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ABSTRACT

Because of the popularity of touch-screen devices, it has be-
come a highly desirable feature to retrieve images from a
huge repository by matching with a hand-drawn sketch. Al-
though searching images via keywords or an example image
has been successfully launched in some commercial search
engines of billions of images, it is still very challenging for
both academia and industry to develop a sketch-based image
retrieval system on a billion-level database. In this work, we
systematically study this problem and try to build a sys-
tem to support query-by-sketch for two billion images. The
raw edge pixel and Chamfer matching are selected as the
basic representation and matching in this system, owning
to the superior performance compared with other methods
in extensive experiments. To get a more compact feature
and a faster matching, a vector-like Chamfer feature pair is
introduced, based on which the complex matching is refor-
mulated as the crossover dot-product of feature pairs. Based
on this new formulation, a compact shape code is developed
to represent each image/sketch by projecting the Chamfer
features to a linear subspace followed by a non-linear source
coding. Finally, the multi-probe Kmedoids-LSH is leveraged
to index database images, and the compact shape codes are
further used for fast reranking. Extensive experiments show
the effectiveness of the proposed features and algorithms in
building such a sketch-based image search system.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms

Algorithm, Design, Experimentation
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Figure 1: The outline of the sketch-based image re-
trieval system. Upper part: off-line engine building
procedure, including image preprocessing, feature
pair extraction, dimension reduction, shape codes
generation and index construction. Lower part: the
online retrieval.

Keywords

Sketch-based Image Retrieval, Billion Scale, Chamfer Match-
ing, Product Quantization, Indexing

1. INTRODUCTION
Image content analysis has long been a fundamental re-

search problem in the computer vision and multimedia com-
munities. Although much progress has been made in an-
alyzing texture-rich natural images, the understanding of
textureless shape, which plays an essential role in human vi-
sion, is still a challenging problem. Most previous efforts
in shape analysis were constrained within small databases,
which seriously limit potential discoveries and practical ap-
plications. Stepping into the era of big data, the explosive
growth of web images motivates us to restudy this problem
in a very large scale. We believe a web-scale image data set
can provide a great potential to solving many traditionally
unsolvable problems. To efficiently utilize billions of images,
the first step is to efficiently access the data set. Therefore,
in this work, we target at the retrieval problem: to retrieve
images similar to a hand-drawn sketch (in terms of shape)
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from 1.5 billion images in real time. Based on the success of
this capability, other shape/sketch understanding problem-
s, e.g. sketch recognition, shape modeling, shape detection,
sketch suggestion, will become possible.

- The Bless of Big Data
We are embracing the era of big data. The exploding

amount of web data have revolutionized our daily lives and
reshaped the scientific research, including image retrieval
and understanding in both academia and industry. Be-
fore 2000, most research in multimedia was conducted in
thousand-level databases, in which diverse features and so-
phisticated models were explored. It then moved to its
million-era owning to the growth of web images and the
development of content-based image retrieval (CBIR). Some
challenging problems such as image annotation were studied
in a data-driven way[17], and superior performance shows
the power of big data. Torralba et al [15] collected 80 mil-
lion tiny images and showed the great value of data-driven
methods in several computer vision tasks. Since 2008, CBIR
has moved into a billion-era, and come into commercial use,
e.g. query by image examples in TinEye and Google.

- Large-scale Sketch-based Image Retrieval
Finding images by drawing a sketch is a highly desired fea-

ture, especially with the popularity of touch-screen devices.
Different from keyword-based and example-based methods,
sketch-based image retrieval (SBIR) targets at finding im-
ages similar to a user’s drawing in terms of major shapes.
This new retrieval scheme provides a flexible and natural
way for users to express their search intentions, which can
be combined with other schemes in a complementary way.
However, search by sketch is a very challenging task, since
the flexibility of the drawing makes the query space very
huge. In a small database, it is almost impossible to find an
acceptable image if we do not constrain a user’s drawing.
As a crucial part of SBIR, shape matching was intensively

studied in 1990s in small databases of hundreds to thousands
of images, and used in small-scale vertical applications, such
as hand-gesture recognition, mould, clip-art and other sim-
ple pattern retrieval. To enable an arbitrary drawing as a
query, in 2010, we proposed an edgel-index structure, based
on which a real-time sketch-based search engine MindFind-

er [4, 3] was built on two million natural images. The result
was promising, since the system can find similar images for
a large portion of simple hand-drawn sketches. However, we
also observed that two million images are still far from suffi-
cient to cover the query space. Thus, encouraged by the use
of query-by-example technology in commercial search en-
gines such as Google and TinEye, in this work we attempt
to advance the state-of-the-art sketch-based image search to
the scale of billion-level.

- Algorithm Design
There are two major challenges to build a sketch-based

image search engine on a billion-level database: 1) robust
shape matching between a hand-drawn sketch and a real
image; and 2) efficient index structure and compact repre-
sentation to support such a large-scale matching. Moreover,
these two aspects are intimately coupled with each other,
making the problem even more challenging.
To bridge the representation gap, most methods first ex-

tract representative contours from real images; some statisti-
cal features, e.g. gradient/edge histogram[6], shape contex-
t[1], GF-HoG[8], sketch-HoG[7], are further used along with

global or bag-of-local-feature representation. Some work de-
signed complex topology models which are however difficult
to scale up. Chamfer Matching[2] is another effective way
to deal with such a global matching. It measures the simi-
larity of two edge maps by minimizing geometric distance of
two edge point sets. To evaluate their effectiveness, we con-
ducted experiments on sketch classification and sketch-based
image retrieval to test these representation and matching
methods. The experiments showed that Oriented Cham-
fer Matching[13] (OCM) achieves very competitive perfor-
mance. Thus, we base our further design on OCM.

Besides shape matching, scalability remains the major is-
sue in a practical system. Most existing sketch-based work
can hardly scale up to billion-level databases. The brute-
force linear-scan used in small databases is impossible to
support such a large-scale task. The edgel-index structure
in MindFinder system would require 5TB memory space and
cost several minutes for a single query if indexing 1.5 billion
images. Other inverted index structure for bag-of-feature
(e.g. SHoG) representation also requires more than 3TB
memory cost using the recommended number of local fea-
tures. All of these methods are impractical and unaccept-
able with only a few common servers. Moreover, Oriented
Chamfer Matching is much more time-consuming than L-2
global feature matching, due to the minimization process1,
which makes the problem more challenging.

To make OCM more efficient, we proposed a compact fea-
ture representation, whose on-line matching is tens of thou-
sands of times faster than OCM (with on-line DT). The
OCM distance is first transformed into the dot-product of t-
wo high-dimensional vectors (edge-map vector and distance
transform (DT) vector), which is a novel way to look at
OCM, as shown in Fig.1. Since DT vector is intrinsical-
ly low-dimensional, we linearly project the two vectors on-
to this low-dimensional subspace without much information
loss in dot-product calculation. Product quantization[9] are
further utilized to reduce the representation. Finally, each
image is represented by 288 bytes, possible to be stored in
memory and used for fast near-accurate OCM computation.

Based on this representation, an efficient index structure
is built. We turn to hashing techniques in large-scale ap-
proximate nearest neighbor search. Since the unstructured
k-means hash[11] outperforms many structured hash meth-
ods, we utilize k-medoids hashing for fast but only coarse
indexing (Fig.1). By leveraging this hashing structure, a
relatively small portion of OCM distances need to be com-
puted for reranking. The reranking stage is very efficient,
since based on the compact representation, we only need
to calculate the dot-product between two short vectors. It
could support 2×106 OCM computations within a second in
one common server. Based on this design, a system was built
using 10 common servers, each of which indexes 100 ∼ 200
million images with approximately 60GB memory cost, sup-
porting real-time response. The outline of this system is
shown in Fig.1. Intensive experiments have shown the effec-
tiveness of the proposed features and methods in building a
billion-scale sketch-based retrieval system.

The rest of the paper is organized as follows: Section 2 in-
troduces the compact feature representation and matching
approach. The index structure is presented in Section 3. Po-

1A distance-transform(DT) map could be constructed,
which actually uses memory storage to reduce time cost,
but is still impractical for billions of images.
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Figure 2: The crossover dot-product reformula-
tion for Chamfer matching. (a) Two-way Cham-
fer matching (CM). (b) Crossover dot-product re-
formulation of CM. Each image is represented by
a Chamfer feature pair: edge-map vector u and
distance-map vector v. The classic two-way Cham-
fer matching distance is equivalent to the crossover
dot-product of the feature pairs, facilitating further
dimension compression (ū and v̄) and compact shape
codes generation.

tential applications and extensive experiments are provided
in Section 4 and 5, followed by the conclusion in Section 6.

2. COMPACT SHAPE CODING AND

MATCHING
In this section, we first introduce the basic feature rep-

resentation and matching approach adopted in this work,
i.e. Oriented Chamfer Matching (OCM)[13] for edge maps.
Then, a new reformulation for OCM is proposed, based on
which a compact representation and matching is introduced.
Finally, we present the multi-layer source coding for OCM
to further compress the representation.

2.1 Feature Representation and Matching

Developing an effective shape feature and its correspond-
ing matching method is a fundamental and preliminary prob-
lem to any shape-related tasks. Intensive research efforts
have been spent on this problem, including local and glob-
al features based on gradient/edge histogram[6], shape con-
text[1], sketch-HoG[7], and corresponding bag-of-visual-word
representations to organize local features. Different features
will correspond to different matching methods, such as his-
togram intersection for bag-of-visual-words, and Chamfer
Matching[2, 3] for raw edge matching.
In this work, to choose an appropriate feature and match-

ing method as a basic representation, we conducted exper-
iments on sketch classification and sketch-based image re-
trieval to evaluate these representation and matching meth-
ods. Experiment results (in Sec.5.1) show that OCM achieves
very competitive performance in these two sketch-related

tasks. Thus we build our retrieval algorithm and system on
OCM, which will be briefly introduced below.

Oriented Chamfer Matching

Chamfer matching[2] is a basic shape matching method
proposed in the early 1990s. Different from the statistical
information in histogram-like features, Chamfer matching
bases its matching process on pixel-level: it measures the
geometric distances of two edge-pixel sets from two images.
Let IA = {xa} and IB = {xb} denote the edge pixel sets
of images A and B, where xa = (xa, ya) is the geometric
coordinates of edge pixels. The one-way Chamfer distance
from IA to IB is defined as:

DCM
A→B =

1

|IA|

∑

xa∈IA

min
xb∈IB

‖ xa − xb ‖2, (1)

and the final two-way Chamfer Distance is given by:

DCM
A,B =

1

2
(DCM

A→B +DCM
B→A). (2)

To encode the orientation information of curves at edge
pixels, Oriented Chamfer Matching (OCM)[13] was proposed
to quantize the orientation of edge pixels into different chan-
nels and perform the basic Chamfer matching on each chan-
nel. Assume each edge set is represented by |IA

θ| sub-sets
with different orientations: IA = {IA

θ | θ ∈ Θ} = {{xθ
a} |

θ ∈ Θ}, where Θ is a quantized orientation set, IA
θ is a

subset with edge pixels xθ
a of quantized orientation θ ∈ Θ.

Oriented Chamfer Matching is defined by:

DOCM
A→B =

1

|IA|

∑

θ∈Θ

∑

x
θ
a
∈IA

θ

min
x
θ

b
∈IB

‖ xθ
a − xθ

b ‖2, (3)

with its two-way form similar to Eqn.2. In this work, the
edge pixel’s orientation is quantized into 6 bins, i.e. −15◦ ∼
15◦, 15◦ ∼ 45◦, . . . , 135◦ ∼ 165◦.

2.2 Compact Representation for OCM
In spite of good matching performance, OCM’s matching

function requires intensive computation and large memory
cost. By leveraging an edge-pixel-based inverted index struc-
ture (Edgel Index) to speed up searching, we have built a
real-time sketch-based image search engine[4, 3] based on
Chamfer matching on a two-million image database. How-
ever, to save the memory cost, in [3] the two-way OCM was
simplified to a one-way OCM search followed by a two-way
OCM reranking for the top 5000 resulting images. However,
when the database is enlarged by 750 times to 1.5 billion,
this reranking scheme will not work since the recall will be
quite low using one-way OCM search. On the other hand,
even the one-way OCM search cannot work here since the
whole index will cost 5TB memory, which is unaffordable for
common servers. It should be noted that it is also impracti-
cal to only store the coordinates of edge pixels of each image,
since on the one hand, it will also take 3TB memory space
(assuming 1000 edge pixels per image), and more important-
ly, it is intractably inefficient to generate the distance-maps
on-line for all the database images. Thus, a more compact
representation for raw edges and their efficient OCM are
highly desired.

Crossover Dot-Product Reformulation for OCM

Distance transformation (DT) is often used to speed up
the on-line Chamfer distance computation. Assuming to
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Figure 3: Spectrums of a) edge-map vector u: intrin-
sically high-dimensional, and b) distance-map vector
v: intrinsically low-dimensional.

calculate DOCM
A→B , we first compute a distance-map DT θ

IB
for

each channel of IB = {IB
1, IB

2, . . . , IB
θ}. The distance-

map value for each geometric location x measures the min-
imal distance from this location to an edge in IB

θ:

DT θ
IB

(x) = min
x
θ

b
∈IB

θ

‖ x− xθ
b ‖2, (4)

Then Eqn. 3 is equal to:

DOCM
A→B =

1

|IA|

∑

θ∈Θ

∑

x
θ
a
∈IA

θ

DT θ
IB

(xθ
a). (5)

When DT (·) is computed off-line, the complexity of online
matching could be reduced fromO(|Q|×|D|) toO(|Q|), with
the cost of increased storage of distance-maps. Assuming the
size of an image is 160×160 and the orientation is quantized
into 6 bins, the distance maps for each image have to be
stored with 0.6 MB (160 × 160 × 6 × 4 bytes) and for 1.5
billion images it will cost 900 TB, which is difficult to be
stored on disks of common servers, let alone to load them in
memory for fast access.
To develop a more compact representation and speed up

the matching, we first convert a sketch/image to a vector
representation, based on which the OCM can be conducted
by the dot-product of vectors.
Therefore, two vectors are defined: 1) edge-map vector

(denoted as u), by concatenating edge-map matrixes EDθ

of all the orientation channels, and 2) distance-map vec-
tor (denoted as v), by concatenating distance-map matrixes
DT θ of all the |Θ| orientation channels:

EDθ = [eij ], eij =

{

1/|I|, if xθ
ij ∈ Iθ;

0, otherwise.
(6)

uθ = vec(EDθ), u = [u1,u2, . . . ,uθ]T, (7)

vθ = vec(DT θ), v = [v1,v2, . . . ,vθ]T, (8)

where vec(·) denotes the vectorization operation on matrix.
Both u and v are of 153, 600 (160 × 160 × 6) dimensions,
with u being sparse and v being dense.
Then, the one-way OCM can be simply written as the

dot-product of these two vectors:

DOCM
A→B = uT

BvA. (9)

The two-way (symmetric) OCM is given by:

DOCM
A,B =

1

2
(uT

BvA + vT

BuA), (10)

where (uA,vA) and (uB ,vB) are Chamfer feature pairs of
IA and IB. The two-way OCM is taken as the crossover dot-

(a) (c) (b) 

(a) Distance-map Reconstruction

(b) Bases for Reconstruction

Figure 4: Illustration for distance-map reconstruc-
tion with principle component bases. (a) From left
to right, edge map of an example sketch, origi-
nal distance-map, reconstructed distance map with
256 principle components. (b) Eigen-maps of dis-
tance transform maps. The left five columns show
the top ten principle components of the distance-
transform map, serving as some of the reconstruc-
tion bases for compressing the distance-transform
map. The last column shows the 300th and 301st
components of the distance-transform map, contain-
ing high-frequency information.

product form of the Chamfer feature pairs, as illustrated in
Fig.2.

The crossover dot-product formulation of Oriented Cham-
fer distance is a new way to look at the classic OCM, making
it easier for further compression and analysis.

Linear Subspace Projection

It is impractical to directly store and compute u and v in
large-scale tasks, since both vectors are high-dimensional.
We perform PCA analysis on these two vectors, and found
that v is intrinsically low-dimensional while u is not. The
sorted eigenvalues of the covariance matrix of sampled u and
v vectors are shown in Fig.3(a) and Fig.3(b). It can be seen
that the distance-map vector v are intrinsically distributed
in a linear subspace of much lower dimension: only about
two hundred principal axes can cover most variations in the
original feature space. Notice that the Chamfer matching
distance is already represented as crossover dot-product of
u and v (in Eqn.9). Although u is not intrinsically low-
dimensional, we can preserve the dot-product between u and
v, by projecting them onto v’s subspace.

Let us denote UD×d as the orthogonal projection matrix
learned by PCA analysis for sampled vectors v (D is the
original dimension number and d is the reduced dimension
number, d ≪ D). We project both u and v to the subspace
using UD×d to generate a compact representation ū and v̄:

ūd×1 = UT
D×duD×1, (11)

v̄d×1 = UT
D×dvD×1. (12)

We now show that the dot-product between v and u is
preserved under the new representation. v and u can be
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(a) PCA-reduced (b) PQ-Coding (c) L2 of DT-map

Figure 5: Pair-wise distances comparison. We sam-
pled one million pairs of images and compared dif-
ferent distances against the groundtruth OCM dis-
tances. The X-axis represents the OCM distances,
while the Y-axis represents: a) OCM after the PCA
dimension reduction, b) OCM after product quanti-
zation coding (in Sec.2.3), and c) the L-2 distances
of distance-transform (DT) map[16]. Figure (a) and
(b) show good linear correlations with very minor
distance distortion; Figure (c) have very big dis-
tance distortions, showing that the L-2 distances of
DT-map is inconsistent with Chamfer matching.

written as below:

u = U ū+ eu, (13)

v = U v̄+ ev, (14)

where ev is a residual vector, which is very small. Although
eu is not small, it is orthogonal to the projected subspace.
Thus we have,

uTv = (ūTUT + eTu )(U v̄+ ev) (15)

= ūTUTU v̄+ (eT
uU)v̄+ ūT (UT ev) + eT

uev(16)

= ūT v̄+ eT
uev (17)

Since |eT
uev| ≤ |eu||ev| ≤ |u||ev| ≤ |ev| and |ev| is negligible,

the dot-product of two high-dimensional features u and v are
well preserved under the dot-product of new low-dimensional
features ū and v̄.
Now we have a more compact representation for the Cham-

fer distance between a sketch and an image using their vector-
based representation:

DOCM
A,B =

1

2
(ūT

Bv̄A + v̄T

BūA), (18)

with ū and v̄ are only d-dimensional (d ≪ D). d is typically
set to be 256. The distance distortion of the compression is
illustrated in Fig.5, from which we can see that the sampled
pair-wise distances are mostly preserved when the vector
dimensions are reduced from 153,600 to 256, amounting to
only 0.17%. Quantitative analysis is provided in Sec.5.2.
Such a compression is actually like a low-pass filter. The

top 10 linear principle components of the distance-map are
illustrated in the left part of Fig.4(b), while the 300th and
301st principle components are in the right part. It can
be seen that top principle components usually capture the
informative low-frequency information of the distance map,
while the remaining components contain more noisy high-
frequency part. After truncating the high-frequency com-
ponent tails, these principle eigen-maps are adequate to
build a group of bases to reconstruct original distance map-
s, as shown in Fig.4(a).
This dot-product reformulation and the compression tech-

nique greatly simplify the classic Chamfer matching in both
computation and memory cost. It essentially converts the

intensive on-line computation (e.g. seeking the closest edge
point) to off-line (e.g. generating distance-transform map
and projecting) while cutting down the feature dimension.
Currently, each Chamfer matching only requires several hun-
dred on-line multiplication, much faster than the original
O(|Q| × |D|) geometric distance calculation.

2.3 Non-linear Multi-layer Source Coding
For each image, the low dimensional features {ū, v̄} (e.g.

256 dimensional) still require a huge memory cost for a large
database. For example, for 1.5 billion images, it will cost 3T-
B memory space with“float”type, which cannot be stored in
memory and have to be read from disk on-the-fly. However,
the relatively low speed of random disk accessing severely
limits the number of images that could be online ranked (or
re-ranked), and in that case an accurate indexing structure
is needed to avoid large number of reranking.

Some recent approximate nearest-neighbor (ANN) search
techniques inspired by source coding goes another way, such
as product quantization[9], which is proved to achieve state-
of-the-art ANN performance and outperforms LSH in terms
of the trade-off between memory usage and accuracy[9]. Prod-
uct quantization focuses on explicitly approximating vectors
using short codes, so that a large number of compressed
codes can be loaded into memory to support a very large
portion of reranking after only a coarse indexing. We utilize
this technique to further quantize both ū and v̄ vectors of
database images, and encode them to a more compact code,
which can be stored in memory for fast reranking for a large
number of images obtained by a coarse index (Sec.3).

In this section, we will first introduce product quantiza-
tion for OCM, followed by the multi-stage residue coding.

Product Quantization

Product quantization[9] decomposes the vector space in-
to a Cartesian product of low-dimensional subspace, and
quantizes each subspace separately, which achieves a good
balance between compression rate and learning difficulty.

We briefly introduce the product quantization[9] below.
Denote x ∈ Rd as the vector to be quantized. x is first split
into m subvectors2 x1, . . . , xm ∈ Rd/m. For each subvector
xi, a sub-quantizer qi(·) is learned by k-means, mapping
the real-value subvector xi to one of the ks quantization
centroids ci = qi(xi). Then the global product quantizer is:

q(x) = (q1(x1), q2(x2), . . . , qm(xm)). (19)

We utilize product quantization to generate compact codes
for Chamfer features. In the off-line stage, each image is en-
coded by a vector of sub-quantizer’s IDs:

s(x) = (s1(q1), s2(q2), . . . , sm(qm)), (20)

in which si(qi) ∈ [0, ks − 1], is the ID of the quantization
centroid qi(xi).

Although ks is typically set to a small value (e.g. 256
or 4096) for fast learning and quantization, the number of
possible values of q(x) is large, i.e. (ks)

m, since the centroid
codebook of the whole vector is the Cartesian product of the
centroids of the m sub-quantizers. Such a large number of
quantization centroids provide explicit approximation of the
original vectors. The centroid index value for each vector

2In practice, vectors are multiplied by a random orthogonal
matrix prior to quantization to balance the energy of each
subvector. Query vectors are also multiplied by the matrix.
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could be encoded with ⌈m log
2
(ks)⌉ bits. Thus, memory

space is saved a lot.
Here Asymmetric Distance Computation (ADC)[9]

is adopted: the database image feature x is encoded to be
s(x), but the query feature y is not encoded. Then, the
distance dcm(x, y) is approximated by dcm(q(x), y). Thus,
there is no approximation error in the query side.
In the on-line retrieval, dcm(q(x), y) could be computed

using the decomposition:

dcm(q(x), y) = q(x)T y =
∑

j=1,...,m

qj(xj)T yj , (21)

where yj is the jth subvector of the query y. For each j,
we calculate the dot-product between yj to ks quantization
centroids of qj(·) to construct a look-up table t(1), ..., t(ks).
Then, for each database image, we check its shape code s(x),
and sum up all the corresponding values in the look-up table
as the final distance to the query y:

dcm(q(x), y) =
∑

j=1,...,m

t(si). (22)

Multi-stage Residue Coding

Inspired by the work of [9, 10], we refine the first-stage
quantization by re-coding their residues. Since the residues
often contain lower energy/information than raw vectors,
encoding the residue is easier than encoding the original data
vector. The residue vector after the quantization is:

r(x) = x− q(x), (23)

which is further quantized by another quantizer qr learned
on a sampled set of residue vectors. Thus, an improved
estimation x̂ of x is the sum of approximated vector and the
encoded residue vector:

x̂ = q(x) + qr(r(x)). (24)

Notice that increasing the centroid number ks of each
sub-quantizer can also improve the quantization accuracy.
However, a larger ks will severely increase the computation
burden in both learning and quantization processes. With
residue encoding, the quantization error is greatly reduced
while the computation cost is only linearly increased.
In this work, we perform two-stage residue encoding. At

each stage, we set ks to 4096, and jointly quantize every eight
dimensions, which achieves a good balance among compres-
sion rate, accuracy and computation cost. Detailed experi-
ments are shown in Sec.5.2.
Finally, the Chamfer features ū and v̄ are encoded with

3 × log
2
(4096) × 256/8 bits, and thus each image costs 288

bytes. This feature will be used in the fast reranking stage.

3. MULTI-PROBE KLSH FOR CHAMFER

INDEXING
Although the proposed compact shape codes can be stored

in memory and support 2× 106 shape matchings per second
on a common server, for a real-time search task of 1.5 billion
images, an effective indexing structure is still necessary to
prune the obviously unrelated images.
In this work, we build Kmeans-LSH (KLSH)[11] index3

for images with the dissimilarity defined as the Chamfer
3The k-medoids clustering was used instead of k-means clus-
tering, since we have to deal with a space only defined by
dissimilarity.

distance in Eqn.18. Although Chamfer distance is actual-
ly not a metric (does not satisfy the triangle inequality), the
experiments showed the effectiveness of KLSH in our sys-
tem. Details are provided in Sec.5.3. Below we will briefly
introduce KLSH, followed by implementation details.

Multi-Probe KLSH

KLSH utilizes unstructured k-means quantizers as hash
functions:

hi(x) = arg min
j=1,...,k

d(x, cij), i = 1, . . . , l. (25)

where k is the cluster number of the k-means quantizer and
also the number of hash buckets; d(·, ·) is the dissimilarity
metric; cj is the cluster centroids. Each hash value hi(·) rep-
resents a hash bucket and all database objects are put into
one of the buckets according to their hash values. Thus,
each hi function forms a hash table, and the objects falling
in the same bucket will have a larger likelihood of being near-
est neighbors than those disseminated in different buckets.
Then, multiple (l) hash tables/functions (with different k-
means initiates) are constructed to reduce the probability
that a vector is missed, as in the LSH framework. When a
user draws a query sketch and triggers the search, the hash
value of query object y is obtained by hi(y), and the ob-
jects in the bucket of the value hi(y) in each hash table are
returned as the resulting short-list for further reranking.

Since the memory cost increases with the number of hash
tables4 l, to reduces memory usage, multi-probe KLSH[11]
is used here to retrieve several (mp) buckets per hash table,
instead of only one. Then for each query, the total number
of buckets retrieved becomes l ×mp. Therefore, for a fixed
number of buckets, the number of hash tables is reduced by
a factor of mp, so is the memory cost.

Implementation Details

We built the sketch-based image retrieval system with 10
common servers to support a realtime search on 1.5 billion
images. Each server indexes 100 ∼ 200 million images with
about 60GB memory cost. The memory cost includes two
parts: KLSH index and the shape codes. For the hash index,
we constructed l = 5 hash tables each of which consists of
k = 8192 hash buckets and the total index will cost 4GB.
For the shape codes part, we truncated both u and v to be
of 256 dimensions, and every eight dimensions were jointly
quantized and encoded with 4.5 (= 3×1.5) bytes. The total
memory cost for 200 million images is 54GB. Given a query,
the hash index in each server returns a list of 2×106 images,
which are further reranked with Chamfer shape codes. The
response time for each query is 0.5 ∼ 1.5 seconds.

4. POTENTIAL APPLICATIONS
Based on this billion-scale sketch-based image retrieval

system, many applications which were thought very chal-
lenging or even impossible might become easier and feasible.

1. Sketch Recognition (Fig.6(a)) In the era of touch
screens, automatically recognizing a hand-drawn sketch has
become an important research problem, and will benefit
many touch-related applications. Most existing methods
mainly focus on recognizing simple shapes in specific do-
mains, or classifying sketches to a limited number of cate-

4l hash tables will cost n×l×4 bytes, where n is the number
of indexed objects. When n = 1.5 × 109, each single hash
table will cost 6GB memory.
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Figure 6: Four potential applications that could be
advanced by the retrieval system.

gories. To recognize an arbitrary drawing, we have devel-
oped a data-driven method[14] based on one million clipart
images. However, million-scale images are still far from suf-
ficient to cover the query space. We believe that with the
help of 1.5 billion images and the sketch retrieval techniques,
sketch recognition will become more practical.
2. Shape Modeling (Fig.6(b)) Automatically mining

and modeling shapes for an arbitrary concept is a fundamen-
tal problem in visual concept modeling in computer vision.
Most existing work only focuses on modeling a very limited
number of objects. Based on this system and its backend
index structure, it becomes possible to model any concept
with meaningful shapes, which will be useful to many com-
puter vision problems.
3. Multi-Shape Detection (Fig.6(c)) Object detection

is another important problem in computer vision. Most ex-
isting work focuses on detecting a single object, such as face,
human body, and car. Once we collect a large number of
shape models, it might be possible to conduct multi-shape
or multi-object detection. For example, if we have typical
shape models for vehicles, persons, houses, trees, etc., it will
be helpful for detecting related objects in a natural image
by combining with other features.
4. Drawing Suggestion & Refinement (Fig.6(d))

Drawings from non-experts are usually unartistic, and some-
times even ugly. By recognizing a user’s partial sketch and
mining possible shape intentions, the system can suggest
better drawings to help the user quickly get an elegant draw-
ing, which is useful for kids education and quick interaction.

5. EXPERIMENTS
Extensive experiments were conducted to evaluate the en-

tire system as well as different components including feature
selection, dimension reduction, product quantization, and
indexing structure. We explore the impact of data scale
in sketch-based retrieval, showing the promising advantages
coming along with the increasing growth of data scale.

5.1 Feature Comparison
Several representative shape features were evaluated on

two different sketch-related tasks, i.e. sketch classification
and sketch-based image retrieval.
Sketch classification was conducted on the 20K hand-drawn

sketch data set[5] (20K sketches in 250 categories), and five
representative features for shape matching were compared,
i.e. CM[2], OCM[13], Shape Context[1], Gist[12] and SHoG5

[5] (SHoG1 learns the codebook only on the training set,

5The local feature in [5] is named as SHoG here, which is a
little different from that in [7].
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Figure 7: Results of different shape features on s-
ketch classification and sketch-based image retrieval
tasks. (a) Sketch classification accuracy of CM[2],
OCM[13], SHoG[5], Shape Context (SC)[1], and
Gist[12]. (b) Sketch-based image retrieval perfor-
mance (Precision@K) of OCM[13], SHoG[7] and
Tensor[6].

while SHoG2 learns it on the whole data set as in [5]). We
used 3-fold cross-test: the data set was randomly partitioned
into three parts, in which one was used as testing set and
the remaining two as training set. The accuracies averaged
over all three folds are reported in Fig.7(a).

Sketch-based image retrieval was conducted on the 102K
image dataset with 31 hand-drawn sketches[7], on which
SHoG was proved outperforming other local features in [7].
We compared OCM[13], SHoG[7], and Tensor[6], all of which
were successfully leveraged in sketch-based image retrieval
systems. The Precision@K curves are shown in Fig.7(b).

The experimental results showed the competitiveness of
OCM compared with other features in these two tasks, and
thus we base this system on OCM.

5.2 Compression Loss Analysis
In this section, we evaluate the loss of both compression

components of PCA dimension reduction and product quan-
tization under different parameter configurations.

Metric for Compression Loss

We use the following metrics to evaluate the compression
loss:

1) Root Mean Square Error (RMSE): is defined as
√

∑

i(di − d̂i)2, where di is the OCM distance and d̂i is

the approximated distance after compression. 107 pairs of
images were randomly sampled for this test.

2) Precision-Recall (PR) & MAP for NN-search:
based on nearest-neighbor search, we consider images with-
in an OCM proximity (k-NN, e.g. k=100) of each query
as “positive” while the rest “negative”. By recalling images
based on the approximated distances, the precision-recall
curves (PR) and mean average precision (MAP) for the ap-
proximated distance can be plotted.

3) Precision @K for SBIR: Retrieval Precision @K di-
rectly evaluates how the compression procedure impacts the
final retrieval performance. We perform this experiment in
the same 102K dataset with 31 queries as aforementioned
in Sec.5.1. The top 20 results were labeled as “related” or
“unrelated” to the query sketch in terms of shape, based on
which Precision@K is evaluated for retrieval performance.

PCA Dimension Reduction

As explained in Sec.2.2, the dimension of Chamfer fea-
tures is reduced by projecting u and v onto a subspace of
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Figure 8: Compression loss analysis. (a-c) The compression loss for PCA dimension reduction (d =
32, 64, 128, 256, 384 for ū and v̄), evaluated by RMSE, MAP, precision-recall curves of nearest-neighbor search,
Precision@K curves of real retrieval performance; (d) The loss in product-quantization coding, evaluated by
MAP of NN-search, under different parameter configurations about joint quantization dimension number bs,
encoding layers nl and number of quantization centroids ks.

v to preserve their dot-product value uTv. Small distance
distortion might occur during the reduction. With the afore-
mentioned metrics, we evaluated how the Chamfer distance
distorts when vectors are reduced to different dimensions.
Fig.8(a-c) show the results under the metric of RMSE, PR
curves, and Precision@K with different vector dimensions.
Note that vectors of more than 256 dimensions no longer
lead to significant accuracy improvements. Thus, the di-
mension of ū and v̄ is set to 256 to achieve a reasonable
balance between memory cost and approximation accuracy.

Product Quantization Coding

ū and v̄ are further encoded into short bits by product
quantization as introduced in Sec.2.3. Factors that impact
the quantization performance include the dimension number
for joint quantization bs, the quantization centroid number
ks, and the encoding layer number nl. Large ks and nl with
small bs will increase the actual allocated bit number per di-
mension, and thus reduce the quantization error at the cost
of more total bits; a large ks helps improve the quantiza-
tion performance at the cost of increasing computation cost
during quantizer learning and coding process. We evaluated
several parameter configurations, as shown in Fig.8(d). To
balance the memory cost, accuracy, and computation cost,
we choose bs = 8, nl = 3, and ks = 4096.

5.3 Impact of KLSH
In this section, we measure the quality of the k-medoids

hashing structure in terms of selectivity-recall curve[11]. Se-
lectivity represents the ratio of the total selected images (for
further reranking) among the indexed corpus. The recall

measures the ratio of recalled k-NN images among k. Here
k is set to 200. The experiment was performed on the intro-
duced hash structure which indexes 200 million images6.
The index quality is mainly related to two factors: the

number of hash buckets k and the number of hash tables l.
The selectivity-recall curves with l = 5 and different k are
shown in Fig.9(a), while curves with k = 8192 and different
l in Fig.9(b). It is observed that a larger k or l will improve
the index quality. However, a larger k increases the off-line
computation cost for constructing the index, and a large
l increases the index’s memory cost by a factor of l. It
should be noted that, as aforementioned, since the reranking
process are significantly accelerated by the proposed shape

6This is because in our system each server indexes less than
200 million images, as introduced in Sec.3
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Figure 9: Evaluations of the effectiveness of
Kmeans-LSH in Chamfer matching distance space
with sensitivity-recall curves at different k and l.

codes, a large portion of images (e.g. 2 × 106 images per
second per server) are possible to be reranked. Therefore,
we only need a coarse index. We choose k = 8192 and l = 5
in our system, with which 10−2 selectivity can obtain 68%
recall of the 200-NN images, at a relatively small cost for
off-line index building.

5.4 Evaluations for the Whole System
To evaluate the sketch-based retrieval system, we conduct-

ed a series of experiments on a large image corpus consisting
of 1.5 billion images. We show how the system performance
varies with increasing image set size, showing the necessity
of studying billion-scale SBIR. We show that the tradition-
al keyword-based image search results could be significantly
enhanced when cooperating with sketch-based search. Be-
sides, we also analyze how the quality of user-drawn sketch
queries impacts the system performance.

Sketch-500 Query Set & 1.5-Billion Image Set

The Sketch500 data set [14] were used as the query set.
It consists of 500 hand-drawn sketches (see Fig.10(a)) built
based on a list of 1000 commonly-used non-abstract nouns
collected for elementary education7. These sketches were
drawn by a graduate student based on top results returned
from a commercial keyword-based image search engine. By
removing some non-entity words that are difficult to depict,
such as “earthquake”, “storm”, and“dust”, 500 sketches were
finally collected together with their keyword texts.

1.5 billion thumbnails randomly sampled from Bing were
utilized to build the search system. Some text information

7http://www.free-teacher-worksheets.com/support-
files/list-of-nouns.eps
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Figure 10: (a) Examples of hand-drawn sketches
in Sketch500 query set. (b) Examples of labeling
rule — both shape and concept consistency. the
1st column shows example queries; the 2nd and
3rd columns are images labeled with “correct” since
their shapes and concepts are consistent with the
queries’; column 4∼7 are “incorrect” due to their
incorrect concepts or dissimilar shapes.

such as image titles and surrounding texts together with tfidf

ranking were leveraged for keyword-based search.

Evaluation Measurement and Labeling Methodology

Since it is impossible to manually label all the 1.5 billion
images, we adopted a strategy commonly used in [3, 6]: only
label the top 20 returned search results for each query and
measure the retrieval performance with Precision@K (the ra-
tio of the “correct” images in top K returned images). This
is consistent with the observed fact that users usually care
about the top results returned by a search engine. For la-
beling principles, we set a strict rule: only images that meet
the following two requirements were labeled as “correct”: 1)
of similar shape to the query sketch and 2) of consistent con-
cept with the query. As illustrated in Fig.10(b), images with
either obvious shape dissimilarity or concept inconsistency
were labeled as “incorrect”. Note that, if the requirement
of concept consistence is relaxed, the retrieval performance
will be much higher than what appears in our experiments.

Performance on Different Image Set Scale

A series of experiments were conducted on 5 differen-
t scales of random image subsets: 0.2 million, 2 million,
20 million, 200 million and 1.5 billion. The Precision@K
curves were averaged over all 500 queries, which is shown
in Fig.11(a). Fig.11(b) illustrates how Precision@10 value
changes with the growth of image sets — when the image
data set grows up, the sketch-based retrieval performance
improves significantly. This is reasonable, since more im-
ages provide a wider coverage of our visual world and can
respond better to users’ uncontrollable drawings.

Enhancement on Keyword-based Image Retrieval

Since each query in Sketch500 is associated with a key-
word, which can be taken as a keyword query in a keyword-
based search, we compared the retrieval performances on
the 1.5 billion image data set under three schemes: Tex-
t, Sketch and Sketch+Text. As shown in Fig.12(a), S-
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Figure 11: Retrieval performance vs. image set size.
(a) Precision@K was evaluated for five randomly
sampled data sets of 0.2M, 2M, 20M, 200M, and
1.5B images. (b) The plot shows how Precision@10
(in (a)) increases as the data set grows up.
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Figure 12: Enhancement on keyword-based image
search. (a) Retrieval performance under Text, S-
ketch, Sketch+Text schemes. (b) Illustrative exam-
ples for“shape polysemy”: since many objects might
share similar shapes, image search purely based on
the sketch often leads to ambiguous results. This
can explain why combining both shape and keyword
could significantly enhance retrieval accuracy.

ketch+ Text significantly outperformed both Text and
Sketch. For pure keyword-based search, since no shape
information is considered, users are hard to find desired im-
ages with a particular shape. For pure sketch-based search,
the “polysemy” of shapes will bring much noisy images with
similar shapes but inconsistent concepts. E.g., the shape
of a standing dog is very close to that of a standing horse
(see Fig.12(b)). By combining both the shape and text,
the search engine might satisfy those users who have more
specific search intentions. The top results for some query
sketches under these three schemes are compared in Fig.14.

Influence of Hand-drawn Sketch Quality

Since there might be large intra-class variations in human
drawings, we’d like to see how the sketch quality impacts
the system performance. We distorted the sketch queries
by randomly and independently offsetting all strokes of a
sketch to different directions. The moving distance is a pa-
rameter multiplied by the longer side of the sketch, and this
parameter is called “variance” in this work. 100 sketches
were randomly sampled from Sketch500 in this experimen-
t. Fig.13(b) shows the retrieval performances with distorted
sketches under different distortion variances. We can see
that, the retrieval performance consistently dropped as the
increase of variance, which is not a surprise since sometimes
even human vision are not easy to tell the distorted sketches
very well, as shown in Fig.13(a).
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Figure 13: Retrieval performance under different s-
ketch qualities. (a) Three example columns indicat-
ing 5 different sketch quality levels with distorted
variations ±2%, ±4%, ±8%, ±12%, ±16%. (b) Preci-
sion@K curves under different variations.

6. CONCLUSIONS
In this paper, we have presented our study on how to build

a practical system to support sketch-based image search on
a billion-level database, which might be the first attempt
in both academia and industry. To achieve this goal, we
systematically studied related problems such as feature se-
lection, compact feature representation, fast matching and
indexing, with particular considerations to some practical
issues such as computation cost, memory cost, and retrieval
speed. Currently this system is sensitive to affine trans-
lation. We will continue improving this system, based on
which we hope other shape/sketch related applications which
were thought very challenging might become feasible.
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