
The Social Signal Interpretation (SSI) Framework

Multimodal Signal Processing and Recognition in Real-Time

Johannes Wagner, Florian Lingenfelser, Tobias Baur,
Ionut Damian, Felix Kistler and Elisabeth André

Lab for Human Centered Multimedia, University of Augsburg
name@hcm-lab.de

ABSTRACT
Automatic detection and interpretation of social signals car-
ried by voice, gestures, mimics, etc. will play a key-role for
next-generation interfaces as it paves the way towards a more
intuitive and natural human-computer interaction. The paper at
hand introduces Social Signal Interpretation (SSI), a framework
for real-time recognition of social signals. SSI supports a large
range of sensor devices, filter and feature algorithms, as well as,
machine learning and pattern recognition tools. It encourages
developers to add new components using SSI’s C++ API, but
also addresses front end users by offering an XML interface to
build pipelines with a text editor. SSI is freely available under
GPL at http://openssi.net.

Categories and Subject Descriptors
I.5 [PATTERNRECOGNITION]: Applications—Computer
vision; Waveform analysis; Signal processing

Keywords
Social Signal Processing, Real-time Pattern Recognition, Multi-
modal Fusion, Open Source Framework

1. INTRODUCTION
Today’s computer interfaces are still based on explicit com-

mands only. This of course differs greatly from natural human
communication, which to a large extent is based on implicit
interaction. A twinkle in one’s eye, the wave of one’s hand or
the tone of one’s voice sometimes tells more about a human’s
intentions than a hundred words. Moving towards more in-
tuitive interaction is therefore an important aim of research
on next-generation human-computer interfaces [7]. However,
intuitive interaction requires the computer to perceive implicit
user behaviour. Therefore, we have to equip machines with
tools that are able to recognize and interpret diverse types of
social signals carried by voice, gestures, mimics, etc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM 2013 Oct 21–25, 2013, Barcelona, Spain
Copyright 2013 ACM 978-1-4503-2404-5/13/10 ...$15.00.
http://dx.doi.org/10.1145/2502081.2502223.

Challenges
Developing tools able to detect and react to user behaviour in
real-time involves a number of challenges.

• Synchronization and coherent treatment of signals

Different kind of sensors have to be used to record the various
signals that carry social cues. Microphones replace the human
ear and capture the human voice and other sounds. Video
and depth cameras replace human vision and allow spotting
humans to analyze body and facial expressions. Motion sensors
worn by the user measure body posture and motion at very
high precision, while physiological sensors monitor physiological
signals, such as heart rate or respiration. The signals delivered
by these different types of sensors differ greatly in quantisation
and sample rate, e. g. a video image consists of several thousand
pixel values delivered at rates about 30 frames per second. An
audio sample on the other hand can be represented by a single
integer or floating point value, but should be sampled at a rate
of at least 16kHz. In order to combine information generated by
such varying sources raw signal streams need to be synchronized
and handled in a coherent way.

• High amount of variability, uncertainty and ambiguity

Human communication does not follow the precise mech-
anisms of a machine, but is tainted with a high amount of
variability, uncertainty and ambiguity. Hence, robust recogniz-
ers have to be built that use probabilistic models to recognize
and interpret observed behaviour. Most often recognition can
be broken down in three-steps: (a) Data segmentation, which is
the process of detecting on- and offsets of actions, which carry
relevant information about the user’s intention and goals. (b)
Feature extraction, which relates to the reduction of a raw sensor
stream to a set of compact features – keeping only the essential
information necessary to classify the observed behaviour. (c)
Classification, which describes the mapping of observed feature
vectors onto a set of discrete states or continuous values. To
accomplish these tasks we need to collect large numbers of
representative samples and train recognition models.

• Fusing multimodal data

To solve ambiguity in human interaction information extracted
from diverse channels need to be combined. This can happen
at various levels. Already at data level, e. g. when depth infor-
mation is enhanced with color information. At feature level,
when features of two ore more channels are put together to a
single feature vector. Or decision level, when probabilities of

831

different recognizers are combined. In the latter cases fused
information should represent the same moment in time. If this
is not possible due to temporal offsets (e. g. a gesture followed by
a verbal instruction) fusion has to take place at event level. The
preferred level depends on the type of information that is fused.

• Real-time processing

A natural and fluent interaction requires prompt reactions
to observed behaviour. Therefore sensor information needs to
be processed in pipelines on the fly, i. e. new sample values
are constantly read by the sensors while feature extraction and
recognition is applied simultaneously to buffered samples. The
window length at which components operate should be variable
as it depends on the type of signal and the level of processing.
Usually, early processing steps are applied on possibly overlap-
ping small windows of few milliseconds, while later processing
takes place over segments of up to several seconds.

Existing Tools
There is a number of free and commercial software related to
signal processing and machine learning. Some of them are spe-
cialized in a certain task, such as Weka1, which offers a large col-
lection of machine learning algorithms for data mining. Others
are tailored to a certain modality, like Praat2 for audio process-
ing. Or Matlab3, which offers a simplified scripting language for
applying a large body of signal processing algorithms. Tools with
support for live sensor input, on the other hand, are still rare.
Examples of architectures for multimodal processing, are Pure
Data4, EyesWeb [1] or OpenInterface [9]. Here, developers can
choose from a considerable large set of input, processing and out-
put components, and patch them using a graphical programming
environment to construct complex processing pipelines. How-
ever, they are not specially tuned for building machine learning
pipelines and collecting training corpora. A toolkit developed
for real-time affect recognition from speech is the openEAR
toolkit with its feature extracting backend openSMILE [3]. It
is, however, developed with a strong focus on audio processing.

Social Signal Interpretation (SSI)
The Social Signal Processing framework (SSI) complements ex-
isting tools by offering special support for the development of
online recognition systems from multiple sensors. Mentioned
problems are tackled in a number of ways:

• An architecture is established to handle diverse signals in
a coherent way, no matter if it is a waveform, a heart beat
signal, or a video image.

• Implementation details related to real-time processing such
as buffering, synchronization, and threading are hidden
from the developer.

• All tasks to assemble the machine learning pipeline, rang-
ing from live sensor input and real-time signal processing
to high-level feature extraction and online classification,
are covered.

• Different strategies for fusing information gained from
different modalities at various levels are available.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://www.praat.org
3http://www.mathworks.com/products/matlab/
4http://puredata.info/

• Support for a large variety of sensors, as well as, filter and
feature algorithms to process captured signals.

Two type of users are addressed: developers are provided a
C++–API that encourages them to write new components and
front end users can define recognition pipelines in XML from
available components.

A previous version of SSI (v0.8) has been described in [13].
Apart from additional sensor devices and signal processing al-
gorithms, a completely revised and way more powerful event
handling (replacing the concept of a Trigger) makes the main
contribution of the current version (v0.92).

2. ARCHITECTURE
SSI is implemented in C/C++ and optimized to run on mul-

tiple CPU cores. It has been developed with Visual Studio
on Microsoft Windows. Since the integration of sensors is a
highly platform dependent task other platforms are currently
not supported. However, apart from sensor wrappers and the
plugin interface large parts of the framework should be platform
independent. External libraries, such as OpenCv, have been
included to get rid of additional dependencies.

Data structures

• rate
• size
• type

stream

• address
• time
• type

event

data

In order to keep the framework
as generic as possible, data han-
dling is broken down to two
basic data structures: streams
and events. Basically every-
thing read from a sensor is trans-
formed into a stream and han-
dled as a continuous flow of sam-
ples at a fixed sample rate and size. Filter and feature algorithms
can be applied to manipulate a stream. During such operations
sample rate and size of a stream may change. To keep streams
synchronized SSI constantly checks if the number of retrieved
samples corresponds to the expected amount of samples accord-
ing to the sample rate of the stream. If a mismatch is detected
a stream is adjusted accordingly, i. e. samples are removed or
added via interpolation.

The counterpart of streams are events. Events describe parts
of streams that are relevant in some way, e. g. for classification.
Events are usually generated from continuous streams by apply-
ing some kind of activity detection. Their length is variable and
they may contain additional data, e. g. a feature set or a string.

Recognition

Classifier

Sensors Processing & Recognition Events
Raw Signals High Level Output Processed Signals

Event Board Filtering /
Feat. Extract.

Activity Detect.

Figure 1: Scheme of a basic recognition pipeline.

A recognition pipeline is set up from several autonomic compo-
nents. First, transformers can be applied to filter the raw signals
and transform it to a compact set of features. Based on the
pre-processed streams activity detection components are looking
for parts in the signal relevant for recognition. If an on and offset
is detected, an event is sent to the event board. Recognition
components that have subscribed to the event are now informed.
According to the segment they can request stream chunks and

832

feed them to a classifier. Note that the architecture suits both,
dynamic classification if streams of variable length are taken (e. g.
HMMs), and statistical classification if streams are described
by a set of statistical features (e. g. SVM). Finally, a new event
containing the recognized class probabilities is generated and
possibly received by other components, e. g. fusion algorithms.

Fusion

FE

FE
CL

CL

CL
CL

Event
Board CL

t1

t2

Figure 2: Ways of fusing information in SSI.
(FE=feature extraction, CL=classifier)

Figure 2 shows ways of fusing information in SSI. Two or
more feature extraction components can be plugged to the same
recognition component, which combines features before recog-
nition is applied. Likewise, outcome of two or more classifiers
can be combined. Finally, fusion may be applied at event level.
This allows combining information at different time scales.

3. AVAILABLE COMPONENTS
Currently, SSI supports streaming from multi-channel au-

dio interfaces, web/dv cameras, Nintendo’s Wii remote control,
depth sensors such as Microsoft’s Kinect, various physiological
sensors (Nexus, ProComp, IOM, Alive Heart Monitor), mobile
and stationed eye tracker (SMI), the Leap Motion, and a full
body motion capture system by XSense. Raw and transformed
streams can be stored, visualized and streamed via socket con-
nections possibly using Open Sound Control, Yarp or ActiveMQ.

SSI involves a large set of transformer components, such as
moving and sliding average filters, various normalization func-
tions, dsp filters (Butterworth, Chebyshev), derivative, and
integral filters, as well as, FFT and statistical features. Several
open source libraries have been integrated, including OpenCV,
ARToolKit, SHORE, Torch, or OpenSmile. Systems devel-
oped at our lab, such as FUBI [5] for Kinect based gesture
or EmoVoice [12] for emotional speech recognition, are fully
supported, too.

In order to accomplish the machine learning pipeline, clas-
sification models such as K-Nearest Neighbours, Naive Bayes,
Linear Discriminant Analysis, Support Vector Machines or Hid-
den Markov Models are part of SSI. Fusion strategies range from
weighted and unweighted voting schemes, algebraic combiners
over specialist selection algorithms and constructed lookup tables
to hybrid and meta level fusion. For feature selection, wrapper
approaches such as Sequential Forward/Backward Search, as
well as, filter approaches like Correlation-based Feature Selection
are available [14].

4. EXAMPLE
Let us demonstrate SSI by means of a pipeline to detect

gestures drawn with the mouse. This simple application is
chosen to convey the main idea behind SSI, but could be easily
extended to a more complex one, e. g. by replacing the mouse
with a Kinect sensor to recognize free-hand gestures.

In an XML pipeline each component is represented by an
XML element that includes information how it connects to other
components. We start from the sensor and open a connection
to each stream we would like to access (cursor coordinates and
button state).

<sensor create="Mouse" mask="1">

<provider channel="cursor" pin="p_cursor"/>

<provider channel="button" pin="p_button" />

</sensor>

To each channel we assign a pin name that allows us to
address the stream later on. By setting the option mask=1 we
tell the sensor to listen to the left mouse button. If it is pressed
the stream will now switch from 0 to 1. We detect non-zero
segments by plugging an instance of ThresEventSender that
we connect to the button stream (pin="p_button"):

<consumer create="ThresEventSender" ...

mindur="0.2" sname="mouse" ename="pressed">

<input pin="p_button" frame="0.25s" />

</consumer>

As soon as the button is released an event is fired. The name
of the event is set to pressed and the name of the sender to
mouse. We also demand that an event is only sent if the segment
has a duration of at least 0.2s. Finally, we set the frame size to
0.25s, i. e. the component will receive data in chunks of 0.25s
length.

In order to smooth the cursor signal we include a Butterworth
filter of order 5 and a cutoff frequency of 1Hz:

<transformer create="Butfilt" order="5" low="1.0">

<input pin="p_cursor" frame="0.1s"/>

<output pin="p_cursor_low"/>

</transformer>

Next, the low-passed cursor stream is picked up by a classifier,
but only when a button event was detected. Therefore – instead
of using a frame size – we set listen="pressed@mouse":

<consumer create="Classifier" ...

trainer="numbers" sname="mouse" ename="gesture">

<input pin="p_cursor_low" listen="pressed@mouse"/>

</consumer>

Via options we set the name of a pre-trained model (numbers)
containing templates for numbers 0-9. The result of a classi-
fication generates a new event (gesture@mouse). Finally, we
include an instance of SignalPainter to visualize current cur-
sor position and an instance of EventMonitor to display mouse
events during the last 2000ms (see Figure 3):

<consumer create="SignalPainter" size="10.0">

<input pin="p_cursor" frame="1" />

</consumer>

<listener create="EventMonitor">

<input listen="@mouse" span="20000" />

</listener>

Note that the frame size of the painter component is set to
1, which forces the component to draw each sample.

Figure 3: Output of example pipeline.

833

5. APPLICATION
SSI has been used by researchers around the world. Our

EmoVoice component [12] (as part of SSI) was used in a various
number of showcases in the European projects CALLAS and
IRIS to analyse the expressivity in user speech. An example is
the E-Tree [4], an Augmented Reality art installation of a virtual
tree that grows, shrinks, changes colours, etc. by interpreting
affective input from video, keywords and emotional voice tone.

SSI was also employed to construct the CALLAS expres-
sivity corpus [2]. It consists of synchronized recordings from
high-quality cameras and microphones, Nintendo’s Wii remote
controls and a data glove. Experiments have been conducted
in three countries, namely Germany, Greece and Italy. In total,
about 15 hours of interaction from more than 50 subjects was
collected.

Within the AVLaughterCycle project, which aims at devel-
oping an audiovisual laughing machine, SSI has been used for
recording and laughter detection in real-time [11]. The work
is continued within the EU-funded ILHAIRE project. A first
prototype of an interactive system that detects human laughs
and responds appropriately is reported in [6].

TARDIS, another project under EU funding, aims to build a
simulation platform for young people to improve their social skills.
SSI is used for real-time detection of user’s emotions and social
attitudes through voice, body and facial expression recognition.
A visualization tool called NoVA has been developed to visualize
detected cues in graphs and heatmaps and give recommendations
to the user.

The EU funded CEEDs project exploits the users’ unconscious
processes to optimize the presentation of large and complex
databases. To this end, a sensor platform has been developed
on top of SSI [15] and integrated into the eXperience Induction
Machine (XIM), a multiuser mixed-reality space equipped with
a number of sensors and effectors [10].

A research group at the Institute for Creative Technologies
(ICT) from University of Southern California has developed
a multimodal sensor fusion framework on top of SSI called
MultiSense, which they use to investigate the capabilities of
automatic non-verbal behavior descriptors to identify indicators
of psychological disorders [8].

Outside an academic context, SSI was used at the Music Hack
Day5 2013 in Barcelona to process physiological signals captured
with the e-Health Sensor Platform for Arduino. During the
hacking sessions participants were encouraged to use extracted
user states to implement music related projects.

6. CONCLUSION
We introduced the Social Signal Interpretation (SSI) frame-

work for real-time recognition of social signals. SSI supports a
large set of sensor devices and allows users to set up recognition
pipelines based on synchronized input from multiple modalities.
A C++–API encourages developers to develop new components,
while a simple XML interface is offered to front end users. SSI
is freely available under GPL at http://openssi.net.

7. ACKNOWLEDGMENTS
The work described in this paper is funded by the Euro-

pean Union under research grant CEEDs (FP7-ICT-2009-5)
and TARDIS (FP7-ICT-2011-7), and ILHAIRE, a Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ment n◦270780.
5http://bcn.musichackday.org/2013/

8. REFERENCES
[1] A. Camurri, P. Coletta, G. Varni, and S. Ghisio.

Developing multimodal interactive systems with eyesweb
xmi. In Proc. NIME, pages 305–308, New York, USA,
2007. ACM.

[2] G. Caridakis, J. Wagner, A. Raouzaiou, Z. Curto,
E. André, and K. Karpouzis. A multimodal corpus for
gesture expressivity analysis. In Proc. LREC, 2010.

[3] F. Eyben, M. Wöllmer, and B. Schuller. Opensmile: the
munich versatile and fast open-source audio feature
extractor. In Proc. MM, pages 1459–1462, New York,
USA, 2010. ACM.

[4] S. W. Gilroy, M. Cavazza, R. Chaignon, S.-M. Mäkelä,
M. Niranen, E. André, T. Vogt, J. Urbain, H. Seichter,
M. Billinghurst, and M. Benayoun. An affective model of
user experience for interactive art. In Proc. ACE, pages
107–110, New York, USA, 2008. ACM.

[5] F. Kistler, B. Endrass, I. Damian, C. Dang, and E. André.
Natural interaction with culturally adaptive virtual
characters. JMUI, pages 1–9.

[6] R. Niewiadomski, J. Hofmann, J. Urbain, T. Platt,
J. Wagner, B. PIOT, H. Cakmak, S. Pammi, T. Baur,
S. Dupont, M. Geist, F. Lingenfelser, G. McKeown,
O. Pietquin, and W. Ruch. Laugh-aware virtual agent and
its impact on user amusement . In Proc. AAMAS, Saint
Paul, USA, May 2013.

[7] M. Pantic, A. Nijholt, A. Pentland, and T. S. Huang.
Human-centred intelligent human-computer interaction
(hci2): how far are we from attaining it? IJAACS,
1(2):168–187, August 2008.

[8] S. Scherer, G. Stratou, M. Mahmoud, J. Boberg,
J. Gratch, A. Rizzo, and L.-P. Morency. Automatic
behavior descriptors for psychological disorder analysis. In
Proc. FG, 2013.

[9] M. Serrano, L. Nigay, J.-Y. L. Lawson, A. Ramsay,
R. Murray-Smith, and S. Denef. The openinterface
framework: a tool for multimodal interaction. In Proc.
CHI, pages 3501–3506, New York, USA, 2008. ACM.

[10] A. Spagnolli and L. Gamberini, editors. Validating
presence by relying on recollection: Human experience and
performance in the mixed reality system XIM, Padova,
Italy, 16/10/2008 2008. CLEUP Cooperativa Libraria
Universitaria Padova.

[11] J. Urbain, R. Niewiadomski, E. Bevacqua, T. Dutoit,
A. Moinet, C. Pelachaud, B. Picart, J. Tilmanne, and
J. Wagner. Avlaughtercycle. JMUI, 4:47–58, 2010.

[12] T. Vogt, E. André, and N. Bee. Emovoice - a framework
for online recognitionof emotions from voice. In Proc. PIT,
Kloster Irsee, Germany, June 2008. Springer.

[13] J. Wagner, F. Lingenfelser, and E. André. The social
signal interpretation framework (ssi) for real time signal
processing and recognition. In Proc. of INTERSPEECH,
2011.

[14] J. Wagner, F. Lingenfelser, E. André, and J. Kim.
Exploring fusion methods for multimodal emotion
recognition with missing data. IEEE TAC, 99, 2011.

[15] J. Wagner, F. Lingenfelser, E. André, D. Mazzei,
A. Tognetti, A. Lanatà, D. D. Rossi, A. Betella, R. Zucca,
P. Omedas, and P. F. Verschure. A sensing architecture for
empathetic data systems. In Proc. AH, page 96–99,
Stuttgart, Germany, 2013. ACM.

834

