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ABSTRACT

Face analytics benefits many multimedia applications. It consists

of a number of tasks, such as facial emotion recognition and face

parsing, and most existing approaches generally treat these tasks

independently, which limits their deployment in real scenarios.

In this paper we propose an integrated Face Analytics Network

(iFAN), which is able to perform multiple tasks jointly for face

analytics with a novel carefully designed network architecture to

fully facilitate the informative interaction among different tasks.

The proposed integrated network explicitly models the interactions

between tasks so that the correlations between tasks can be fully

exploited for performance boost. In addition, to solve the bottleneck

of the absence of datasets with comprehensive training data for

various tasks, we propose a novel cross-dataset hybrid training

strategy. It allows “plug-in and play” of multiple datasets anno-

tated for different tasks without the requirement of a fully labeled

common dataset for all the tasks. We experimentally show that the

proposed iFAN achieves state-of-the-art performance on multiple

face analytics tasks using a single integrated model. Specifically,

iFAN achieves an overall F-score of 91.15% on the Helen dataset

for face parsing, a normalized mean error of 5.81% on the MTFL

dataset for facial landmark localization and an accuracy of 45.73%

on the BNU dataset for emotion recognition with a single model.
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1 INTRODUCTION

Face analytics is essential for human-centric multimedia research

and applications. Face analytics tasks include face detection [5],

facial landmark localization [25, 29], face attribute prediction [17],

face parsing [21, 30], facial emotion recognition [6, 14], face recog-

nition [9, 15], etc. Traditionally, different face analytics tasks are
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Figure 1: Our motivation. Traditionally different face analytics

tasks are performed by different models (symbolized by cameras).

Eachmodel aims at a specific task. In contrast, iFAN solves all tasks

by an integrated model, which exploits the correlations among the

tasks to enable full task interaction and performance boost, serving

as a one-stop solution to all the face analytics problems of interest.

treated separately and performed by designing different models.

But in some scenarios, people need to address multiple face analyt-

ics tasks. For example, for facial emotion recognition task, people

also need to address facial landmark localization task as the input to

facial emotion recognition task needs to be aligned by the detected

facial landmarks. So it is attractive to design an integrated face

analytics network which performs multiple tasks in one go.

In this work we propose an integrated face analytics network

(named iFAN). Different from existing approaches where separate

models are used for different tasks, iFAN is a powerful model to

solve different tasks simultaneously, enabling full task interactions

within the model. See Figure 1. In additon, the iFAN uses a novel

cross-dataset hybrid training strategy to effectively learn from mul-

tiple data sources with orthogonal annotations, which solves the

bottleneck of lacking complete training data for all involved tasks.

The proposed iFAN uses a carefully designed network archi-

tecture that allows for informative interaction between tasks. It

consists of four components: a shareable feature encoder, feature

decoders, feature re-encoders and a task integrator. The shareable

feature encoder, which is the backbone network, learns rich fa-

cial features that are discriminative for different tasks. Each of the

feature decoders produces the prediction on top of the learned fea-

tures for one specific task. To promote interactions among different

tasks within iFAN, the feature re-encoders and task integrator are

introduced. The feature re-encoders in iFAN transform the task

specific predictions back to feature spaces. We use the term “re-

encoder” to stress the function of converting the predictions back

to the feature space. Specifically the feature re-encoders take as
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input raw predictions and generate encoded features of the predic-

tions. The feature re-encoders can align the features for different

tasks to similar semantic levels to facilitate the task interaction

process. Based on the representations from re-encoders, the task

integrator in iFAN integrates the encoded predictions of different

tasks into multi-resolution and multi-context features that facilitate

the inter-task interactions. Specifically, with access to the encoded

predictions of all tasks, the task integrator provides the full con-

text information for the task interactions. It introduces a feedback

loop, which connects the integrated context information back to

the backbone network, which is beneficial for performing multiple

tasks simultaneously.

To the end of jointly addressing different tasks, one bottleneck

is the absence of datasets with complete training data for all the

tasks of interest. Usually each dataset only provides annotations

for a specific task (e.g. emotion category for emotion recognition,

segmentation mask for face parsing), and it is very hard to find a

dataset with a complete set of labels for all the tasks of interest.

Thus we propose a new cross-dataset hybrid training strategy to

enable iFAN to learn from multiple data sources and perform well

on all tasks simultaneously. The proposed cross-dataset hybrid

training strategy can effectively model the statistical differences

across different datasets to reduce the negative impacts of such

differences. With the proposed training strategy, the iFAN does not

require complete annotations for all the tasks over a single dataset.

Instead, this training strategy allows iFAN to learn from multiple

data sources without annotation overlapping. Such “plug-in and

play” feature greatly increases the flexibility of iFAN.

The iFAN uses only one network for multiple face analytics

tasks, enabling users to customize their own combination of tasks

for iFAN to perform simultaneously. The model size, computation

complexity and inference time are linearly reduced compared with

separate models. Moreover, iFAN goes a step further to analyze

the correlations between the tasks, which enables interaction with

each other for performance boost.

It is worth noting that iFAN is different from multi-task learning.

Unlike the simple parameter sharing scheme in commonly used

multi-task learning models, iFAN explicitly models the interaction

between different tasks. More than merely sharing a common fea-

ture space, the outputs from different tasks also jointly influence

the predictions of other tasks. Besides, the proposed iFAN is able to

learn from multiple data sources with no overlapping, where tradi-

tional multi-task learning approaches will fail. Thus the expensive

cost of collecting comprehensive training data for all involved tasks

can be substantially reduced. Our work is also different from trans-

fer learning which considers to learn the same task from different

datasets. In contrast, our proposed cross-dataset hybrid learning

is able to utilize the useful knowledge on learning different tasks

from non-overlapping datasets.

2 RELATEDWORK
In this section, we briefly review related work, including standard

multi-task deep learning and specific face analytics.

Multi-Task Deep Learning. Deep neural network has outstanding

learning capacity and thus it is possible for it to learn to perform

multiple tasks at the same time. For example, in the scenario of

image analysis, the features learned by deep neural networks at

bottom layers are known to characterize low-level features such as

edges and blobs, which are common for all image analysis tasks so

they are universal for different vision tasks. Some work shows that

the higher level features can also be shared across different tasks.

For instance, Fast RCNN [7] uses the same network to perform

object confidence score prediction and bounding box regression.

In addition to these two tasks, Faster RCNN [19] uses the same

network to generate region proposals as well. A recent work Mask

RCNN [10] adds a segmentation task, i.e. mask prediction, to the

same trunk of the network. TCDCN [29] uses a deep network to

perform the task facial landmark localization and face attribute

prediction (such as facial emotion, pose) and shows that adding

face attribute prediction can help improve the performance of facial

landmark localization. MTCNN [28] performs the task of face detec-

tion and facial landmark localization together and HyperFace [18]

performs face detection, landmark localization, pose estimation

and gender recognition in one network. We can see that a single

network is capable of performing multiple tasks together. However,

the informative relations among different tasks are not explored

in these previous works. Existing multi-task learning networks

generally focus on learning common representations for different

tasks. All the tasks are learned in parallel and the useful feedback

information from one task for other tasks is not modeled. A re-

cent work [1] models task interactions with integrated perception,

but only simple hand-crafted prediction encoding scheme is used.

In contrast to existing multi-task learning models, our proposed

iFAN explicitly models the interaction between different tasks with

learnable feature re-encoders, and the feedback information effec-

tively contributes to the representation learning as well as boosting

performance for all the tasks.

Face Analytics. A lot of research has been conducted on indi-

vidual face analytics, especially on analyzing challenging uncon-

strained faces, i.e. faces in the wild. The field of face analytics has

been accelerated by emergence of large scale unconstrained face

datasets. One of the large face attribute prediction datasets, CelebA,

is proposed in [17]. MsCeleb-1M dataset [9] is a big face-in-the-wild

dataset for face recognition. Most of the datasets focus on one task

with labels only for that task. There are some datasets which have

multiple sets of labels for different tasks. Annotated Facial Land-

marks in the Wild (AFLW) [12] provides a large-scale collection of

annotated face images with face location, gender and 21 facial land-

marks. Multi-Task Facial Landmark (MTFL) dataset [29] contains

annotations of five facial landmarks and attributes of gender, head

pose, etc. However, such datasets can only cover a subset of all the

face analytics tasks. Thus it is usually not easy to find a dataset with

a complete label set for combinations of tailored tasks of interest.

Thus a model which allows “plug-in and play” of multiple datasets

from different sources is of great practical value but is still absent.

3 PROPOSED METHOD

In this section, we elaborate on the proposed integrated Face An-

alytics Network (iFAN). Its overall structure is shown in Figure 2.

The backbone network of iFAN learns shareable features for differ-

ent face analytics tasks, and different tasks take in features from

different layers within the backbone network to perform prediction.

In Figure 2, three tasks are illustrated, including facial landmark
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Figure 2: Overall structure of iFAN. Black blocks denote the backbone network for learning shareable features. Each colored block is associated

with one task, namely, blue for facial landmark localization, green for facial emotion recognition and red for face parsing. Each taskhas its own

feature decoder and feature re-encoder, which perform task prediction and prediction encoding, respectively. The task integrator integrates

the encoded prediction features fromdifferent tasks inmultiple scales of spatial resolutions. The integratedmulti-resolution features are then

fed back into the respective multiple feature spaces in the backbone network. Different tasks are associated with different training datasets

without overlapping in both images and annotations. The whole network is trained with the proposed cross-dataset hybrid training strategy.

localization, facial emotion recognition and face parsing, each of

which employs a feature decoder to make predictions for the corre-

sponding task. Different from existing multi-task learning models,

iFAN introduces task-specific feature re-encoders to facilitate task

interaction. The feature re-encoders takes predictions from differ-

ent tasks and re-encode them back to semantically rich feature

spaces across the tasks in multiple spatial resolutions. iFAN also

has a task integrator, which aggregates the re-encoded features

from different tasks and feeds them back to the backbone network

for task interaction and improve the shareable feature learning. To

solve the data incompleteness problem, we propose a novel cross-

dataset hybrid training strategy, which allows iFAN to effectively

learn from multiple datasets with orthogonal annotations, without

requiring any dataset with comprehensive annotations.

3.1 Preliminary

We first introduce the problem setup formally. Suppose there are T
tasks under consideration and there is a training dataset with a com-

plete set of labels for all the T tasks: D = {(xi ,y
1
i ,y

2
i , · · · ,y

T
i )

N
i=1},

where xi is the i-th data sample andyti ,∀t = 1, 2, · · · ,T is the corre-

sponding label for the t-th task. The traditional multi-task learning

problem seeks to find the set of parameters such that

(θ̂ S , θ̂ 1, · · · , θ̂T ) = argmin
θS ,θ 1, ··· ,θT

T∑
t=1

1

N

N∑
i=1

�
(
fθ t ◦ fθS (xi ), y

t

i

)
, (1)

where � denotes the loss between the prediction and the ground

truth label, θS is the shared network parameter and θ t is the param-

eter to perform the t-th task. Although widely used, the multi-task

learning in Eqn. (1) can be improved from two perspectives. First,

the formulation only implicitly models the interactions between

tasks through the shared data feature and an explicit modeling is

not present. Second, the model requires a dataset with complete

labels for all tasks, which is rather difficult to collect. It is beneficial

if we can get rid of this requirement. We propose to make these

two improvements over the original multi-task learning through a

new integrated network model and a new cross-dataset learning,

detailed in the following two subsections.

3.2 Task Integrator

In the traditional multi-task learning formulated in Eqn (1), different

tasks share common features for exploiting correlations among

different tasks. However, the interactions among different tasks are

not explicitly modeled—they only interact with each other through

error back-propagation to contribute to the learned feature and such

implicit interactions are not controllable. The prediction of a certain

task is certainly benefited from other related tasks for face analytics,

but this dependency is rarely modelled in the traditional multi-

task learning. The proposed iFAN explicitly models and exploits

beneficial feedback from different tasks through a task integrator.

The task integrator integrates the features from the predictions of

all the tasks, and feeds them back to the backbone network. In this

way the task integrator provides the information of other tasks’

predictions in order to further refine the prediction of the current

task under consideration.

As the predictions are decoded by different task-specific de-

coders, the predictions of different tasks lie in different semantic

spaces and it is not trivial to properly model the inter-task interac-

tions. We propose to use the task-wise feature re-encoder to encode

the predictions from different tasks into a set of semantically rich

features. The re-encoded features from different tasks are integrated

by the task integrator, and then fed-back to the backbone network.

As different tasks draw features from different layers in the back-

bone network, we feedback the re-encoded features to multiple

layers in the backbone network with different spatial sizes. The

feature re-encoder naturally generates a pyramid of features with

different spatial sizes, and all of them are used in the multi-layer,

multi-resolution feedback. The encoded features facilitate inter-

actions among different tasks during training and deploying the

integrated face analytics model.

The proposed iFAN uses a task integrator and task-specific fea-

ture re-encoders to explicitly model task interactions. Formally the

task integrator models the effects of other tasks by creating a set
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of integrated feature spaces where the predictions from different

tasks are encoded to

fINT(x ) =

T∑
t=1

f
θ
t
e
◦ fθ t ◦ fθS (x ) + fθS (x ), (2)

where fθ S (x) is the learned feature shareable across multiple tasks

for one input sample x and fθ t ◦ fθ S (x) is the prediction of the t-th
task based on fθ S (x). Parametrized by θ te , the feature re-encoder of
the t-th task performs encoding of the predictions of the t-th task,

as represented by fθ te ◦ fθ t ◦ fθ S (x). The summation here denotes

feature level integration. This encoding space of an input sample x
aggregates the features from not only the original feature, but also

the encoded predictions from all the tasks.

Based on fINT(x), we can reformulate Eqn. (1) as

(θ̂ S , θ̂ 1, · · · , θ̂T , θ̂ 1
e , · · · , θ̂

T
e ) =

argmin
θS ,θ 1, ··· ,θT ,θ 1

e , ··· ,θ
T
e

T∑
t=1

1

N

N∑
i=1

�
(
fθ t ◦ fINT(xi ), y

t

i

)
.

(3)

We can see that the prediction of the t-th task is made from the

integrated feature space fINT, which contains features from all the

tasks. The integrated feature space provides rich information and

context cues for the predictions of the t-th task.

The formulation in Eqn. (2) extends naturally to an iterative

updating formulation:

fINTI (x ) =

{∑
T

t=1 fθ te
◦ fθ t ◦ fINTi−1 (x ) + fθS (x ), for I > 1

f
θS

(x ), for I = 0.
(4)

With this iterative formulation, Eqn. (3) becomes

(θ̂ S , θ̂ 1, · · · , θ̂T , θ̂ 1
e , · · · , θ̂

T
e ) =

argmin
θS ,θ 1, ··· ,θT ,θ 1

e , ··· ,θ
T
e

T∑
t=1

1

N

N∑
i=1

ITER∑
I=0

�
(
fθ t ◦ fINTI (xi ), y

t

i

)
,

(5)

where ITER is the maximal iteration of task interactions. When

ITER = 0, Eqn. (5) reduces to ordinary multi-task learning formula-

tion in Eqn. (1). With ITER > 0, the iterative refinement is turned

on with the feedback loop (the connection from the task integra-

tor to the backbone network in Figure 2). With the feedback loop

and the iterative refinement process, the task integrator enables

interactions of different tasks and helps make better predictions.

3.3 Cross-dataset Hybrid Training

Based on Eqn. (5), we propose a cross-dataset hybrid training strat-

egy to bypass the requirement of data fully labeled for all the T
tasks, as it is difficult to satisfy in real scenarios. We consider the

more realistic cases where data annotations are incomplete and aim

at an integrated network model for all the T tasks with incomplete

training information. Each task is provided with a specific training

dataset which is denoted as Dt = {(xti ,y
t
i )
nt
i=1}, where x

t
i is the i-th

input data point for the t-th task, and yti is the corresponding label.

There is no overlapping between datasets for different tasks, i.e.

xti � xt
′

j ,∀i, j, t , t ′, t ′ � t . This setting is quite common in real-

ity. A trivial and straightforward solution is to train T models for

theT tasks, each with the respective training data Dt . Such a trivial

solution clearly leaves the relations between tasks un-modeled and

thus is sub-optimal. In the proposed iFAN, we build an integrated

network, which is trained on multiple data sources, yet still enjoys

the benefits of multi-task learning.

When training from multiple data sources Dt , t = 1, 2, · · · ,T ,
we cannot optimize the parameters for all the tasks as in Eqn. (5),

but need to focus on one of the tasks every time. When we optimize

the integrated network for the t-th task, we have

(θ̂ S , θ̂ t , θ̂ 1
e , · · · , θ̂

T
e ) =

argmin
θS ,θ t ,θ 1

e , ··· ,θ
T
e

1

nt

nt∑
i=1

ITER∑
I=0

�
(
fθ t ◦ fINTI (x

t

i
), yt

i

)
.

(6)

Here, we only use the supervision information from the t-th task,

but the integrated feature fINTI
(xti ) incorporates the prediction

information from all other tasks for the input sample xti in the

t-th task. Optimizing Eqn. (6) directly will lead only to the optimal

solution to the t-th task, making the common feature space θS bias

towards the t-th task. Such a situation is undesired and our final

target is an optimal solution to all the tasks.

In iFAN, we use a strategic alternative training scheme to achieve

the cross-dataset hybrid training. We use Δt
I
(·) to denote the oper-

ation of one gradient update of the involved parameters with the

provided data (·) in the I -th task interaction towards the direction of
optimizing Eqn. (6) for the t-th task. Then the cross-dataset hybrid

training strategy can be summarized in Algorithm 1.

The cross-dataset hybrid training contains two stages: task-wise

pre-training and batch-wise fine-tuning. For the task-wise pre-

training, we loop through every dataset to learn the common fea-

tures and the task specific feature decoders so that task specific

feature decoders have the ability to perform the task. During the

process, the common feature may bias towards the latest task, to

which the batch-wise fine-tuning is used as a complement. The

feature re-encoders and task integrator are also added in the sec-

ond stage so that the task interactions are enabled. Since with

pre-training, each feature decoder can make reasonable predictions

about its own task, we turn on task interaction only in the second

Algorithm 1 Cross-dataset Hybrid Training Strategy

Require: Randomly initialized θ S , θ 1, θ 2, · · · , θT , θ 1
e , θ

2
e , · · · , θ

T
e ,

Training data Dt = {(x t
i
, yt

i
)
nt

i=1 }, Batch size of the gradient descent

nb , Total number of task interaction iterations ITER, Number of

Pre-training epochs EP

1: for t ← 1 to T do

2: for e ← 1 to EP do

3: while Dt is not traversed do

4: Sample nb data points from Dt as {(x
t

i
, yt

i
)
nb

i=1 }

5: θ S , θ t ← Δt0 ({(x
t

i
, yt

i
)
nb

i=1 })

6: end while

7: end for

8: end for

9: while θ S , θ 1, · · · , θT , θ 1
e , · · · , θ

T
e are not converged do

10: for t ← 1 to T do

11: Sample nb data points from Dt as {(x
t

i
, yt

i
)
nb

i=1 }

12: for I ← 1 to ITER do

13: θ S , θ t , θ 1
e , · · · , θ

T
e ← Δt

I
({(x t

i
, yt

i
)
nb

i=1 })

14: end for

15: end for

16: end while
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stage. In the second stage, each task will take turns to update its

parameters with the guidance of its label information. Moreover,

each task has an equal number of training samples from its training

set for each update. It addresses the issue of imbalanced numbers of

training samples from multiple datasets, and the resultant network

will not bias towards any of the training sets with larger numbers

of training data.

Empirically, we find that task-dependent batch normalization

parameters are important in the backbone network, which agrees

with [2]. Different datasets vary in terms of statistical distributions

such as image quality, illumination condition on faces, etc. The

task-wise batch normalization will effectively address the shifts of

statistical distributions of the features across different datasets to

facilitate the learning of useful and robust common features within

multiple datasets. Although simple, we experimentally demonstrate

that together with the task integrator, the cross-dataset hybrid

training strategy effectively helps the integrated face network learn

from multiple data sources.

4 EXPERIMENTS

We conduct experiments to validate the power of iFAN with mul-

tiple face tasks, and also provide ablation study in this section.

4.1 Experimental Setting

4.1.1 Datasets. In the experiments, we consider three impor-

tant fine-grained face analytics tasks including face parsing, facial

landmark localization, and facial emotion recognition. Each task is

associated with a different dataset.

The task of face parsing (or face segmentation, face labeling)

aims to predict semantic categories for all pixels in face images. We

use the popular Helen dataset [13] for this task. It contains 2,330

images with accurate and detailed annotations of the primary facial

components. The work [21] modifies the original Helen dataset to

suit a face parsing task by generating segmentation masks for the

facial components (such as eyes, nose, mouth, etc.) and hair regions.

The categories in the Helen dataset include eyes, eyebrows, nose,

inside mouth, upper lip, lower lip, face skin and hair. Every pixel

needs to be classified into one of these categories or background.

Facial landmark localization aims to find coordinates of pre-

defined facial landmarks. For this task, we use Multi-Task Facial

Landmark (MTFL) dataset [29]. It contains 12,995 face images an-

notated with 5 facial landmarks, namely, eye centers, nose tip and

mouth corners. The images in the dataset contain various pose

angles and occlusion, thus it is challenging to accurately localize

facial landmarks.

For facial emotion recognition, we use BNU Large-scale Spon-

taneous Visual Expression Database (BNU-LSVED) [22, 23]. It is

designed to capture facial emotions in the educational environ-

ment. It contains 1,572 subjects, with totally about 63,000 images

and 7 emotions: “Happy”, “Surprised”, “Disgusted”, “Puzzled”, “Con-

centrated”, “Tired” and “Distracted”. The original dataset contains

images in videos and there are a lot of near duplicates. We adopt this

dataset for the task of static emotion recognition by sampling im-

ages from the video sequences. The resultant dataset after sampling

contains about 6,100 images.

Different tasks have different sets of labels and there is no over-

lap between them. Currently, there is no dataset that covers every

possible combination of face analytics tasks of interest. Our pro-

posed iFAN model and the cross-dataset hybrid training strategy

allow any task to be plugged into the integrated framework without

worrying the statistical differences among the different datasets.

4.1.2 Implementation Details. In iFAN, we use fully convolu-

tional DenseNets [11] as the backbone network, considering its

outstanding ability at re-using features learned at different layers.

The fully convolutional DenseNet has a down-sampling stage and

an up-sampling stage. In both stages, we use 5 dense blocks with 3

layers in each block and a growth rate of 12. All the convolutional

layers in the dense blocks are resolution preserving with stride

1 and kernel size 3, except for the initial convolution where we

use kernel size 7 to increase the receptive field. At the end of each

dense block in the down-sampling stage, we use average pooling to

halve the spatial dimension. At the end of each dense block in the

up-sampling stage, we use sub-pixel sampling layer [20] followed

by a convolutional layer to double the feature spatial dimension.

The input size of each face is 128. In the down-sampling stage, the

spatial resolution of the feature maps reduce from 128 to 64, 32,

16, 8 and 4 after each average pooling operation. Inversely, in the

up-sampling stage, the spatial resolution of the features gradually

increases from 4 back to 128.

For facial landmark localization, the features with dimension

8×8 in the down-sampling stage are used as input for the landmark

decoder which performs a regression to the normalized coordinates

of the facial landmarks with the Euclidean distance loss. For the

face parsing task, we use the features with dimension 128 at the

end of the up-sampling stage as input to the face parsing decoder

which performs a per-pixel prediction of the pixel label with a

categorical cross entropy loss. For the facial emotion recognition

task, we use the feature with spatial size 4 as input for the attribute

decoder which performs a single prediction of the attribute label

with a categorical cross entry loss. Note that for the face parsing

task, the loss is calculated on the 128 × 128 prediction map. But the

prediction is done by resizing the prediction map to the original

size of the input with bilinear interpolation and then comparing

with the ground truth label for each pixel.

For the feature re-encoders, we design different encoders for dif-

ferent tasks. For the facial landmark localization task, we construct

128 × 128 point heat maps with hot values indicating the locations

of the landmarks. We enlarge the one-hot point heat map to a ra-

dius of 5 pixels. Then the point heat maps are used as inputs into

alternating convolution layers and max pooling layers to perform

feature encoding of the landmark predictions. For the face parsing

task, we feed the parsing prediction map, which also has the size

of 128 × 128 and contains cues for face parsing results, into the

feature re-encoder with alternating convolution layers and max

pooling layers. For the attribute prediction task, we use several fully

connected layers to encode the predicted probability vectors, and

tile the encoded feature to the corresponding spatial dimensions.

The feature re-encoders convert the raw predictions of different

tasks into a pyramid of semantically-rich features to facilitate task

interaction and integration. The integration in Eqn. (4) is realized

by feature concatenation.

For training, we use mini-batch gradient descent with batch

size 24, 64 and 96 for parsing, landmark and emotion, respectively.

The optimizer used is RMSprop [24]. For pre-training, each task
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Figure 3: Some results of face analytics from iFAN. The top block

shows images from the Helen dataset (which is designed for face

parsing).White dots on the faces indicate detected facial landmarks.

The second row shows the predicted face parsing results and the

third row is the parsing ground truth. The second block in blue

shows the face images from the MTFL dataset (designed for land-

mark detection). White dots are detected landmarks and red ones

are given ground truth. The second row in this block shows the face

parsing results. The bottom block shows face images from the BNU

dataset with detected lardmarks, face parsing maps and correctly

predicted facial emotions. All the results demonstrate iFAN is good

at modeling interactions between multiple tasks, even there is no

complete training image set. The figure is best viewed in color.

is trained with learning rate 10−3 for 30 epochs. For fine-tuning,

the total number of training epochs is 200 and the learning rate

reduces from 10−3 to 10−6 during the entire training process.

4.1.3 Evaluation Metrics.

Face parsing. For face parsing we follow [21] and use F-score for

evaluation, which is the harmonic mean of precision and recall, to

measure the performance. We report the F-score for all the classes

in the Helen dataset, as well as two additional scores for all the

components associated with mouth (Month-All) and overall score

to keep the comparison consistent with [21] and [16].

Facial Landmark Localization. For facial landmark localization,

we report the results on two widely used metrics [25, 29], i.e. nor-

malized mean error and failure rate. The normalized mean error

is the distance between the estimated landmark and the ground

truth, normalized with respect to the inter-ocular distance. A failure

happens when the normalized mean error is larger than 10%.

Facial Emotion Recognition. For facial emotion recognition, we

adopt the accuracy of the prediction as compared with the ground

truth annotations as the evaluation metric.

4.2 Results and Comparison

We compare the performance of the proposed iFAN with well es-

tablished baseline methods. We consider two multi-task settings

for iFAN: 1) performing facial landmark localization and face pars-

ing simultaneously (denoted as 2T); 2) performing facial landmark

localization, face parsing and emotion recognition simultaneously

(denoted as 3T).We report the performance of iFAN and state-of-the-

art baseline methods. For facial landmark localization, we compare

with state–of-the-art TSPM [31], ESR [4], CDM [27], RCPR [3],

SDM [26], TCDCN [29] and MTCNN [28]. For face parsing, we

compare with Generative Shape Regularization Model (GSRM) [8],

Examplar [21], Multi-Objective [16] and iCNN [30]. For our results,

we follow the official training/testing split of the MTFL dataset

in [29] and the Helen dataset as described in [21], and report the

performance on the respective testing set. The second setting in-

volves BNU-LSVED, which is a relatively new one without public

training/testing split protocols, we choose 20% subjects in each

emotion category as the testing set and the rest are used for train-

ing/validation (with no overlapping subjects in training and testing

sets). We use the same network structure to train different strong

baselines for comparison. No other external datasets are used during

the training process for both the two settings.

4.2.1 Facial Landmark Localization. The performance on the

facial landmark localization task with iFAN and other baselines is

shown in Figure 4. The normalized mean errors on different land-

marks for different methods are illustrated. iFAN achieves the best

performance for all the landmarks, outperforming state-of-the-art

performance reported before. Specifically, the NMEs for both the

two-task (2T) and three-task (3T) settings and the performance over

different iterations of interactions (Iter0, Iter1 and Iter2) are detailed

in Table 1. For Iter0, there is no interaction between the tasks, and

iFAN reduces to an ordinary multi-task learning network, except for

it is trained with multiple non-overlapping datasets. For Iter1 and

Iter2, interactions between tasks are performed within iFAN. We

can also observe that within iFAN, more iterations of interactions

help the landmark localization achieve lower normalized mean er-

ror. Compared with the case of a single landmark localization task,

the incorporation of the second task, face parsing, improves the per-

formance of the baseline by about 2%, even though the face parsing

dataset does not contain any duplicate image in the landmark local-

ization dataset. With more iterations of task interactions between

facial landmark localization and face parsing, the normalized mean

error can be further decreased to 6.19%. We can see that multiple it-

erations of interactions between these two tasks gives rise to about

1.8% improvement. The results clearly demonstrate that the iFAN

model is powerful at exploiting the informative feedback during the

task interactions, and the proposed cross-dataset hybrid learning

is effective at learning useful knowledge from non-overlapping

datasets with orthogonal annotations.

The proposed iFAN can also integrate 3 different tasks into a

single model and perform simultaneously well for all the 3 tasks,

as can be observed from the 3T cases. iFAN effectively exploits

emotion information and provides informative cues (e.g.movement

of mouth corners) for the landmark localization task through the

task integrator and feedback connections. The incorporation of

the emotion recognition task helps improve the performance of

landmark localization by about 0.35%. The failure rates of different

iterations corresponding to 2T and 3T cases are shown in Figure 5.

We can see that the trend is similar to Table 1. Some qualitative

examples from iFAN are shown in Figure 3.

4.2.2 Face Parsing. The performance on face parsing with iFAN

and other baselines is listed in Table 2. We can see that compared

Session: Understanding 3 – Deep Learning for MM (3) MM’17, October 23-27, 2017, Mountain View, CA, USA

1536



Figure 4: Normalized mean errors of different methods for differ-

ent landmarks. The values for TCDCN are the best results achieved

in [29]. The results for other baselines are obtained from [28]. L. Eye

denotes left eye center and R. Mouth means right mouth corner.

with other methods, iFAN achieves a new state-of-the-art perfor-

mance in terms of overall F-score. Particularly, Multi-Objective [16]

formulates face parsing as a conditional random field with unary

and pairwise classifiers and designs a multi-object learning method

for this task. In contrary, in iFAN the face parsing task is only guided

by the single unary classifiers, and still outperformsMulti-Objective

by a large margin. iCNN [30] consists of multiple CNNs taking input

of different scales with an interlinking layer, which performs facial

parts localization and pixel identification in a two-stage pipeline.

In iFAN, only one singe model is used in an end-to-end network,

which still outperforms iCNN by 4% in terms of F-score. We can

see that the strong baseline of fully convolutional DenseNet [11]

already outperforms iCNN in the Single Task case. Within iFAN, the

incorporation of the facial landmark localization task improves the

overall F-score of the face parsing task by about 2% and the interac-

tions between face parsing and facial landmark localization further

improve the F-score by 0.6% in the 2T case. So compared with iCNN,

strong baseline architecture contributes to 1.5% of performance

gain, incorporation of facial landmark localization contributes to

2% and the task interaction contributes to 0.6%. In the 3T case, iFAN

gets slightly performance gain on face paring after the incorpora-

tion of the emotion recognition task. Some qualitative examples for

face parsing from iFAN are shown in Figure 3.

4.2.3 Facial Emotion Recognition. For the facial emotion recog-

nition task, we consider the following models: 1) a baseline model

performing only emotion recognition on cropped faces; 2) a base-

line model performing only emotion recognition on aligned faces;

3) iFAN performing three tasks simultaneously. The inputs to the

integrated network are cropped faces. The performance on emotion

recognitionwith different models is summarized in Table 3. The con-

fusion matrices corresponding to the first baseline model above and

Table 1: Normalized Mean Error (NME) (in %) on MTFL dataset. Dif-

ferent iterations of interactionswith two and three tasks are shown.

L.Eye R.Eye Nose L.Mouth R.Mouth Mean

Single Task 8.19 10.30 10.86 10.25 10.68 10.06

iFAN 2T Iter0 6.52 8.21 9.67 7.39 8.03 7.96

iFAN 2T Iter1 6.20 5.97 7.53 5.79 5.76 6.25

iFAN 2T Iter2 5.99 6.10 7.46 5.73 5.68 6.19

iFAN 3T Iter0 6.08 7.54 8.92 7.42 7.79 7.55

iFAN 3T Iter1 5.93 5.91 6.79 5.38 5.26 5.85

iFAN 3T Iter2 5.73 6.05 6.85 5.31 5.25 5.84

Figure 5: Failure rate of facial landmark localization for different

landmarks and different numbers of tasks. The dash lines denote

the first setting (2T) and the solid lines denote the second setting

(3T), which has a “+” mark on the corresponding legend.

Figure 6: The confusion matrices of different models. On the left

panel is the output from the baselinemodelwithno task interaction.

On the right panel is the output from the proposed iFAN.

iFAN are shown in Figure 6. While the traditional face alignment

methods require facial landmark detection and face transformation

(mapping the detected landmarks to some manually defined canoni-

cal locations) as pre-processing steps, we rely on the task interaction

to perform alignment-free emotion recognition. We argue that by

integration of the emotion recognition task with other related tasks

(such as facial landmark localization), the emotion recognition task

can be solved more effectively in iFAN than the traditional face

alignment based pipeline. This is validated by the experimental re-

sults. Some qualitative examples for emotion recognition, together

with the other two tasks are shown in Figure 3.

Table 3: Facial emotion recognition accuracy of different models.

Accuracy(%)

Cropped Face 42.26

Aligned Face 43.31

iFAN Iter0 44.84

iFAN Iter1 45.16

iFAN Iter2 45.40

4.3 Ablation Study

We evaluate the effects of the two key components in our proposed

iFAN, including the task integrator and the feature re-encoders, as

well as the contribution of the cross-dataset hybrid training strategy

to the final performance.

4.3.1 Task Integrator. We have demonstrated the effectiveness

of the task integrator on different tasks when it is not utilized and

utilized for one or two times. To further probe the behavior of the

task integrator withmore iterations of task integrations, we perform
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Table 2: F-score (in %) on Helen dataset for face parsing. 2T indicates there is another task jointly learned with the face parsing. 3T indicates

there are in total three tasks. Note iFAN Iter0 corresponds to the standard multi-task learning.

Eyes Brows Nose In mouth Upper Lip Lower Lip Mouth-All Face Skin Hair Background Overall

GSRM[8] 74.3 68.1 88.9 54.5 56.8 59.9 78.9 - - - 74.6

Exemplar[21] 78.5 72.2 92.2 71.3 65.1 70.0 85.7 88.2 - - 80.4

Multi-Objective[16] 76.8 73.4 91.2 82.4 60.1 68.4 84.9 91.2 - - 85.4

iCNN[30] 87.4 81.3 95.0 83.6 75.4 80.9 92.6 - - - 87.3

Single Task 84.38 80.26 92.34 77.64 75.93 82.45 90.46 92.84 76.19 90.61 88.75

iFAN 2T Iter0 86.66 82.27 93.53 83.79 76.97 85.78 92.70 94.58 85.57 94.09 90.52

iFAN 2T Iter1 86.60 82.22 94.03 85.62 78.87 87.13 93.79 94.68 85.90 94.05 91.03

iFAN 2T Iter2 86.59 82.20 94.07 86.63 79.25 87.48 93.98 94.67 85.91 94.04 91.10

iFAN 3T Iter0 86.81 81.43 94.09 85.47 79.78 87.59 93.86 94.73 86.59 94.39 90.96

iFAN 3T Iter1 86.82 81.65 94.22 86.37 80.28 88.01 94.17 94.71 86.16 94.23 91.14

iFAN 3T Iter2 86.81 81.67 94.22 86.63 80.35 88.12 94.19 94.71 86.11 94.21 91.15

Table 4: Behavior of the task integrator with more iterations

througth the feedback connections.

Overall F-score(%) NME(%) Accuracy (%)

Single Task 88.750 10.06 42.26

iFAN Iter0 90.961 7.55 44.84

iFAN Iter1 91.142 5.85 45.16

iFAN Iter2 91.147 5.84 45.40

iFAN Iter3 91.145 5.81 45.73

iFAN Iter4 91.145 5.82 45.48

additional iterations of interactions between tasks, and find that

further iterations only provide marginal performance improvement

as shown in Table 4. The convergence is quickly achieved within

one or two iterations of interactions.

4.3.2 Feature Re-Encoders. We then probe the effect of the fea-

ture re-encoders. We remove the feature re-encoders and replace

them with simple resizing operation to directly convert the predic-

tion maps (i.e. the input into the feature re-encoders) to the size of

the respective feature map for the purpose of task interaction. In

this way, the predictions of different tasks are used in their origi-

nal feature space and no encoding is performed. We find that the

normalized mean error of landmark localization increases to 10.5%,

the accuracy of the emotion recognition drops to 42.09% and the

F-score of face parsing drops to 89.4% after two iterations of inter-

actions. We can see that the feature re-encoders facilitate better

interactions between different tasks.

4.3.3 Cross-dataset Hybrid Training Strategy. In the cross-dataset

hybrid training strategy, task dependent batch normalization pa-

rameters are used. When we enforce all the tasks to share the

same batch normalization parameters, the performance after two

iterations reduces to 9.74%, 33.63% ad 87.65% for facial landmark

localization, facial emotion recognition and face parsing, respec-

tively. We can see that task-wise batch normalization parameters

give rise to remarkable performance boost in the proposed iFAN.

There are two stages in the cross-dataset hybrid training strategy:

task-wise pre-training and batch-wise fine-tuning. For the task

wise pre-training, the training of one task will negatively affect

performance of other tasks. To illustrate the process, the metrics

of three tasks in different stages of the optimization process are

shown in Figure 7. T1 denotes the pre-training stage of the first task

(face parsing), where the parsing average F-score is increasing. We

can see during the pre-training of the second task (facial landmark),

Figure 7: Performance of three tasks in different stages of the cross-

dataset hybrid training strategy. Note that for landmark detection

(the green curve), lower numbers mean better performance.

denoted by T2, the performance of facial landmark localization is

increasing (lower normalized mean error), but the performance of

parsing is decreasing quickly. During the pre-training of the third

task, we can observe performance decreasing for both the first two

tasks. The reason is that different tasks are trained on different

datasets and the network easily biases to one of them during the

pre-training stage. In the batch-wise alternative fine-tuning stage,

we can see the performance of all the three tasks is increasing.

With the batch-wise alternative fine-tuning, the performance can

gradually get back to that of the pre-training stage, and then it is

further improved through task interactions.

5 CONCLUSION
In this work, we proposed an integrated face analytics network

iFAN that performs multiple face analytics tasks simultaneously.

The proposed iFAN fully exploits the correlations between tasks

and enables interactions between them. The feature re-encoders

and task integrator in iFAN facilitate better task interactions and

integrations. With the cross-dataset hybrid training strategy, the

proposed network is able to learn from multiple data sources with

no overlapping labels, allowing the “plug-in and play” feature for

practical usage in multimedia applications.

ACKNOWLEDGEMENT

This work was partially funded by National Research Foundation

of Singapore. The work of Jiashi Feng was partially supported by

NUS startup R-263-000-C08-133, MOE Tier-I R-263-000-C21-112

and IDS R-263-000-C67-646.

Session: Understanding 3 – Deep Learning for MM (3) MM’17, October 23-27, 2017, Mountain View, CA, USA

1538



REFERENCES
[1] Hakan Bilen and Andrea Vedaldi. 2016. Integrated perception with recurrent

multi-task neural networks. In Advances in neural information processing systems.
235–243.

[2] Hakan Bilen and Andrea Vedaldi. 2017. Universal representations: The missing
link between faces, text, planktons, and cat breeds. arXiv preprint arXiv:1701.07275
(2017).

[3] Xavier P Burgos-Artizzu, Pietro Perona, and Piotr Dollár. 2013. Robust face
landmark estimation under occlusion. In Proceedings of the IEEE International
Conference on Computer Vision. 1513–1520.

[4] Xudong Cao, Yichen Wei, Fang Wen, and Jian Sun. 2014. Face Alignment by
Explicit Shape Regression. International Journal of Computer Vision 2, 107 (2014),
177–190.

[5] Dong Chen, Gang Hua, Fang Wen, and Jian Sun. 2016. Supervised transformer
network for efficient face detection. In European Conference on Computer Vision.
Springer, 122–138.

[6] Abhinav Dhall, Roland Goecke, Jyoti Joshi, Jesse Hoey, and Tom Gedeon. 2016.
Emotiw 2016: Video and group-level emotion recognition challenges. In Proceed-
ings of the 18th ACM International Conference on Multimodal Interaction. ACM,
427–432.

[7] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision. 1440–1448.

[8] Leon Gu and Takeo Kanade. 2008. A generative shape regularization model for
robust face alignment. Computer Vision–ECCV 2008 (2008), 413–426.

[9] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. 2016. Ms-
celeb-1m: A dataset and benchmark for large-scale face recognition. In European
Conference on Computer Vision. Springer, 87–102.

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask
R-CNN. arXiv preprint arXiv:1703.06870 (2017).

[11] Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, and Yoshua
Bengio. 2016. The One Hundred Layers Tiramisu: Fully Convolutional DenseNets
for Semantic Segmentation. arXiv preprint arXiv:1611.09326 (2016).

[12] Martin Koestinger, Paul Wohlhart, Peter M. Roth, and Horst Bischof. 2011. Anno-
tated Facial Landmarks in theWild: A Large-scale, Real-world Database for Facial
Landmark Localization. In First IEEE International Workshop on Benchmarking
Facial Image Analysis Technologies.

[13] Vuong Le, Jonathan Brandt, Zhe Lin, Lubomir Bourdev, and Thomas S Huang.
2012. Interactive facial feature localization. In European Conference on Computer
Vision. Springer, 679–692.

[14] Jianshu Li, Sujoy Roy, Jiashi Feng, and Terence Sim. 2016. Happiness level
prediction with sequential inputs via multiple regressions. In Proceedings of the
18th ACM International Conference on Multimodal Interaction. ACM, 487–493.

[15] Jianshu Li, Jian Zhao, Fang Zhao, Hao Liu, Jing Li, Shengmei Shen, Jiashi Feng,
and Terence Sim. 2016. Robust Face Recognition with Deep Multi-View Repre-
sentation Learning. In Proceedings of the 2016 ACM on Multimedia Conference.
ACM, 1068–1072.

[16] Sifei Liu, Jimei Yang, Chang Huang, and Ming-Hsuan Yang. 2015. Multi-objective
convolutional learning for face labeling. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 3451–3459.

[17] Ziwei Liu, Ping Luo, XiaogangWang, and Xiaoou Tang. 2015. Deep Learning Face
Attributes in the Wild. In Proceedings of International Conference on Computer

Vision (ICCV).
[18] Rajeev Ranjan, Vishal M Patel, and Rama Chellappa. 2016. Hyperface: A deep

multi-task learning framework for face detection, landmark localization, pose
estimation, and gender recognition. arXiv preprint arXiv:1603.01249 (2016).

[19] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91–99.

[20] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-time single image and
video super-resolution using an efficient sub-pixel convolutional neural network.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
1874–1883.

[21] Brandon M Smith, Li Zhang, Jonathan Brandt, Zhe Lin, and Jianchao Yang. 2013.
Exemplar-based face parsing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 3484–3491.

[22] Bo Sun, Qinglan Wei, Jun He, Lejun Yu, and Xiaoming Zhu. 2016. BNU-LSVED:
a multimodal spontaneous expression database in educational environment.
In SPIE Optical Engineering+ Applications. International Society for Optics and
Photonics, 997016–997016.

[23] Bo Sun, Di Zhang, Jun He, Lejun Yu, and Xuewen Wu. 2015. Multi-feature-based
robust face detection and coarse alignment method via multiple kernel learning.
In SPIE Security+ Defence. International Society for Optics and Photonics, 96520H–
96520H.

[24] T Tieleman and GHinton. Rmsprop: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning. Technical
Report. Technical report, 2012. 31.

[25] Shengtao Xiao, Jiashi Feng, Junliang Xing, Hanjiang Lai, Shuicheng Yan, and
Ashraf Kassim. 2016. Robust Facial Landmark Detection via Recurrent Attentive-
Refinement Networks. In European Conference on Computer Vision. Springer,
57–72.

[26] Xuehan Xiong and Fernando De la Torre. 2013. Supervised descent method
and its applications to face alignment. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 532–539.

[27] Xiang Yu, Junzhou Huang, Shaoting Zhang, Wang Yan, and Dimitris N Metaxas.
2013. Pose-free facial landmark fitting via optimized part mixtures and cascaded
deformable shape model. In Proceedings of the IEEE International Conference on
Computer Vision. 1944–1951.

[28] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. 2016. Joint Face
Detection and Alignment Using Multitask Cascaded Convolutional Networks.
IEEE Signal Processing Letters 23, 10 (2016), 1499–1503.

[29] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. 2014. Facial
landmark detection by deep multi-task learning. In European Conference on
Computer Vision. Springer, 94–108.

[30] Yisu Zhou, Xiaolin Hu, and Bo Zhang. 2015. Interlinked convolutional neural net-
works for face parsing. In International Symposium on Neural Networks. Springer,
222–231.

[31] Xiangxin Zhu and Deva Ramanan. 2012. Face detection, pose estimation, and
landmark localization in the wild. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE, 2879–2886.

Session: Understanding 3 – Deep Learning for MM (3) MM’17, October 23-27, 2017, Mountain View, CA, USA

1539




