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ABSTRACT
Cross-modal retrieval has been attracting increasing atten-
tion because of the explosion of multi-modal data, e.g., texts
and images. Most supervised cross-modal retrieval methods
learn discriminant common subspaces minimizing the het-
erogeneity of different modalities by exploiting the label in-
formation. However, these methods neglect the fact that, in
practice, the given labels of training data might be incom-
plete (i.e., some of their labels are missing). The low-quality
labels result in less effective subspace and consequent unsat-
isfactory retrieval performance. To tackle this, we propose a
novel model that simultaneously performs label completion
and cross-modal retrieval. Specifically, we assume the to-
be-learned common subspace can be jointly derived through
two aspects: 1) linear projection from modality-specific fea-
tures and 2) enriching mapping from the incomplete labels.
We thus formulate the subspace learning problem as a co-
regularized learning framework based on multi-modal fea-
tures and incomplete labels. Extensive experiments on two
large-scale multi-modal datasets demonstrate the superior-
ity of our model for both label completion and cross-modal
retrieval over the state-of-the-arts.
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1. INTRODUCTION
The past decade has witnessed the explosion of online im-

agery contents, especially on social photo-sharing websites
such as Facebook, Flickr and Instagram. Usually, large-scale
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Internet photo collections consist of multi-modal data of im-
ages and texts. As the examples shown in Fig. 1, to describe
the content of “Image”, two types of textual data are usu-
ally associated: 1)“Text”that refers to descriptions from the
surrounding web pages of the image or user-provided coarse
tags; and 2) “Label” that represents the high-level semantic
labels manually annotated by human annotators. Earlier
research works, such as image search [30, 31, 21, 22] or doc-
ument retrieval [5], try to explore the distinct characteristics
in individual modality of“Image”or“Text”. Recently, jointly
modeling the statistics of images and associated textual data
has continuously attracted much attention. Typical appli-
cations, such as automatic image annotation/caption [1, 17,
29, 27] and keyword-based image search [8, 23, 16], aim to
build direct connection from “Image” to “Label” or the op-
posite. Due to the distinct statistical properties of “Image”
and “Text”, there have been increasing interests and efforts
to model bidirectional connections across these two modal-
ities. In this paper, we consider cross-modal retrieval prob-
lem on large-scale Image-Text datasets, where queries from
one modality (e.g., “Image”) are matched to database en-
tries from another (e.g., “Text”). Since “Image” and “Text”
reside in different feature spaces, the core issue of cross-
modal retrieval is how to eliminate the diversity between
the heterogeneous features.

To this end, many approaches have been proposed to learn
a common latent subspace for cross-modal retrieval, where
the projected features of different modalities are homoge-
neous and can be directly matched. In general, these meth-
ods can be classified into two categories: unsupervised and
supervised. The unsupervised methods, including the classi-
cal ones such as Canonical Correlation Analysis (CCA) [12],
Partial Least Square (PLS) [20] and their extensions [7, 9,
13, 19, 25], aim to directly build the correspondence and
preserve the correlation of Image-Text pairs in the learned
subspace. However, these approaches ignore the valuable
label information (“Label”) associated with the Image-Text
pairs, resulting in less discriminative subspace.

On the other hand, the supervised methods [14, 24, 28]
learn discriminant subspace from different modalities by fur-
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dog, ball

Another action shot.
A dog on two legs with its mouth 
opened toward a blue ball in the air.
A white dog catching a blue ball …

clouds, sky

sky, blue, clouds, red, green, 
flower, awesome, blossoms

Image

Text

Label

Figure 1: Two exemplars in Image-Text datasets:
NUS-WIDE [3] (left) and Flickr30K [32] (right).

ther exploiting the cues of “Label”. However, most of these
methods assume that each Image-Text pair contains a single
label, which is not usually satisfied in practical Image-Text
data with multi-label assumption as shown in Fig. 1. To
overcome the shortcoming of these single-label approaches,
several recent studies [4, 28] restrict the subspace to be de-
cided by the label information and learn it under a linear
classification framework with multi-label assumption. The
latest work of [18] further extends the classic CCA to the
multi-label situation under the supervision of multi-label in-
formation, achieving improved performance for cross-modal
retrieval.

However, in practice the given labels are usually incom-
plete and insufficient as semantic description for correspond-
ing images due to negligence or mistakes of the human an-
notators. For example, in Fig. 1 other proper labels such as
〈flowers, tree, plant〉, 〈action, playing, room〉, are missing
for the two images respectively. Directly using these in-
complete labels for subspace learning may not guarantee to
achieve effective subspace for cross-modal retrieval. There-
fore, it is necessary to first obtain complete labels via label
completion before learning the discriminative subspace. In-
deed, label completion is an attractive research topic in au-
tomatic image annotation problem. However, the existing
studies [2, 15, 26] of label completion mainly focus on identi-
fying the correct associations between the unimodal “Image”
and “Label”, not really suitable for multi-modal data con-
taining both “Image” and “Text”.

To tackle these challenges, we propose a novel method (as
shown in Fig. 2) that performs label completion and cross-
modal retrieval simultaneously. For cross-modal retrieval,
linear regression is used to project data from different modal-
ities into a common subspace; at the same time, for label
completion, the common subspace is assumed to be defined
exactly by the ideally complete label information, into which
the incomplete labels can be transformed via enriching map-
ping. The two processes are integrated into a joint learning
framework ensuring that the learned common subspace not
only captures the intra- and inter-modality discrimination
but also accounts for the ideally complete label information.

The main contributions of our work can be summarized
as follows: 1) We propose a novel method to simultaneously
tackle label completion and cross-modal retrieval problems.
2) Our method utilizes multi-modal data of image and text
for label completion, which is an novel extension of tradi-
tional label completion approaches based on unimodal im-
age data. 3) An iterative algorithm is presented to efficiently
solve the complex minimization problem and can be ap-

𝑾𝒗𝒊
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sky, blue, clouds, red, green, 
flower, awesome, blossoms

Image 𝒗𝒊

Text 𝒕𝑖

𝑩𝒚𝒊

Incomplete Labels

…
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Common Subspace

… ……
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…

Figure 2: The joint learning framework of the pro-
posed method.

plied to large-scale training data. 4) Experimental results
on two large-scale multi-modal datasets have shown that our
method obtains promising results on both label completion
and cross-modal retrieval task.

2. THE PROPOSED METHOD

2.1 Problem Formulation
Assume that the multi-modal training data consists of n

instances with image-text pairs, i.e. X = {xi}ni=1, xi =
(vi, ti), where vi ∈ Rm is the i-th column of image feature
matrix V ∈ Rm×n, and ti ∈ Rd is the i-th column of the
text feature matrix T ∈ Rd×n. Here m and d are the di-
mensionality of image and text feature space, respectively.
In addition, the incomplete labels Y = [y1, ...,yn] ∈ Rc×n of
training instances X are also given, where c is the total num-
ber of labels and yi = [yi,1, ..., yi,c] ∈ Rc is the label vector
for the i-th instance xi. Note that, if xi has the j-th label,
then yi,j = 1, otherwise yi,j = 0. And xi may have a single
label or multiple labels. Unlike the previous subspace learn-
ing approaches [4, 18, 28] that define the common subspace
by the given incomplete label information, here we consider
to learn a common subspace that is defined by the ideally
complete label information. The features of different modal-
ities and the given incomplete labels can be simultaneously
mapped to the subspace.

Specifically, our goal is to obtain a real-valued matrix
Z ∈ Rc×n that satisfies the following three conditions simul-
taneously: 1) the i-th column vector zi in Z is the common
subspace feature representation of instance xi, and it elimi-
nates the heterogeneity between different features of vi and
ti; 2) zi is sufficiently consistent with the provided incom-
plete labels yi, i.e. when performing label completion based
on zi, yi should be a subset of the ideally complete labels; 3)
zi preserves the discriminative properties of the ideally label
information of different classes. We incorporate the three
criteria simultaneously and integrate the label completion
and cross-modal retrieval into a joint learning framework.

In particular, our learning framework (as shown in Fig.
2) contains two processes: 1) training modality-specific pro-
jections Wvi → zi and Uti → zi to obtain the common
subspace representation zi from vi and ti of image and text
modalities, respectively; 2) training an enriching mapping
Byi → zi to complete the provided incomplete labels yi by
recalling the missing labels that are likely to co-occur with
those existing in yi. Therefore, for all the n instances, the
loss function of the two sub-tasks can be written as

1

n

n∑
i=1

(‖zi −Wvi‖2 + ‖zi −Uti‖2 + ‖zi −Byi‖2). (1)
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Here W ∈ Rc×d and U ∈ Rc×m are the projection matrices
of image and text features, respectively, and B ∈ Rc×c is
the enriching mapping matrix of given incomplete labels.
To simplify Eq. 1, for each xi, we force the output of the
two sub-tasks to agree on zi, resulting in a cross-modal co-
regularized learning problem by minimizing:

min
W,V,B

1

n

n∑
i=1

(‖Byi −Wvi‖2 + ‖Byi −Uti‖2). (2)

In fact, the problem of Eq. 2 has a trivial solution at
B = W = U = 0. Therefore, it is necessary to add regular-
ization terms for the model parameters W, U, and B. In
particular, for W and U, we can simply add `2 regularizer
for them due to their linear regression forms; for B, because
it is originally introduced to ensure the consistence between
the given incomplete labels and the ideally complete labels
during enriching mapping, it may be under constrained due
to the absence of the ideally complete labels.

Inspired by [2], we constrain B by expanding the condition
of enriching mapping, i.e. for the given incomplete labels yi

of instance xi, B not only enriches yi to its ideally complete
labels, but also enriches a “corrupted” version of yi (denoted
as ŷi) to yi. The idea is that if the consistence between yi

and its “corrupted” labels ŷi matches the consistence be-
tween yi and its ideally complete labels, then applying B to
yi would recover the ideally complete labels.

Suppose that the “corrupted” labels ŷi are created by ran-
domly removing each label in yi with probability p > 0, the
expected error of the enriching mapping between ŷi and yi

can be expressed as E[‖yi−Bŷi‖2]p(ŷi|yi) under the corrupt-
ing distribution of p(ŷi|yi). Then the total expected error
of all n instances can be computed as:

r(B) =
1

n

n∑
i=1

E[‖yi −Bŷi‖2]p(ŷi|yi). (3)

By defining P =
∑n

i=1 yiE[ŷi]
> and Q =

∑n
i=1 E[yiy

>
i ],

Eq. 3 can be expanded into

r(B) =
1

n
trace(BQB> − 2PB> + YY>), (4)

where P = (1−p)YY>, Q = (1−p)2YY>+p(1−p)δ(YY>),
and δ(·) denotes the operation that sets all the entries ex-
cept the diagonal of a matrix to zero. Then Eq. 4 can be
considered as the regularization term for B.

Finally, by integrating Eq. 2 and the regularization terms
for W, U, and B discussed above, the proposed method can
be formulated by minimizing:

min
W,U,B

1

n

n∑
i=1

(‖Byi −Wvi‖2 + ‖Byi −Uti‖2)+ (5)

λ‖W‖22 + µ‖U‖22 + ξr(B),

where λ, µ and ξ are the penalty coefficients of the regular-
ization terms of each parameter.

2.2 Optimization
The minimization problem in Eq. 5 can be efficiently

solved using block-coordinate descent algorithm by alter-
natively optimizing each variable by fixing the others. The
detailed derivation for optimizing Eq. 5 is provided in sup-
plementary. Here we depict the general optimization proce-
dure of the parameters in each iteration as follows.

When fixing U and B, optimizing W becomes a standard
ridge regression problem that can be solved in closed-form:

W = BYV>(VV> + nλI)−1. (6)

Similarly, with fixed W and B, U can also be optimized
by solving the ridge regression problem, as:

U = BYT>(TT> + nµI)−1. (7)

When fixing W and U, B can be solved in closed-form as
ordinary least squares:

B = (WVY> + UTY> + γP)[YY> + γQ]−1, (8)

where P and Q can be computed analytically with a pre-
defined p. In practice, we can vary p in range (0, 1) and
choose appropriate value of p according to the resulting per-
formance of label completion and cross-modal retrieval.

In summary, the objective function in Eq. 5 can be solved
by updating variables W, U, and B iteratively until either
convergence or a predefined number of iterations is reached.
In each iteration, the time complexity is about O(kc2n),
where k = max{m, d, c} and usually we have k � n. Thus
the training time complexity is linear to the size of train-
ing set, hence it is very efficient and scalable for large-scale
training data.

2.3 Test Phase for Out-of-Instance
During the test phase, for a new test instance x′ that con-

tains features of one modality, i.e. x′ = (v′, ) or x′ = (t′, ),
its subspace representation z′ is computed as z′ = Wv′ or
z′ = Ut′, respectively. For the the label completion task,
we select the top-K labels that have top-ranked values in z′i
as the predicted label set of x′, For the cross-modal retrieval
task, we take z′ as the query instance of one modality (e.g.,
image modality) to retrieve in the database of the other
modality (text modality).

3. EXPERIMENTS

3.1 Experimental Setting
We apply the proposed method to both label completion

and cross-modal retrieval tasks on two large-scale multi-
modal datasets: NUS-WIDE [3] and Flickr30K [32]. The
NUS-WIDE originally containing 269,648 instances, with
each being an image with its associated textual tags. Each
instance is manually annotated with at least one of 81 labels.
For each instance, its image is represented as a 500-D bag-
of-words (BOW) SIFT feature vector and its text as a bi-
nary tagging vector w.r.t. the top 1,000 most frequent tags.
In our experiment, we take 267,613 instances as database
and the remaining 2,035 instances as query. The Flickr30K
consists of 31,783 instances, with each being an image with
associated five textual sentences. In [10], the most frequent
350 keywords from the sentences in Flickr30K are selected
as the labels, hence each instance is naturally assigned at
least one of 350 labels. For each instance, its image is rep-
resented as a 4,096-D convolutional neural networks (CNN)
feature extracted by Decaf model [6], and its text as a tf-
idf-weighted tagging vector w.r.t the top 3,000 most frequent
words that are crawled in [10]. In our experiment, we take
28,917 instances as database and the remaining 2,866 in-
stances as query. It is worth mention that, for each instance
in the two datasets, the average number of labels are 2.4 and
3.1, respectively, which is indeed incomplete.
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To reduce the computational cost during training, we ran-
domly select 10,000 instances from the database of each
dataset and then apply the learned model to the other in-
stances in database. Finally, the label completion task is
performed on the query instances, and the cross-modal re-
trieval task is conducted between the query and database in-
stances. In all experiments, the parameters λ, µ and ξ of the
proposed model are empirically set to 10−5, 10−5 and 10−2,
respectively. The experiments are conducted on a desktop
which has 4-core 3.3GHz CPUs with 16GB RAM. It is worth
noting that training the proposed method is highly efficient
on the two large-scale datasets. For example, the training
time of the proposed method on Flickr30K is about 10 min-
utes when using the high dimensional features of image and
text modalities.

3.2 Results of Label Completion Task
We first compare the proposed method with several re-

lated methods on the label completion task. These methods
are divided into three groups: 1) traditional image anno-
tation methods using unimodal image for label prediction:
JEC [17] and TagProp [11]; 2) label completion methods
using unimodal image: Fasttag [2] and LSR [15]; 3) the
cross-modal retrieval methods LCFS [24] and ml-CCA [18],
which are capable to use multimodal data of image and text
for label prediction. We implement the fast version of ml-
CCA according to the instruction its original paper. We use
the standard measures that are used in both traditional im-
age annotation and label completion tasks, including average
precision per label (P ), average recall per label (R) and the
number of labels that are recalled (N+). For all the metrics,
larger numerical value indicates better performance.

Table 1: Comparison of the proposed method with
its counterparts on label completion task.

Dataset NUS-WIDE Flickr30K
Method P R N+ P R N+

JEC 0.031 0.102 54 0.263 0.312 249
TagProp 0.053 0.127 47 0.312 0.368 267
Fasttag 0.068 0.134 45 0.321 0.387 299

LSR 0.083 0.152 63 0.377 0.392 315
LCFS 0.398 0.478 69 0.417 0.491 319

ml-CCA 0.464 0.476 72 0.413 0.511 322
Proposed 0.491 0.512 73 0.430 0.533 336

Table 1 shows the overall results of different approaches
on the two datasets. From Table 1, we have the follow-
ing observations. Firstly, the multi-modal approaches (e.g.,
LCFS, ml-CCA) generally outperform the unimodal ones
(e.g., JEC, TagProp, Fasttag, and LSR), since the additional
text modality is helpful for label prediction. In addition, the
visual feature of the NUS-WIDE dataset is less effective for
the approaches that using unimodal images for label predic-
tion. Secondly, these two datasets really suffer from miss-
ing labels, and the label completion approaches Fasttag and
LSR improve the label prediction results of traditional image
annotation methods JEC and TagProp. Moreover, the pro-
posed method also outperforms the multi-modal approaches
LCFS and ml-CCA that neglect missing labels. Thirdly,
the proposed method achieves the best performance for la-
bel prediction on both datasets, showing the superiority of
the proposed cross-modal co-regularized learning framework

on capturing the hidden label correlation from multi-modal
features of image and text.

3.3 Results of Cross-modal Retrieval Task
In this subsection, we evaluate the proposed method on

cross-modal retrieval task. Specifically, we consider two
standard scenarios (sub-tasks): Img2Txt and Txt2Img. We
compare the proposed method with several subspace learn-
ing methods, including unsupervised ones: CCA [19], 3-view
CCA [9] and supervised ones that can handle multi-label as-
sumption: LCFS [24], CDL [28] ml-CCA [18]. We adopt the
same evaluation metric of mean average precision (MAP)
that is widely used in these methods for the two sub-tasks.

Table 2: Comparison of the proposed method with
its counterparts on cross-modal retrieval task.

Dataset NUS-WIDE Flickr30K
Method Img2Txt Txt2Img Img2Txt Img2Txt

CCA 0.265 0.278 0.228 0.245
3-view CCA 0.294 0.312 0.262 0.288

LCFS 0.349 0.363 0.271 0.296
CDL 0.358 0.366 0.293 0.301

ml-CCA 0.362 0.383 0.307 0.311
Proposed 0.374 0.399 0.321 0.328

Table 2 shows the MAP scores of all the methods on the
two sub-tasks. We can observe that the results of unsuper-
vised methods CCA and 3-view CCA are worse than the pro-
posed method and other supervised ones LCFS, CDL, and
ml-CCA. The main reason is that the unsupervised methods
only use pairwise information of image and text modalities,
ignoring the valuable label information. Furthermore, the
proposed method outperforms the other supervised meth-
ods LCFS, CDL, and ml-CCA, indicating that it benefits
from the label completion to learn more discriminant sub-
space for cross-modal matching.

4. CONCLUSION
In this paper, we studied the problem of cross-modal re-

trieval on multi-modal data with incomplete labels. We pro-
posed a novel method that can simultaneously perform label
completion and cross-modal retrieval. To achieve this, we in-
troduced a common subspace as the ideally complete labels,
which was jointly learned from two aspects: 1) linear pro-
jection from the modality-specific features; and 2) enriching
mapping from the incomplete labels. This scheme ensures
that the learned subspace was discriminant to account for
the complete label information. We developed an efficient it-
erative algorithm for solving the optimization problem. Ex-
periments on two large-scale datasets validated the advan-
tages of the proposed method on both label completion and
cross-modal retrieval tasks.
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