics.

In this work, we consider two metric types to assess the perfor-

mance of DASH Players: (i) target metrics that are directlymeasured

and (ii) aggregate metrics that are derived from target metrics.

Target metrics: We consider the following directly measurable

metrics: the initial playback delay, the total stalling duration, the

initial playback bitrate, the average playback bitrate, the aver-

age number of adaptations, the download duration and length of

requested segments, and the average amplitude of adaptations.

Aggregate metrics: Here, we use measured target metrics to de-

duce aggregate performance metrics such as a measure on QoE

stalling [6]. This metric combines the duration and frequency of

stalls into a Mean Opinion Score (MOS) scale.

3.3 Experimental Design

Our experiments run on the Cartesian product of the networking

environment and player con�guration vectors given in the experi-

ment setup in Table 1. The control variables are the player and the

AA as introduced in Sect. 2. As the default bu�er sizes for the in-

vestigated players are around 10 seconds, we vary the bu�er size to

half and double of the default size, i.e., 5 and 20 seconds respectively.

The selected settings such as bu�er size, segment size, experiment

duration, and network connection environment parameters, pro-

vide good estimates of common parameters for various streaming

scenarios. For an e�cient evaluation of the resulting parameter

space, we parallelize the experiment execution.

Fluctuating Environment Conditions: For a systematic com-

parison of player performance we require an evaluation of the

impact of �uctuating network environment conditions, which we

capture as changes of the available bandwidth of the streaming con-

nection. Replaying captured traces is widely used for the evaluation

Table 1: Experiment control variables.

Variable Values

Con�guration

player DASH.JS, Shaka, AStream

AA standard, BOLA

target bu�er size default, 5, 20 [s]

segment length 1, 2, 6, 10, 15 [s]

Environment µBW 0.8, 2, 5, 7.5, 10 [Mbps]

(Avail. BW) σ 2
BW

0, 0.8, 2, 5 [Mbps2]

of adaptation algorithms [4, 7, 22, 23]. While this approach provides

meaningful insights, its expressiveness is limited to the scope of the

captured traces. Furthermore, it does not allow a parameterizable

generation of a wide range of �uctuating environments.

In this work, we characterize the networking conditions through

the �rst two moments of the available bandwidth process. We im-

plemented a control module on top of tc [10], the tra�c shaper

employed underneath Mininet. This module provides parameteriz-

able and reproducible throughput traces. Based on a target mean

available bandwidth and a target available bandwidth variance, the

tc shaper settings are chosen every 3 seconds, i.e., the available

bandwidth burstiness parameter, to ensure regular changes in net-

work conditions. These basic control knobs of network conditions

can be straightforwardly extended in our framework to express

arbitrary real-world or synthetic tra�c traces with given properties.

In this work, we concentrate on the available bandwidth param-

eter, as initial measurements showed a low impact of additional

parameters such as network latency regarding a player comparison.

Video Data set: In this work, we use the Tears of Steel11 DASH

data set prepared by [13], featuring nine H.264-AVC encoded repre-

sentations. The attributes of each layer, as shown in Table 2, provide

a realistic scenario in terms of bandwidth requirements [12] and

match the range of evaluated available bandwidth conditions to

enable meaningful results.

Table 2: DASH data set representations

Resulution Bitrates (Mbps)

1920×1080 10.0, 6.0, 4.0, 3.0

1280×720 2.4, 1.5

640×360 0.807, 0.505

480×270 0.253

4 EVALUATION

In this section, we evaluate the performance of the DASH players

introduced in Sect. 2 using the methodology described in Sect. 3.

We present an evaluation of key performance metrics and a clas-

si�cation of sweet spot contexts, i.e., environment conditions in

which players with certain con�gurations provide the best perfor-

mance by analyzing target and aggregate metrics. First, we consider

the initial playback delay before going into more detail of video

stalling. We then discuss the performance of adaptation algorithms

that should eliminate stalling before analyzing the impact of these

techniques on the playback bitrate performance. We discuss the

general trade-o� of playback bitrate, stalling QoE and bu�er sizes.

Finally, we discuss simulation pitfalls when trying to reproduce

video player performance.

4.1 Playback Initiation

The initial delay, i.e., the time until rendering the �rst frame, is

an important performance indicator for DASH streaming sessions

since longer initial delays are known to have a negative impact

on the viewers’ engagement [3]. However, accepting longer initial

delays allows for a higher initial playback representation as indi-

cated in Table 3. Thus, it is crucial for players to strike a balance

11h�ps://mango.blender.org/
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Figure 3: The initial delay depends on the segment length

and the used player. Neither the target bu�er size nor the

adaptation algorithm severely impact the initial delay.

between these opposing factors. Figure 3 gives insights into these

design choices by showing box plots of the initial playback delay

vs. di�erent combinations of players, adaptation algorithms, bu�er

sizes and segment lengths. Here it is evident that there are two

main factors that impact the initial delay, i.e., (i) the used player and

(ii) the segment length. The impact of the player is apparent when

comparing DASH.JS’ results with Shaka Player where initial delays

vary independent of adaptation algorithms. As intuitively antici-

pated we �nd that the target bu�er size does not impact the initial

delay. This is expected since the target bu�er size is usually used

to gauge the steady state adaptation behavior of the player while

many players, as described in Sect. 2.2, possess minimal bu�er level

requirements to start playback. A key characteristic that drives the

di�erences in the observed initial playback delays is the selected

initial representation. For example, DASH.JS consistently selects

the third lowest representation, while both other players begin play-

back with the lowest representation, leading to smaller download

sizes for the initial segments. This is re�ected in the �rst two rows

of Table 3. The low initial delay of AStream is an artifact given by

a limitation in the implementation as explained in Sect. 4.7. We

therefore omitted AStream from Figure 3.

4.2 Stalling

The analysis of the total stalling duration shows distinct patterns

for DASH.JS and Shaka Player as depicted in Figure 4. Here, the

�gure shows box plots of the total stalling duration during the

playback of the 120 second video for di�erent players, adaptation

algorithms, target bu�er sizes and network bandwidths. Note that

the AStream simulator fails to handle low available bandwidths

Table 3: Overall comparison of adaptation, video quality,

and stalling metrics.

DASH.JS

(standard)

DASH.JS

(BOLA)

Shaka

(standard)

AStream

(BOLA)

µ σ µ σ µ σ µ σ

Init. Rep. [Mbps] 0.8 0.0 0.8 0.0 0.3 0.0 0.3 0.0

Init Delay [sec] 1.6 2.4 1.6 2.3 0.7 0.7 0.1 0.0

Adaptations [#] 8.6 8.5 8.6 8.5 4.8 2.8 18.2 13.7

Amplitude [level] 1.3 1.0 1.3 1.0 1.7 1.9 1.7 2.4

Stalling sum [sec]8.8 14.9 8.9 15.0 8.3 13.8 18.0 50.3

Stalling avg. [sec] 1.2 1.8 1.2 1.8 1.1 1.8 4.1 11.3

Stalling [#] 4.1 3.8 4.1 3.8 3.7 3.5 3.5 7.9
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Figure 4: Impact of the bu�er size and the avail. bandwidth

on the total stalling duration. Segments are 10s long. Players’

default bu�er size indicated as d.

and, in high available bandwidth scenarios, appears to result in

stalling durations that are not a�ected by the player bu�er size. For

an explanation of this behavior we refer to Sect. 4.7.

The JavaScript players (DASH.JS and Shaka Player) show a dis-

tinct and consistent pattern where the total stalling duration is

predominantly in�uenced by the con�gured target bu�er size. The

evaluation shows that larger bu�ers signi�cantly reduce the stalling

duration. In general, Shaka Player outperforms the other alterna-

tives with nearly no stalling events for large bu�ers (see Sect. 3.3

for a discussion of the default bu�er sizes). Surprisingly, we note

that the adaptation algorithm has a minor impact on the overall

stalling duration as compared to the target bu�er size.

Note that if the target bu�er size is small the player often with-

holds requests due to a full bu�er. DASH players are known for

an ON-OFF behavior while downloading video segments which

arises due to adaptation algorithms. This behavior is reinforced

by a consistently �lled bu�er due to a small bu�er size relative

to the segment duration length. Thus, the player is blocked from

requesting new segments which is evident in Figure 6, where the

player downloading state exceeds 100 seconds for a large target

bu�er size paired with 2 second segments. In contrast the player

has a signi�cantly lower mean downloading time, i.e., 75 seconds

for a low target bu�er size paired with 15 second long segments.

Since higher quality segments possess larger �le sizes we deduce

that the time used for fetching segments in the second constellation

has a high probability of exceeding the duration of the video content

that is currently bu�ered. Thus, this constellation of small target

bu�er sizes in combination with relatively long segment lengths

can lead to more stalling events as will be discussed in Sect. 4.5.

4.3 Adaptations

DASH Players employ quality adaptation algorithms to provide an

overall better QoE, i.e., by improving metrics such as the average

quality bitrate and by avoiding stalling. As described in Sect. 2.1
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for combinations of players and adaptation algorithms.

adaptation algorithms take speci�c information as proxy for net-

work and player states and translate this information into decisions

on the streaming bitrate, in�uenced by models implemented in

the player as well as the environment. Various QoE models, as for

example discussed in [20], conclude that the number and the mag-

nitude of adaptation events within a stream is detrimental for QoE.

Further, stepwise adaptation is favorable compared to large adap-

tation steps according to [28]. Hence, the streaming performance

directly depends on the design of the quality adaptation algorithm

within the player. Figure 7 shows the distribution of the adaptation

amplitudes for di�erent players and adaptation algorithm for all

given environment parameters. Note that AStream, implementing

BOLA, oscillates with much higher amplitudes than DASH.JS and

Shaka Player. On another note it is surprising that the impact of

di�erent adaptation algorithms, e.g., within DASH.JS, is relatively

moderate. From Table 3, we �nd that Shaka Player produces fewer

adaptation events at the expense of higher adaptation amplitudes

which indicates a less gradual adaptation.

4.4 Playback Bitrate

In Sect. 4.1 to 4.3 we considered stalling performance metrics and

adaptation techniques that mitigate the adverse e�ects of stalling by

aligning the requested video qualities with the network and player

conditions. These adaptations directly impact the (mean) playback

bitrate, i.e., an important factor for QoE. Note that the achievable

mean playback bitrate depends directly on the time-average avail-

able network bandwidth and the available video representations.

Figure 5 provides a comparison of the considered players show-

ing the average playback bitrate vs. �xed network bandwidths. In

the di�erent plots we vary the network conditions and the seg-

ment lengths. The black stairs show the representations available

in the data set. We use the crossing points of the mean playback

bitrates and the representation stairs to express e�ciency (given as

the horizontal deviation h in Figure 5). This indicates the addition-

ally required available bandwidth to sustain a given representation

(given stable / volatile networking conditions as depicted). The

vertical deviations v of the quality bitrates and the black stairs in

Figure 5 denote the following: If the black stairs are higher than the

quality bitrate lines, the deviation denotes a loss in QoE in terms

of mean quality bitrate given a certain bandwidth condition. If the

black stairs are lower than the quality bitrate lines, then the avail-

able bandwidth is su�cient to sustain this representation and the

excess available bandwidth is used to occasionally fetch a higher

than sustainable quality bitrate.

Figure 5 shows that the investigated real-world DASH players

achieve comparable performance with respect to the mean playback

bitrates given various adaptation algorithms. While variance in

the available bandwidth slightly decreases the playback bitrate,

increased segment lengths increase the playback bitrate. The DASH

simulator AStream shows again inconsistent behavior.

4.5 Performance Metric Trade-o�s

Sect. 4.1 to 4.4 presented an analysis of isolated metrics, including

both target metrics and e�ciency as an aggregate metric. A further

aggregate metric, denoted as stalling QoE from [6], describes a

mapping of the stalling duration and the stalling events to a MOS

scale of QoE. In general, however, due to the intrinsic di�culty of

constructing a single comprehensive quality metric, the choice of

the optimal player and its con�guration remains amultidimensional

optimization problem.
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Playback Bitrate vs. Stalling QoE:We analyze the trade-o�s be-

tween two previously discussed aspects, (i) the playback bitrate and

(ii) stalling, captured as stalling QoE. Here, we omit AStream due to

the inconsistent stalling results shown in Sect. 4.2. Figure 8 shows a

scatter plot of stalling QoE (the higher the better) and the achieved

mean playback bitrate, where each entry in the graph denotes the

performance of a con�guration averaged over all considered net-

work conditions. Interestingly, the depicted Pareto-frontier shows

that no single player (con�guration) dominates both metrics. In

particular, all players and AAs are represented at least once on

the Pareto-frontier. Thus, for every player and AA there exists a

sweet spot and a weighted aggregate taking stalling QoE and mean

playback bitrate that shows that this con�guration is superior.

The Pareto-frontier further shows that large bu�er sizes domi-

nate the performance for all player con�gurations for both consid-

ered metrics. We also note that moving to higher playback bitrates

on the Pareto-frontier corresponds to increasing the segment length

of the corresponding con�gurations. It is also evident that combina-

tions of small bu�er sizes and long segments perform bad. Finally,

Figure 8 shows the minor impact of di�erent adaptation algorithms

within the DASH.JS player, i.e., the green and red marks collate

without a consistently superior adaptation algorithm.

Adaptations vs. Stalling QoE: As quality adaptations are used

to avoid stalling, we analyze the trade-o� between the number

of adaptations and the stalling QoE. Figure 9 shows the average

stalling QoE (the higher the better) and the average number of

quality bitrate adaptations for di�erent player con�gurations in

various networking environments. Here too, we note that all players

and adaptation algorithms are represented on the Pareto-frontier

such that no single player con�guration dominates. The adaptation

algorithm choice within DASH.JS shows again nearly no impact.

The �gure shows that by allowing a few adaptations a substantial

increase in stalling QoE is achieved. We note that the behavior of

both players di�ers with regard to segment length. For DASH.JS,

the adaptation count signi�cantly increases for smaller segment

lengths. In contrast, Shaka Player does not show such a dependency.

4.6 The Cost of Increased Target Bu�er Sizes

So far, the analyzed metrics favored increased bu�er sizes. However,

depending on the user context large target bu�er sizes may lead
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Figure 9: Trade-o� between adaptation count and stalling

QoE for di�erent con�gurations, aggregated for all analyzed

environment conditions.

to resources wasting, for example, due to video session abandon-

ment or partial skipping [17]. This triggers bu�er content �ushing

which wastes resources such as download volume credits in cellular

networks or wireless transmission energy on mobile devices.

To incorporate the impact of target bu�er sizing, we derive an

aggregated streaming performance metricA that includes the total

stalling duration T Σ in addition to the cost of the bu�er size. We

derive the cost of the bu�er size as the expected amount of bu�ered

data to be �ushed upon session abandonment, i.e., B̄A =
∑
t B(t)p(t),

where B(t) is the bu�er �lling at time t and p(t) is the bu�er aban-

donment probability at t . Note that PA =
∑
t p(t) ≤ 1 as videos

may be well watched until the end. Empirical session abandonment

distributions were measured for example in [17]. We calculate A

as follows: A = αB̄A +T
Σ, with normalization factor α . Note that

increasing the target bu�er size reduces the overall stalling dura-

tion T Σ but bears a higher risk of resource waste given session

abandonment and vice versa.

Figure 10 shows a classi�cation of optimal player con�gurations

with regard to A depending on the environment, i.e., the available

bandwidth, and the user abandonment context, i.e., PA. For illustra-

tion, we use a uniform session abandonment distribution leading

to B̄A = B̄, i.e., the average bu�er �lling and a value α = 500. Note

that α is a relative weighting parameter of B̄A vs T Σ. In Figure 10

we observe that Shaka Player with large bu�er sizes is superior

for low abandonment probabilities PA while DASH.JS dominates

higher PA. The available bandwidth in�uences the choice of the

adaptation algorithm. From Figure 10 we deduce that a content /

video provider can leverage these environment factors to choose

the sweet spot con�guration given session abandonment statistics.

4.7 Pitfalls in Simulations

Given the measured inconsistencies of the results observed for

AStream, e.g., concerning the initial delay and stallings, we rea-

son that the absence of an actual playback bu�er12 in simulative

playback leads to potentially unrealistic assumptions in AStream’s

performance. For example, an immediate start of the video play-

back once any stream component is fetched in AStream can by

explained by the way the init segment is processed. Depending

12such as the MSE API providing the video playback bu�er in web browsers
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on the data set, the mp4 init segment contains the moov13 ele-

ment that describes stream meta-data, but does not contain video

frames. It should not lead to playable content becoming available to

the player. However, in our tests, fetching these segments did lead

to an increase in AStreams bu�er level.14 Given that these init

segments are respectively small in �le size compared to segments

containing frames, as represented by m4s segments, the bu�er is

falsely assumed to be �lled very fast when initiating the stream.

This obscures segment downloads and impacts initial adaptation

decisions as the (false) high bu�er �lling leads to undesired up-

adaptations, as well as stalling at the playback begin. In contrast,

both JS players exhibit the expected behavior and begin playout

after the �rst m4s segment is downloaded.

5 RELATEDWORK

In the following, we focus on studies presenting performance as-

sessments of DASH players using automated player comparisons

under various system conditions. Thang et al. [24] analyze TBA

and BBA based DASH streaming sessions, considering target bu�er

sizes and AA as con�guration parameters. The experiments are

conducted with two bandwidth traces (one replayed trace and one

sudden drop trace). Our work di�ers from this approach by pro-

viding a system that allows for an automated player comparison

under a large variety of system parameters, including wide range

of systematically generated or captured bandwidth traces.

Maki et al. [15] relate DASH playback sessions’ QoS factors to

a set of con�guration parameters, including segment lengths and

target bu�er sizes, while adapting the network environment using

variations in bandwidth and packet loss. Sharing this basic concept

and parameter space, our work adds the fundamental aspect of

investigating di�erent DASH players and adaptation algorithms,

while relying on network emulations for performance analysis.

The work in [18] evaluates the performance of di�erent DASH

AA with a focus on investigating diverse Dynamic Adaptive Steam-

ing (DAS) approaches in the contexts of TCP/IP and Information

Centric Networking (ICN). The authors consider three classes of

adaptation algorithms: BBA, TBA and a combined adaptation con-

cept, each represented by the recent adaptation algorithm, i.e.,

13http://l.web.umkc.edu/lizhu/teaching/2016sp.video-
communication/ref/mp4.pdf

14https://github.com/pari685/AStream/blob/master/dist/client/dash_bu�er.py#L129

BOLA, PANDA, and AdapTech, respectively. For their evaluation,

each algorithm has been reimplemented, if necessary, within the

libdash framework. In our present work, we take into account the

respective DASH players and limit our investigation to BBA and

TBA given the concrete implementations provided in those players.

Hence, we are able to investigate algorithms given diverse in�uence

factors of browsers and DASH player implementations, seeking to

closely imitate the actual usage scenarios. Further our work inves-

tigates a broader spectrum of network scenarios and con�guration

parameters by conducting experiments on the Cartesian product

spanning this parameter space. This results in a large experiment

design space and allows the identi�cation of con�gurations that

provide the best outcome for given scenarios.

Independently of this work, a recent study also proposed the

concept of comparing a wide range of di�erent DASH players [27].

The presented work proposes to analyze and compare Shaka Player,

DASH.JS as well as a wide range of other players focusing on

QoE measures. In contrast, we provide both a parallelized large-

scale evaluation framework and a systematic, detailed analysis and

comparison of these players. Along these lines, in a previous work

[23], we conducted a limited study using Shaka Player in relation

to varying TCP congestion controls algorithms.

6 CONCLUSIONS AND FUTUREWORK

In this work, we provided a systematic study of the impact of the

DASH player choice and con�guration on the streaming perfor-

mance. We established an execution environment for reproducible

monitoring and evaluation of the performance of real-world and

academic DASH players. Our evaluation of player performance

a�nities, that we denote as sweet spots, shows that suitably con-

�gured players can be deemed superior with respect to given QoE

performance metrics. A highlight of our contributions is the obser-

vation that the choice of the target bu�er size together with the

player implementation dominates the choice of the adaptation algo-

rithms. This stands in contrast to a majority of research e�orts that

are being directed towards investigating improvements in adapta-

tion algorithms. Further, our developed methodology allows, e.g.,

an informed player selection and con�guration at the beginning

of streaming sessions to maximize QoE. Extensions to this work

include the evaluation of commercial players, such as Bitmovin’s

HTML5 Player and proprietary adaptation algorithms as well as a

real world veri�cation of the identi�ed superior con�gurations.

REPRODUCIBILITY

To enable other researchers to reproduce and extend our research,

we release our evaluation framework as shown in Figure 2 at h�ps:

//maci-research.net/DASH. The framework consists of:

(1) A web interface for composing and evaluating simulations

and a set of scripts to set up simulator instances.

(2) The actual player execution environments and monitoring

components for all analyzed players.

(3) The con�gurations as presented in this paper.
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