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ABSTRACT 

This paper presents our work in the Emotion Sub-Challenge of the 

6th Audio/Visual Emotion Challenge and Workshop (AVEC 2016), 

whose goal is to explore utilizing audio, visual and physiological 

signals to continuously predict the value of the emotion dimensions 

(arousal and valence). As visual features are very important in emo-

tion recognition, we try a variety of handcrafted and deep visual 

features. For each video clip, besides the baseline features, we ex-

tract multi-scale Dense SIFT features (MSDF), and some types of 

Convolutional neural networks (CNNs) features to recognize the 

expression phases of the current frame. We train linear Support 

Vector Regression (SVR) for every kind of features on the 

RECOLA dataset. Multimodal fusion of these modalities is then per-

formed with a multiple linear regression model. The final Concord-

ance Correlation Coefficient (CCC) we gained on the development set 

are 0.824 for arousal, and 0.718 for valence; and on the test set are 

0.683 for arousal and 0.642 for valence.   

Keywords 

Continuous Emotion Recognition; CNN; Multimodal Features; 

SVR; Residual Network 

1. INTRODUCTION 
Emotion recognition is an important subject in the field of pattern 

recognition, which is of great interest for human-computer interac-

tion. According to theories in psychology research there are two 

major emotion computing models [1]: discrete theory and dimen-

sional theory. Discrete theory describes an emotion state as discrete 

labels such as “surprise”, “sad”, “happy” etc. The leading study of 

Ekman and Frisen [2] formed the basis of visual automatic facial 

expression recognition. Their studies suggested that anger, disgust, 

fear, happiness, sadness, and surprise are the six basic prototypical 

facial expressions. This work cannot meet the needs of real life, 

because it cannot express complex affective states. While dimen-

sional theory considers an emotion state as a point in a continuous 

space. Russell proposed that each of the basic emotions is a bipolar 

entity as part of the same emotional continuum. The proposed polar 

includes arousal and valence [3]. In recent years, recognition of 

non-acted spontaneous emotions in the continuous dimensional 

space has attracted researchers’ interest. Because it is more suitable 

to express and understand our complex emotions [4, 5].  

Psychologists show that humans recognize affective states from 

several modalities, such as facial expression, body gesture, voice, 

etc [6]. Some researchers advocate that combined multiple modal-

ities will contribute to the recognition accuracy. While most of the 

existing relative research has focused on single modality, especially 

from facial expression. To accelerate research in automatic contin-

uous affect recognition from audio, video and physiological data, 

the Audio/Visual Emotion Challenge and Workshop (AVEC) 

aimed at comparison of multimedia processing and machine learn-

ing methods for automatic audio, visual and physiological emotion 

analysis. The database used for this challenge is RECOLA [8], a 

multimodal corpus of spontaneous collaborative and affective in-

teractions. [7]  

In this paper, we describe our work in the AVEC 2016 challenge. 

We mainly focus on dimensional emotion recognition from audio, 

visual and physiology modalities. The Support Vector Regression 

(SVR) is used for regression prediction. Researches show that 

video features are more important for emotion recognition [31], so 

we try a variety of handcrafted and deep visual features. For each 

video clip, besides the baseline features, we extract multi-scale 

Dense SIFT features (MSDF), and some types of Convolutional 

neural networks (CNNs) features, including the deep residual net-

work [27] to recognize the expression phases of the current frame. 

The remainder of this work is organized as follows. Section 2 in-

troduces related works in dimensional emotion recognition. Section 

3 describes the dataset and features used in AVEC2016 challenge. 

Section 4 describes the details of the overall methodology chosen 

for the AVEC 2016 challenge and Section 5 describes the entire 

experiments we have done and our extensive experimental results. 

Finally, the conclusion is given in Section 6. 
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2. Related works 
In recent years, recognition of non-acted spontaneous emotions in 

the continuous dimensional space has attracted researchers’ inter-

est. Dimensional theories often argue that discrete emotion catego-

ries (such as anger) do not have a specific biological basis, although 

many promising recognition results have achieved. That is based 

on the fact that there is no brain region or circuit that is unique to 

that emotion category [4,5]. Computational models that build on 

dimensional theories often use the “VAD” theory. VAD model has 

3 dimensions: valence, arousal and dominance. V stands for va-

lence, represents the positive and negative characteristics of the in-

dividual emotional state; A represents the degree of activation, in-

dicating the individual's physiological activation level; D stands for 

dominance, which indicates the individual's control of the situation 

and others. The numerical range of each dimension is -1 to 1, -1 is 

the lowest value in each dimension, and +1 is the highest value in 

each dimension. 

Recently, deep learning methods have become very popular within 

the community of computer vision. Studies shows that AlexNet and 

other CNN models has shown obvious performance for emotion 

recognition. [32,33] Besides, the Bag of Words (BoW) model based 

on MSDF has also been widely used in computer vision in recent 

years. Sikka, K. et al. [12] explored bag of words architectures in 

the facial expression domain, which has shown remarkable perfor-

mance on facial recognition.  

In the Audio/ Visual Emotion Challenge 2015(AVEC2015), most 

teams used Long Short-Term Memory (LSTM), which is a recur-

rent neural network (RNN) architecture (an artificial neural net-

work) proposed in 1997 by Sepp Hochreiter and Jürgen Schmidhu-

ber [19]. Martin Wöllmer et al. [20] proposed a fully automatic au-

diovisual recognition approach based on LSTM modeling of word-

level audio and video features. It has demonstrated that long range 

context modeling tends to increase accuracies of emotion recogni-

tion. Besides LSTM, SVR is also widely used in the AVEC chal-

lenges [7]. 

 

3. DATASET AND FEATURES 

3.1 Dataset 
The AVEC 2016 challenge is evaluated on a subset of the RECOLA 

dataset [8], which was recorded to study socio affective behaviors 

from multimodal data in the context of remote collaborative work, 

for the development of computer-mediated communication tools 

[9]. Spontaneous and naturalistic interactions were collected during 

they are solving a collaborative task through video conference. 

Multimodal signals like audio, video, electro-cardiogram (ECG), 

electro-dermal activity (EDA), heart rate (HR) and its measure of 

variability (HRV), skin conductance response (SCR) and skin con-

ductance level (SCL), were synchronously recorded from 27 

French-speaking subjects. There is only one person in every record-

ing. Emotional dimensions (arousal and valence) are annotated by 

6 French speakers in scale [-1, 1] for every 40ms. Gold standard is 

calculated using a specific normalization technique as reported in 

[8]. Finally, by stratifying (balancing) on gender and mother tongue, 

cf. the dataset is equally split into three partitions: train, develop-

ment and test, with each partition containing 9 different speakers.  

3.2 Audio Features 
In AVEC 2016 challenge, the 88 baseline audio features computed 

with openSMILE [25] and the extended Geneva Minimalistic 

Acoustic Parameter Set (eGeMAPS) [21] configuration file, with a 

sliding centred window which size depends on the modality. The 

arithmetic mean and the coefficient of variation are computed on 

all 42 LLD, which cover the spectral, cepstral, prosodic and voice 

quality information. 

3.3 Visual Features 

3.3.1 Face Detection and Alignment 
Face detection is a very important step in the whole pipeline, which 

will directly affect the effectiveness of the visual feature extraction. 

In order to extract extra video features, like MSDF, and CNN fea-

tures more accurately, first we follow the face extraction and track-

ing method of Sikka et al. [12] and Dhall et al. [22]. A mixture of 

tree structured part model [23] face detector is used to detect the 

position of face in the first frame of a video. Then use the Intraface 

toolkit supervised descent method [24] to track facial landmarks of 

the rest frames in a Parameterized Appearance Model. Finally, 49 

landmark points can be used to align faces for expression classifi-

cation. Through experiments, the first base point is the position of 

the middle of two eyes; the second one is the position of the central 

point of mouth. All frames are aligned to this base face through 

affine transformation and cut to 200 × 200 pixels. There are some 

frames that have not detected a human face but have a face. To get 

more face, we follow the face extraction method of Zhu, X., & Ra-

manan, D. [25]. After the two step of face detection, most of the 

human face are obtained. For the frames are mis-tracked, all feature 

sets are interpolated by a piecewise cubic Hermite polynomial to 

cope with mis-tracked frames. 

3.3.2 LGBP-TOP 

The local Gabor Binary Patterns [10] is a type of descriptor that is 

robust to illumination changes and misalignment. It first takes a 

video frame convolved with a number of Gabor filters. It is fol-

lowed by the LBP feature extraction through the set of Gabor mag-

nitude response images. The resulting binary patterns are histo-

grammed and concatenated into a single feature histogram. Like 

other volume local texture features, in our sense, a video is block-

wised to 4×4 to from XY plane. The LGBP-TOP feature with those 

three spatial frequencies and six Gaussian orientations were then 

extracted, and a length of 18×4×4×59×3 = 50,976 feature is avail-

able. For AVEC 2016 challenge, the 168 reduced dimension 

LGBP-TOP features are used as appearance visual features. This 

appearance visual features are obtained by a Principal Component 

Analysis (PCA) from the 50,976 LGBP-TOP features (99% of var-

iance).  

3.3.3 Geometric Feature 

The aligned 49 landmarks tracked by the Intraface toolkit are spilt 

into three regions: left eye (6-10, 26-31), right eye (1-5, 20-25) and 

mouth (32-49). For every region, we compute the angels between 

three points and distances between two points. Then the positions 

of 49 points of this frame and the frame before are concatenated 

into the vector. At last, the distance of 49 landmarks to the mean 

central facial position is added to the geometric feature. The feature 

vector has a length of 71+98×2+49=316 at last.  
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Fig. 1 The architectures of our proposed CNN and ResNet 

 

3.3.4 Multi-scale Dense SIFT 
We use the Bag of Words (BoW) model based on multi-scale Dense 

SIFT features (MSDF) [11] to extract visual features, which has 

been widely used in computer vision in recent years. Sikka, K. et 

al. [12] explored bag of words architectures in the facial expression 

domain, which has shown remarkable performance on facial recog-

nition.  

Firstly, multi-scale Dense SIFT [13] features are extracted by set-

ting the width of the SIFT spatial bins to 4, 8, 12 and 16 pixels.  

Secondly, we use K-means algorithm to cluster features extracted 

in the previous step to construct the dictionary. Through experi-

ments all the features are clustered to 800 clustering centers as 

code-words for the dictionary.  

Thirdly, we use Locality-constrained Linear Coding (LLC) [14] to 

encode the code-words, which can guarantee the sparse and locality 

of the coded words. Then we use spatial pyramid (SPM) [15] to get 

spatial information, the layer of SPM was set to 5. In total the geo-

metric set includes 68000 features. We obtained 1458 dimension 

features by a Principal Component Analysis (PCA) from the 68000 

feature (90% of variance). 

3.3.5 Deep Visual Features 
Inspired by the AlexNet [26] and the Residual Network [27], we 

design two architectures for emotion recognition. 

The AlexNet is a 9-layers deep model, which is designed for 

ILSVRC-2012 Challenge [28]. The activation function of it is re-

flected linear unit (ReLU). AlexNet model has 5 convolutional lay-

ers and 3 fully connection lays. To avoid over-fitting, the AlexNet 

uses data enlarge strategy, local normalization and dropout method. 

In total the geometric set includes 9216 features. We obtained 266 

dimension features by a Principal Component Analysis (PCA) from 

the 9216 feature (95% of variance). 

Our proposed CNN is based on the AlexNet. The first convolutional 

layer filters the input patch with 64 kernels of size 5×5. The second 

convolutional layer takes as input the response-normalized and 

max-pooled output of the first convolutional layer and filters it with 

64 kernels of size 3×3×64. The third convolutional layer has 128 

kernels of size 3×3×64 connected to the (normalized, pooled) out-

puts of the second convolutional layer. The fourth and fifth convo-

lutional layer both have 128 kernels of size 3×3×128. The third, 

fourth, and fifth convolutional layers are connected to one another 

without any pooling or normalization layers. The fully-connected 

(FC) layers have 1024 neurons each. The ReLU Activations are ap-

plied to the output of every convolutional and fully-connected 

layer. For last layer’s output is used as the regression value of the 

whole network. For feature extraction, we use the last pooling layer 

as the output, which has 4608 output dimensions. We obtained 205 

dimension features by a Principal Component Analysis (PCA) from 

the 4608 feature (95% of variance). 

The whole architecture of our model is shown in Fig. 1. As we use 

FER dataset [29] for pre-training, all input images are resized to 

48×48. 

He et.al [27] present the residual learning framework to ease the 

training of networks that are substantially deeper than those used 

previously. They explicitly reformulate the layers as learning resid-

ual functions with reference to the layer inputs, instead of learning 

unreferenced functions. They show that the residual networks are 

easier to optimize, and can gain accuracy from considerably in-

creased depth. On the ImageNet dataset they evaluate residual nets 

with a depth of up to 152 layers. They had even trained a deep 

model which is more than 1000 layers. While as there are not 

enough data, the 1000-layer network achieves not so well as the 

152 layers’ network. In our experiment, we design a residual net-

work architecture for emotion recognition.  

The ResNet we proposed has 4 residual blocks. Each block has a 

shortcut from input to the output. Two convolutional layers which 

has 1*1 and 3*3 filter sizes are included in each residual block. De-

tailed architecture is shown in Fig.1. For feature extraction, we use 

the last pooling layer as the output, which has 4608 output dimen-

sions. We obtained 663 dimension features by a Principal Compo-

nent Analysis (PCA) from the 4608 feature (95% of variance). The 

whole architecture of our proposed ResNet is shown in Fig. 1. 
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Table 1: The SVR CCC results on the development set 

SVR L2 Loss Primal  L2 Loss Dual L1 Loss Dual 

Features Arousal Valence Arousal Valence Arousal Valence 

Audio 0.796 0.453 0.796 0.459 0.785 0.462 

LGBP-TOP 0.483 0.474 0.482 0.474 0.486 0.472 

Geometric 0.378 0.612 0.375 0.612 0.401 0.563 

ECG 0.265 0.144 0.274 0.159 0.320 0.167 

HRHRV 0.365 0.259 0.366 0.264 0.392 0.257 

EDA 0.061 0.136 0.063 0.136 0.122 0.234 

SCL 0.054 0.150 0.042 0.167 0.116 0.229 

SCR 0.046 0.085 0.057 0.063 0.117 0.126 

MSDF 0.009 0.370 0.008 0.388 0.008 0.413 

CNN 0.152 0.371 0.155 0.373 0.164 0.389 

ResNet 0.174 0.341 0.184 0.359 0.215 0.366 

AlexNet 0.116 0.444 0.115 0.450 0.127 0.480 

Fusion 0.823 0.714 0.824 0.718 0.816 0.723 

3.4 Physiological Features 
We also use physiological features implemented by [7], including 

the electro-cardiogram (ECG) signals, the electro-dermal activity 

(EDA) signals, the heart rate(HR) and its measure of variability 

(HRV), the skin conductance response (SCR) and the skin conduct-

ance level (SCL), with a sliding centered window which size de-

pends on the modality respectively. 

The ECG records the electrical activity of the heart. From the ECG 

signal, we used 19 features including the zero-crossing rate, the 

four first statistical moments, the normalized length density, the 

non-stationary index, the spectral entropy, slope, mean frequency 

plus 6 spectral coefficients, the power in low frequency (LF, 0.04-

0.15Hz), high frequency (HF, 0.15-0.4Hz) and the LF/HF power 

ratio. 

The EDA is the property of the human body that causes continuous 

variation in the electrical characteristics of the skin. From the EDA 

signal, we used 8 features, including the four first statistical mo-

ments from the original time-series and its first order derivate. 

The HRHRV is the heart rate and its measure of variability. We 

used the heart rate (HR) and its measure of variability (HRV) from 

the filtered (use a zero-delay bandpass filter (3-27Hz)) ECG signal, 

we used 10 features including the two first statistical moments, the 

arithmetic mean of rising and falling slope, and the percentage of 

rising values for each of those two descriptors. 

The SCR is the phenomenon that the skin momentarily becomes a 

better conductor of electricity when either external or internal stim-

uli occur that are physiologically arousing. We used 8 features, in-

cluding the four first statistical moments from the original time-se-

ries and its first order derivate.  

The SCL is directly controlled by the sympathetic nervous system 

and indicates the activity of the sweat glands in the skin. We used 

8 features, including the four first statistical moments from the orig-

inal time-series and its first order derivate. 

 

4. FUSION REGRESSION 

4.1 SVR 
In this paper we use Support Vector Regression (SVR) [16] predic-

tion architecture, which is an effective classifier for dimensional 

emotion recognition. Given a training set of N data points 

{x𝑘,y𝑘}
𝑘=1

𝑁
, where x𝑘 ∈  ℝ𝑛is the kth input pattern and 𝑦𝑘 ∈  ℝ is 

the kth output pattern. For a sample (x, y), the traditional regression 

model is usually based on the difference between the output f(𝑥) of 

the model and the real output y to calculate the loss. If and only if 

f(𝑥) and Y are exactly the same, the loss is recorded as zero. While 

SVR supposed that if and only if the absolute value of the differ-

ence between X and Y is greater than 𝜀, then calculate the loss. 

Given a training set of N data points {x𝑘,y𝑘}
𝑘=1

𝑁
, where x𝑘 ∈  ℝ𝑛is 

the kth input pattern and 𝑦𝑘 ∈  ℝ is the kth output pattern, SVR 

method can be formalized as: 

 min
𝑤,𝑏

1

2
‖𝜔‖2 + 𝐶 ∑ ℓ𝜀(𝑓(𝑥𝑖) − 𝑦𝑖)𝑚

𝑖=1 ,                                          (1)  

The solution of SVR can be expressed as: 

 f(𝑥) = ∑ (�̂�𝑖 − 𝛼𝑖)𝐾(𝑥, 𝑥𝑖) + 𝑏𝑚
𝑖=1  ,                                     (2) 

We use the LIBLINEAR [17], which is a popular open source ma-

chine learning libraries, the L2-regularised L2-loss dual solver and 

a unit bias was added to the feature vector was chosen, all others 

parameters were kept to default. 

4.2 Multimodal Decision Level Fusion  
Multimodal fusion of these modalities is then performed with a 

multiple linear regression model. The general form of the multiple 

linear regression model is 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝑛𝑋𝑛𝑖 + 𝜀𝑖 , i = 1,2, … , n        (3) 

Where i is the number of explanatory variables, 𝛽𝑗(j = 0,1,2, … , n) 

and 𝜀𝑖 are called the regression coefficient. The formula above is 

also called the general regression function. For our problem, for-

mula can be expressed as  

𝑃𝑚𝑢𝑙𝑡𝑖 = ∑ 𝛽𝑖𝑃𝑖
𝑁
𝑖=1 + 𝜀                                                                                                 (4) 

Where 𝑃𝑖   is the unimodal prediction of the modality i, 𝑃𝑚𝑢𝑙𝑡𝑖   is the 

fused prediction. 𝛽𝑖(i = 1,2, … , N) and 𝜀 are called the regression 

coefficient 

 

5. EXPERIMENTS 

5.1 Training Regression CNN 
We employ the Keras [18] implementation for image feature learn-

ing. We tried to directly train CNNs on the AVEC challenge da-

taset, while the result is not compromising. Though the dataset con-

tains tens of thousands of images, most of them belong to same 

person, which limits its variety. So we decide to pre-train the CNNs 
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on other emotion datasets. As there are hardly any datasets for con-

tinuous emotion recognition, we choose to use the FER dataset, 

which is a seven class emotion dataset. First, we use expression im-

ages from the FER dataset to pre-train the CNN model using our 

proposed architecture. The learning rate is set to 0.005. In each it-

eration, 256 samples are used for stochastic gradient optimization. 

After 200 epoch’s training, our proposed CNN get 67.82% recog-

nition accuracy on the FER validation set. Then we fine-tune the 

model on the AVEC dataset. The base rmsprop learning rate is set 

to 0.0001. Images are randomly shifted and rotated to enhance its 

variety, which is very important for training CNN. However, the 

finetuned result is not as good as the CNNs trained on the FER. So 

we directly use the last convolutional layers’ output as CNN fea-

tures. 

5.2 Monomial Features Regression Results 
Concordance Correlation Coefficient (CCC) [30] is calculated as 

the evaluation metric for this challenge, which is defined as: 

                                  CCC =
2𝜌𝜎𝑥𝜎𝑦

𝜎𝑥
2+𝜎𝑦

2+(𝜇𝑥−𝜇𝑦)2
                         (5) 

Where ρ is the Pearson correlation coefficient between the two var-

iables x and y, 𝜇𝑥 and 𝜇𝑦 are the means for the two variables x and 

y, 𝜎𝑥
2 and 𝜎𝑦

2 are the variances for the two variables x and y. 

Experiments results for each single feature set are shown in Table 

1. Twelve feature sets are present. There is one feature set for audio 

modality; six feature sets (MSDF, proposed CNN, proposed Res-

Net, AlexNet, Geometric, LGBPTOP) for visual modality; five fea-

ture sets (ECG, EDA, SCL, SCR, HRHRV) for physiological mo-

dality. We can see that: 1) The best result for arousal dimension is 

achieved by audio modality, with CCC up to 0.796. 2) The best 

result for valence dimension is achieved by visual modality, with 

CCC up to 0.612. 3) The deep visual features are relatively effec-

tive on the valence dimension than the arousal dimension. These 

results are in agreement with previous studies [7]. 

5.3 Fusion Results 
Table 1’s last row shows the result of decision level fusion for re-

sults from the audio feature, the MSDF feature, the proposed CNN 

feature, the proposed ResNet feature, the AlexNet feature, the geo-

metric feature, the LGBPTOP, the ECG feature, the EDA feature, 

the SCL feature, the SCR feature and the HRHRV feature on the 

development dataset. From this table, we can see that: 1) the L2-

regularised L2-loss dual SVR solver performs best. 2) The best re-

sult for arousal dimension is 0.824; the best result for valence di-

mension is 0.723; the best average result for these two dimension 

is 0.771. 

 

Table 2. The SVR Regression CCC on the development and 

test datasets for the fusion of all modalities 

Datasets CCC(arousal) CCC(valence) Avg 

Development 0.824 0.718 0.771 

Test 0.683 0.642 0.663 

 

Table 2 shows the best result of decision level fusion for results 

from the audio feature, the MSDF feature, the proposed CNN fea-

ture, the proposed ResNet feature, the geometric feature, the 

LGBPTOP, the ECG feature, the EDA feature, the SCL feature, the 

SCR feature and the HRHRV feature on the development and test 

dataset. 

 

Table 3. Performance comparison between the proposed ap-

proach and baseline in AVEC 2016 testing set. 

Datasets CCC(arousal) CCC(valence) Avg 

Our approach 0.683 0.642 0.663 

Baseline 0.682 0.638 0.660 

 

Table 3 shows the comparison between our best result of decision 

level fusion and baseline for results from the audio feature, the 

MSDF feature, the proposed CNN feature, the proposed ResNet 

feature, the geometric feature, the LGBPTOP, the ECG feature, the 

EDA feature, the SCL feature, the SCR feature and the HRHRV 

feature on the test dataset. Compared with the baseline [7], the pro-

posed approach performs better. 

 

6. CONCLUSIONS 
This paper presents our work in the Emotion Sub-Challenge of the 

6th Audio/Visual Emotion Challenge and Workshop (AVEC 2016) 

Due to some research shows that video features are more important 

for emotion recognition, we try a variety of manual and depth visual 

features. Besides the baseline features, we proposed extra the 

MSDF, and CNN features to recognize the expression phases of the 

current frame. The method is evaluated on the RECOLA dataset 

and gain very promising achievement on the test set. In the future, 

we will focus on improving predictions by extracting more power-

ful modality features and try other machine learning methods to 

further improve the recognition performance.  
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