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ABSTRACT
Approximate Nearest Neighbour (ANN) search is an important
research topic in multimedia and computer vision fields. In this
paper, we propose a new deep supervised quantization method by
Self-Organizing Map (SOM) to address this problem. Our method
integrates the Convolutional Neural Networks (CNN) and Self-
Organizing Map into a unified deep architecture. The overall train-
ing objective includes supervised quantization loss and classifica-
tion loss. With the supervised quantization loss, we minimize the
differences on the maps between similar image pairs, and maximize
the differences on the maps between dissimilar image pairs. By op-
timization, the deep architecture can simultaneously extract deep
features and quantize the features into the suitable nodes in the
Self-Organizing Map. The experiments on several public standard
datasets prove the superiority of our approach over the existing
ANN search methods. Besides, as a byproduct, our deep architecture
can be directly applied to classification task and visualization with
little modification, and promising performances are demonstrated
on these tasks in the experiments.

KEYWORDS
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1 INTRODUCTION
With the explosive growth of data in real multimedia applica-
tions, Approximate Nearest Neighbour (ANN) search has become
an important research topic. Given a query, ANN search aims to
find its nearest neighbours from a large-scale dataset in a sub-
linear, or even constant time complexity. To address this prob-
lem, lots of methods have been proposed, including quantization-
based methods [6, 17, 22, 27, 30, 32] and hashing-based methods
[3, 13, 15, 16, 20, 21, 23, 25, 26, 29, 31].

The existing ANN search methods usually encode the input into
a compact description, then the distance computation between the
compact descriptions can be finished in a fast way even on a large-
scale dataset. The key of ANN searchmethods is to keep the original
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distance measure for unsupervised cases or similarity measure for
supervised cases after encoding. For hashing-based methods, they
usually learn a projection function to map the data points into a low
dimensional space at first, then binarize the mapped data points.
Online distance computation in hashing is to calculate theHamming
distance between the binary codes. For quantization-based methods,
they often train a codebook offline. Then for a new input sample,
it will be quantized into one nearest codeword in the codebook.
The distance between a pair of samples is approximated by the
distance between the corresponding codewords. Online nearest
neighbour search is realized by computing the distances between
the codewords and ranking.

Although the above two kinds of ANN methods are both advan-
tageous in terms of memory cost and search efficiency, there still
exist some problems in each kind of methods. For hashing-based
methods, the learning objective functions often involve discontinu-
ous terms, which introduce difficulty into the optimization process.
On the other hand, compared with the real-valued vectors used in
quantization methods, the description capability of binary codes is
limited, because many samples share the same Hamming distance
to the query and cannot be accurately arranged in the resulted
ranking list. For quantization-based methods, most of them only
focus on learning in an unsupervised way, such as [6, 17, 27]. Using
labels or classification information is convinced to improve the
performance of ANN search because of more information used
in the training process. As supervised hashing methods usually
outperform unsupervised ones under the same bit length setting,
utilizing supervised information in the quantization methods is a
feasible way to improve the performance, which is verified by the
experiments in [22].

With the great advance of deep learning techniques, especially
Convolutional Neural Networks, many traditional multimedia tasks
resort to deep architectures, such as image classification [10], object
detection [18], and so on. For ANN search problem, nearly all the
deep explorations concentrate on hashing-based methods[11, 13, 15,
24, 26, 28]. Deep hashing methods can simultaneously learn feature
descriptions and hash functions in an end-to-end way, which are
shown to outperform the classical two-step, hand-crafted feature
based hashing methods. However, there is few research efforts on
deep supervised quantization. In [22], a supervised quantization
method is proposed, which includes separable feature extraction
step and learning to quantization step. Different from [22], this
paper explores the supervised quantization with a deep architecture.

This paper proposes a new deep supervised quantization method
based on Self-Organizing Map (SOM), which is abbreviated as
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DeepSOM for conciseness. Self-Organizing Map projects multi-
dimensional features to the two-dimensional map in a topology-
preserving way. The weights of all the connection to one node
in the two-dimensional map denote a codeword. The quantizer is
intrinsically to find a nearest codeword, which also corresponds
to the node with the maximal response on the map. Our method
unifies Convolutional Neural Networks and Self-Organizing Map
into one architecture. It aims to simultaneously minimize the su-
pervised quantization loss together with the classification loss. Our
supervised quantization objective is to minimize the differences
on the maps between similar image pairs, and maximize the dif-
ferences on the maps between dissimilar image pairs. After the
optimization, the learned deep architecture can simultaneously
extract deep features and quantize the features into the suitable
node in Self-Organizing Map. We evaluate our method on several
public datasets. The experimental results show the superiority of
our approach over the existing ANN search methods. Besides, our
deep architecture can be applied to classification and visualization
tasks with promising performances in the experiments.

2 RELATEDWORK
In this section, we review some related work from the following two
aspects: (1) ANN search methods and (2) deep clustering methods.

Quantization is the traditional solution in many methods on
ANN search. Recently, there have been some new explorations
on quantization. As an efficient and scalable ANN search method,
Product Quantization [6] decomposes the space into a Cartesian
product of low-dimensional subspaces and quantizes each subspace
separately. Then a vector is represented by a short code composed of
its subspace quantization indices. Cartesian k-means [17] develops
a new clustering model with a compositional parameterization of
cluster centers to increase the representational capacity. Composite
Quantization [27] makes use of the composition of several elements
selected from the dictionaries to accurately approximate a vector
and to represent the vector by a short code composed of the indices
of the selected elements.

Most research efforts in quantization have been devoted to the un-
supervised quantization methods. There are only a few supervised
quantization methods. In [22], it proposes to map the data points
into the low dimensional space, and quantize the data points in the
transformed space with a new quantization criterion. It not only
minimizes the quantization loss, but also keeps the semantic dis-
criminability. Although this supervised quantization method shows
superior performance, it still is a two-step method, which includes
separable feature extraction and quantization stages. Compared
with [22], our DeepSOMmethod simultaneously learns the features
description and quantizer. The unified architecture is demonstrated
to perform better than the separable two-step method.

On the other hand, binary hashing methods have attracted more
and more research efforts because of their compact description
and efficient distance computation. The binary hashing methods
can be divided into three categories according to whether using
supervised information (such as labels) in the training process:
unsupervised, semi-supervised, and supervised hashing methods.
Since our DeepSOMmethod is supervised, we only review the deep
supervised hashing methods in this section.

In [24], a deep supervised hashing method CNNH is proposed
for image retrieval, which can simultaneously learn feature repre-
sentation and the corresponding hash functions. It involves two
stages, including the similarity matrix learning and deep networks
optimization. Deep Pairwise-Supervised Hashing (DPSH) [13] pro-
poses to simultaneously learn features and hash functions by CNN
with pairwise labels. The objective of DPSH is to make the Ham-
ming distance between two similar points as small as possible, and
make the Hamming distance between dissimilar points as large
as possible. In [26], a deep supervised hash learning framework,
i.e., Deep Regularized Similarity Comparison Hashing (DRSCH), is
proposed, which takes triplet samples as input. It maximizes the
margin between the similar pairs and the dissimilar pairs, which
intuitively guarantees learned binary codes to preserve the ranking
orders of images. In addition to preserving the image ranking, it
introduces the adjacency consistency as regularization. In [28], a
deep hashing method is proposed to learn hash functions based on
semantic ranking based method that preserves multilevel similar-
ity between multi-label images. In [11], a carefully designed deep
neural network is proposed to simultaneously learn features and
hash functions. It also uses a triplet ranking loss to train the deep
architecture. DSH [15] presents a new deep hashing method based
on Siamese CNN, which aims to maximize the discriminability of
the output space by encoding the supervised information from the
input image pairs, and simultaneously minimizes the quantization
loss during binarization.

Different from the above deep supervised binary hashing meth-
ods, our proposed DeepSOM is a deep supervised quantization
method, which projects the input samples to the suitable nodes on
the SOM rather than binary codes.

Recently, there has been some work involving deep clustering
methods in different tasks. In [4], it presents a neural network-based
end-to-end clustering framework. The network is trained with the
contrastive criteria, i.e., the distributions between the softmax out-
put for a similar pair should be similar, while the distributions
over the class labels should be dissimilar. In [5], a novel end-to-end
network is presented to map unlabeled images to categories as
a clustering network. The training task in [5] is a two-step pro-
cess: first, it trains a similarity prediction network on an existing
dataset to predict whether a pair of images is semantically similar;
then on the new unlabeled data, it trains the category discovery
network as a unsupervised clustering problem, whose outputs are
expected to be distinguishable distributions. In [14], a clustering
based regularizationmethod is proposed to encourage parsimonious
representations to facilitate generalization for deep networks.

Compared with the above work, our DeepSOM is different in
three aspects: 1) we focus on a different task, i.e., ANN search. In
contrast, they are used for clustering and classification tasks; 2)
since we use SOM as quantizer, the number of the output units in
our architecture is not constrained as the number of the accurate
cluster centroids, which allows us to solve different tasks flexibly;
3) our DeepSOM unifies the Convolutional Neural Networks and
Self-Organizing Map into one architecture, to our best knowledge,
which has not been explored before. On the classification task, the
experiments prove that our DeepSOM method obtains better or
comparable results with those deep clustering methods.
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Figure 1: The structure of Self-Organizing Map. The orange
nodes are the neighbours of the green node.

3 OUR METHOD
In this section, we first introduce the problem formulation. Then we
briefly review Self-Organizing Map. After that we present our Deep-
SOM method. Finally we introduce the out-of-sample extension of
our DeepSOM method.

3.1 Problem Formulation
In a large dataset X ∈ Rn×d , given a query q ∈ Rd , ANN search
aims to find its nearest neighbours in a sub-linear or even constant
time complexity. As an efficient solution to ANN search problem,
quantization-based method usually first learns a codebook offline,
then encodes each data point in the database by assigning it to
the closest codeword in the codebook. After quantization, each
data point is represented by the index of the closest codeword. The
original distance for each pair of data points is approximated by
the distance of the corresponding codewords. We can compute the
distances between all the pairs of codewords offline and save them
in a table, so online ANN search only involves quantization, looking
up table, and ranking steps. Our DeepSOM method simultaneously
learns the feature descriptions and the quantizer in a unified frame-
work. For a query, the proposed framework can directly output the
indices of suitable nodes (i.e., the result of quantization) on SOM.
Then our method only needs extra looking up table and ranking
manipulations to give the nearest neighbours of the query.

3.2 Self-Organizing Map Review
Self-Organizing Map (SOM) [7, 8] is a neural network which is
trained by unsupervised learning.1 The network in SOM only con-
tains one single fully-connected layer, which learns the structure of
input data space. It usually produces low-dimensional representa-
tion for each input vector, as illustrated in Fig. 1. The weights of the
connections to each node in the output map present a codeword,
and the value of each node on the output map denotes the simi-
larity between the input vector and the corresponding codeword.
The dimension of the output map is usually two or three, which
makes it convenient for dimension reduction, vector quantization
and visualization.

Different from the classical multi-layer neural networks, SOM
applies competitive learning strategy for training. Once an output
node obtains the maximal response value, the response of other

1Note that the SOM used in our paper refers as Kohonen map.

Figure 2: The output maps of our architecture for one ran-
domly selected image from each class in CIFAR-10 dataset.
Each outputmap is computed based on the inner product be-
tween the feature description of the selected image and all
the codewords in SOM. We linearly project the values of the
output maps into the range of [0,255]. The black color de-
notes 255, while the white color denotes 0. The darker the
point is, the more similar the image description is to the
codeword corresponding to the node on the map.

nodes will be suppressed to zero except its neighbouring nodes. The
most interesting point of SOM is its topology-preserving property
because of the use of neighbourhood function in the training pro-
cess. The input vectors selected from the same region in the input
space will activate the same node on the output map. On the other
hand, the distances between the input vector and the codewords,
whose corresponding nodes locate in the small region on the map,
are similar.

The general objective function for training SOM is formulated
as follows:

min
C

∑
i

∑
j ∈N (k ),ck=q (xi )

θ (j ) | |xi − cj | |22 , (1)

where q(xi ) denotes the quantization function, which returns the
nearest codeword ck for the input xi . Each element in ck denotes a
weight of the connection between the corresponding input node
to the k-th node on the map. θ (j ) denotes neighbourhood function
on the two-dimensional map, which weights the j-th neighbouring
node according to the distance to the k-th node with maximal
response. N (k ) denotes the set of neighbours for the k-th node
according to the definition of neighbour radius. During the training
process, the neighbour radius becomes smaller and smaller. The
effect of neighbour function is that once a node is updated, its
neighbour nodes are also updated.

The SOM is learnt by stochastic gradient descent method. Af-
ter the learning process, we can get the set of codewords C =
[cT1 ,c

T
2 , · · · ,c

T
m]T ∈ Rm×d , wherem denotes the node number on

the map. These codewords are also the weight vectors of the net-
work. Finally, each learned codeword represents a small region of
input space in a topology-preserving way. The distances between
pairs of data points, which locate closely in the input space, are
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Figure 3: The architecture of our proposedDeepSOM in the training process. The content in the green dashed rectangle denotes
the architecture used in the testing process.

small on the map. On the contrary, the distances between pairs of
far data points in the input space are large on the map.

In the above formulation, the objective function is defined based
on Euclidean distance. In our DeepSOM, for the concern of the com-
bination with CNN, we use the inner product based SOM instead,
i.e., < xi ,cj >= xi · cTj , where xi and cj are unit vectors.

The difference between SOM and traditional k-means algorithm
mainly lies in: 1) k-means algorithm needs to initialize cluster num-
ber in advance, which largely impacts the performance of quan-
tization. On the contrary, SOM does not need to set this kind of
parameters. 2) SOM uses the neighbour function to update neigh-
bour nodes while updating the node with maximal response. In
this way, the update implicitly embeds the concept of soft quanti-
zation. In contrast, k-means algorithm only identifies the nearest
centroid for each input data point, and updates it with the corre-
sponding data points. 3) SOM uses the stochastic gradient descent
algorithm to learn the codewords, while k-means learns the cen-
troids by a heuristic iterative algorithm, which is similar with the
expectation-maximization algorithm for mixtures of Guassian dis-
tribution. Based on these reasons, we use SOM in our architecture
directly.

3.3 Deep Supervised Quantization
The proposed deep supervised quantization aims to simultaneously
learn feature representations from raw images and quantizer. To
this end, we combine the Convolutional Neural Networks (CNN)
and Self-Organizing Map (SOM) into one unified deep architecture.

3.3.1 Architecture. Fig. 3 shows our architecture including the
feature extraction part and quantization part. Our CNN architec-
ture for feature extraction part follows CNN-F model in [1] with a
few modifications. We remove the last fully-connected layer and

softmax layer, and add a new fully-connected layer (fc8). The node
number in fc8 layer is set to twice the class number in the database.
Overall, our feature extraction part contains five convolutional
layers and three fully-connected layers.

After the feature extraction part, there are two branches in our
architecture which is determined by our final objective. The first
branch contains a fully-connected layer, in which the node number
equals class number in the dataset. After that a softmax layer is used
to compute the classification loss. The second branch considers the
supervised quantization objective. In the second branch, there is a
L2-normalization layer, which normalizes the length of input vector
to a unit for the concern of using inner product based SOM. Then
SOM is appended to the L2-normalization layer, which outputs
the distance map to each codeword. Note that we use the black
parallelogram to denote SOM, which is in the same structure with
the common fully-connected layers in Fig. 3. The difference between
SOM and common fully-connected layers lies in that the output of
SOM is two-dimensional and has the topology-preserving property.

Note that there are two identical DeepSOMs in Fig. 3. They share
the same parameters, structures, and weights. The output maps of
the two SOMs are used to compute the supervised quantization
objective.

3.3.2 Objective Function. In our final objective function, there
are three losses, of which two are about classification error while
one is related to the supervised quantization error.

The classification loss follows the traditional softmax classifica-
tion loss, which is formulated as follows:

l (W) = −
1
n



n∑
i=1

c∑
j=1

1(yi = j ) log
eWjxTi∑c
l=1 e

Wl xTi


, (2)
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where W denotes the parameter of our architecture, and 1(·) is the
indicator function.

The quantization loss is oriented for the supervised quantization
objective. The proposed supervised quantization objective aims to
minimize the differences on the maps between similar image pairs,
while maximizing the differences on the maps between dissimilar
pairs. It is formulated as follows:

д(W,C) =
1
k

[ k∑
i=1

{
1(yp (i,1) = yp (i,2) ) | |Up (i,1) − Up (i,2) | |22 (3)

−
[
1 − 1(yp (i,1) = yp (i,2) )

]
| |Up (i,1) − Up (i,2) | |

2
2
}]
,

where k denotes the number of image pairs, and p ∈ Rk×2 denotes
the indices of pairs in the database. U is the output map of SOM,
which measures the distances between the input sample and all the
codewords in SOM. While using inner product in SOM, Ui = xiCT ,
where C = [cT1 ,c

T
2 , · · · ,c

T
m]T ∈ Rm×d denotes the weight matrix

of SOM, and each of them denotes a codeword. Fig. 2 shows the
output maps of randomly selected sample in each class in CIFAR-10
dataset after the learning process. The size of output map is 75× 75.
We linearly transform the value range of the output maps into
[0,255]. The black color denotes 255, while the white color denotes
0. From Fig. 2, we can find that different classes generate response
at different regions on the map. On the other hand, there is nearly
only one dark region in each map, which implies the codewords,
whose corresponding nodes locate in the small dark region on the
map, are similar.

The overall objective function is given as follows:

min J (W,C) = min l (W) + λд(W,C) (4)

= min
W,C

−
1
n



n∑
i=1

c∑
j=1

1(yi = j ) log
eWjxTi∑c
l=1 e

Wl xTi



+
λ

k

[ k∑
i=1

1(yp (i,1) = yp (i,2) ) | |Up (i,1) − Up (i,2) | |22

−
[
1 − 1(yp (i,1) = yp (i,2) )

]
| |Up (i,1) − Up (i,2) | |

2
2

]
,

where λ is the parameter for controlling the relative importance of
the two parts. In the experiments, we set λ = 1.25e − 6.

3.3.3 Optimization. Our overall architecture contains two pa-
rameters to be optimized: the CNN parameterW and SOM parame-
ter C. We adopt an iterative method to train the whole architecture.
First, we pretrain the feature extraction part of our architecture and
the branch of classification (pretrain_step). Adopting the output of
the feature extraction part, i.e., the features extracted by the CNN,
we train SOM individually (train_som_step). We call this simple
process as DeepSOM-0 (pretrain_step + train_som_step). Then we
initialize the overall architecture with the pretrained CNN and SOM.
Since SOM is also optimized by stochastic gradient descent (SGD)
method, the overall architecture in our method can be directly
trained by SGD method (train_all_step). After the training process
of the overall architecture, we use the feature extraction part, and
retrain SOM (retrain_som_step). Then replacing the SOM layer in

1 2 3 4 5 6 7 8 9 10

#iteration

0.52

0.54

0.56

0.58

0.6

0.62

0.64

m
A

P

Figure 4: The curve of mAP convergence with respect to the
iteration number on CIFAR-10 dataset.

the architecture with the retrained SOM, we train the whole archi-
tecture again (train_all_step). These two steps (i.e., train_all_step
and retrain_som_step) are iteratively alternated until convergence.
Usually, ten iterations guarantee to a good result. Fig. 4 shows the
curve of mAP convergence with respect to the iteration number on
CIFAR-10 dataset.

In these two steps, only SGD algorithm is used. We give the key
equations in different steps:

1) SOMTraining (train_som_step and retrain_som_step): the code-
words are updated using the neighbour function and the update
rule as follows:

ct+1j = ctj + α · θ (j,t ) · (xi · c
T
j )

T cj , (5)

where we use the inner product based SOM, and t denotes the
iteration number. θ (j,t ) denotes the neighbourhood function for
j-th node during the t-th iteration. α denotes the learning rate. We
repeat Eqn. (5) until a fixed iteration number is reached.

2) DeepSOM Training (train_all_step): Since SOM is a neural
network with single fully-connected layer, the combination of CNN
and SOM is still a network, which also can be directly solved by
SGD method. For the fully connected layer in the classification
branch, its weightsWj only are updated by the classification loss.
The gradient with respect to Wj is

∂l (Wj )

∂Wj
= −

1
n

n∑
i=1



*.
,
1(yi = j ) −

eWjxTi∑c
l=1 e

Wl xTi

+/
-

T

xi


. (6)

For the fully connected layer in SOM, the gradient with respect
to its weights is

∂д(W,C)
∂C

=
λ

k

[ k∑
i=1

{
1(yp (i,1) = yp (i,2) )

[(
xp (i,1) − xp (i,2)

)
CT

]T
C (7)

−
[
1 − 1(yp (i,1) = yp (i,2) )

] [(
xp (i,1) − xp (i,2)

)
CT

]T
C
}]
.
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Table 1: Comparison on mAP performance for ANN search
problem. For NUS-WIDE, we calculate the mAP values
within the top 5000 returned results. All the hashing meth-
ods are evaluated under 24 bits. #query:1K/2100, #train-
ing:5K/21*500

Methods CIFAR-10 NUS-WIDE

CNNH [24] 0.521 0.630
NINH [11] 0.566 0.697

DeepSOM-0 0.505 0.680
DeepSOM 0.622 0.730

In the experiments, the pairs of images are randomly selected in
each epoch. The number of pairs of similar images equals the num-
ber of dissimilar pairs. As for the layers in the feature extraction
part, their weights can be updated by the chain rule.

3.3.4 Out-of-Sample Extension. After the optimization, we ob-
tain the whole deep supervised quantization architecture. In the
online ANN search, we only need to use the feature extraction
part and the second branch (SOM branch), as the green box shows
in Fig. 3. For a query, the output of the architecture is a map, on
which each value denotes the inner product to the corresponding
codeword in SOM. We can directly identify the maximum from the
map and obtain index of the node with maximal response on the
map. In other words, the query is quantized to the most similar
codeword based on the inner product computation. The distances
between the query and database images is approximated by the
distances between the corresponding codewords. The distances
between all pairs of the codewords can be computed in advance
and saved in a look-up table. Then through looking up table and
ranking all the images in the database according to the distances,
the nearest neighbours of the query are identified.

4 EXPERIMENTS
In this section, we conduct experiments on ANN search problem,
classification, and visualization tasks.

We evaluate our model on several public available datasets:
MNIST [12], CIFAR-10 [9], and NUS-WIDE [2].

The MNIST dataset is a set of handwritten digits from ‘0’ to
‘9’ with 70,000 images in total. The training set contains 60,000
examples, and the test set contains 10,000 examples. Each example
in MNIST is a 28 × 28 grey-level image. The CIFAR-10 dataset
consists of 60,000 32 × 32 color images in 10 classes, with 6000
images per class.

In the NUS-WIDE dataset, there are 269,648 images collected
from Flickr. It is a multi-label dataset, in which each image is
annotated with one or more labels from 81 concepts. Following
[11, 13, 24], we only use the images associated with the 21 most
frequent concepts, where the number of images associated with
each concept is at least 5000. We resize each image into 32 × 32 to
save memory.

In all the experiments, we set the size of SOM to 75×75. The initial
neighbour radius is 65, and the number of iteration in training SOM
is 5000. In the training process of the whole architecture, the batch

size is 40. The whole architecture is realized based on MatConvNet
[19]. Although our DeepSOMmethod adopts an alternative method
for training, on a machine with one NVIDIA K40c GPU, and one
Intel Xeon CPU E5-2620@2.40GH, it can be trained within 12 hours.

4.1 Evaluation on ANN search
For ANN search problem, since our DeepSOM is supervised, we
compare it with several state-of-the-art supervised deep hashing
methods including CNNH [24], NINH [11], DSRH [28], DRSCH
[26], DPSH [13], DSH [15], and one existing supervised quanti-
zation method, i.e., Supervised Quantization (SQ) [22]. Following
these methods, we conduct the experiments on MNIST, CIFAR-
10 and NUS-WIDE datasets to evaluate the performance of ANN
search. We use the exactly same database setting (including the
image numbers for query set, database, and training set) with the
compared methods on these datasets, and directly compare our
DeepSOM method with the experimental results published in their
papers. Since different existing ANN search methods conduct their
experiments under the different database setting, for fair compari-
son, we make experiments under all the settings used in these paper,
and show the results in Table 1 , Table 2 and Table 3, respectively.
We use mAP (mean Average Precision) to evaluate the performance
of ANN search.

Table 1 shows the results of mAP on CIFAR-10 and NUS-WIDE
datasets compared with CNNH [24] and NINH [11]. Following
CNNH and NINH, we randomly select 1000 images (100 images per
class) as the query set in CIFAR-10. And 5000 images (500 images
per class) from the rest images are randomly selected as training
set. In NUS-WIDE, 2100 query images from the 21 most frequent
labels (100 images per class) are randomly selected as query set.
500 images per class are randomly selected from the rest images
as training set. Since it is a multi-label dataset, two images will be
considered to be similar if they share at least one concept.

On NUS-WIDE, mAP value is computed within the top 5000 re-
turned results. From Table 1, we can find our DeepSOMoutperforms
these two compared deep supervised hashing methods. “DeepSOM-
0” denotes a simple way to train our architecture. In DeepSOM-0,
we first use the feature extraction part and the classification branch
to pretrain CNN (pretrain_step), then use the pretrained feature
extraction part and the SOM branch to train SOM (train_som_step).
DeepSOM-0 is trained without the iterative training process on the
whole architecture like DeepSOM. Through comparing the results
of DeepSOM and DeepSOM-0 in Table 1, we can find the itera-
tive training process (i.e., train_all_step and retrain_som_step) does
improve the performance of ANN search.

In Table 2, we compare our DeepSOMmethodwith other deep su-
pervised hashing method under different dataset setting. In CIFAR-
10, following the setting in [13, 15, 26, 28], we randomly select
10,000 images (1000 images per class) as query set and use the rest
images as training set. For NUS-WIDE dataset, we randomly sample
2100 images from the 21 most frequent classes (100 images per class)
as query set, and use the rest images as training set. The mAP value
is computed within the top 50,000 returned images in NUS-WIDE
dataset. From Table 2, we can find our DeepSOM performs better
than those compared methods under this experiment setting. Our
DeepSOM improves the performance of ANN search by 9.9% and

Session: Fast Forward 6 MM’17, October 23-27, 2017, Mountain View, CA, USA

1712



-150 -100 -50 0 50 100 150

-100

-50

0

50

100

150

1

2

3

4

5

6

7

8

9

0

Figure 5: Visualization for MNIST dataset. The black points and dark lines denote the learned nodes and their links in SOM.
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Figure 6: Visualization for CIFAR-10 dataset. The black points and dark lines denote the learned nodes and their links in SOM.

4.7% over the existing best results on CIFAR-10 and NUS-WIDE
datasets, respectively.

To compare with supervised quantization method proposed in
[22], we make experiments on MNIST and CIFAR-10 dataset. The
numbers of images in query set, database and training set exactly
follow the setting in [22]. For both of MNIST dataset and CIFAR-10
dataset, we randomly select 1000 images as query set, and use the

rest dataset as training set. From Table 3, we can find that both our
DeepSOM and DeepSOM-0 obtain the higher mAP value than SQ
method even in 128 bits. These results show the capability of deep
architecture for feature extraction in ANN search. Simultaneously
learning feature description and quantizer is better than conducting
these two steps separately.
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Table 2: Comparison onmAP on the public datasets for ANN
search problem. For NUS-WIDE, we calculate the MAP val-
ues within the top 50000 returned neighbors. All the hash-
ing methods are evaluated under 24 bits. #query:10K/2100,
#training:50K/the rest

Methods CIFAR-10 NUS-WIDE

DSRH [28] 0.611 0.618
DRSCH [26] 0.622 0.622
DPSH [13] 0.781 0.722
DSH [15] 0.651 0.551

DeepSOM-0 0.762 0.691
DeepSOM 0.868 0.723

Table 3: Comparison onmAP on the public datasets for ANN
search problem. The SQmethod is evaluated under 16, 32, 64
and 128 bits. #query:1K/1K, #training:69K/59K

Methods MNIST CIFAR-10

SQ-16 bits [22] 0.933 0.605
SQ-32 bits [22] 0.937 0.686
SQ-64 bits [22] 0.938 0.704
SQ-128 bits [22] 0.940 0.712

DeepSOM-0 0.957 0.760
DeepSOM 0.967 0.900

Table 4: Comparison on classification accuracy (%).
#query:10K/10K, #training:5K/50K

Methods MNIST CIFAR-10

[4] 98.80 73.70
[14] N/A 81.05

DeepSOM-0 98.28 91.00
DeepSOM 98.90 91.00

4.2 Evaluation on Classification
In this section, we compare our DeepSOM method with deep clus-
tering methods on the classification task. We do not pursue the
optimal results on the dataset, but instead to compare the differ-
ences between our method and deep clustering methods.

For MNIST dataset, we randomly select 10,000 images as query
set, and 5000 images as training set (for [4], it uses 6000 image
as training set). In CIFAR-10 dataset, we randomly select 10,000
images as query set, and the rest images as training set. The results
on the accuracy of classification are listed in Table 4. From this
table, we can see that our DeepSOM method performs better on
MNIST and CIFAR-10 datasets.

4.3 Visualization Study
In this section, we present an interesting application on visual-
ization of our DeepSOM method. Since our method is targeted at

simultaneously minimizing the classification error, and minimizing
the supervised quantization objective, the proposed supervised ob-
jective is to minimize the differences on the map between similar
image pairs, and maximize the differences on the map between
dissimilar image pairs. It keeps the classification information in
the process of quantization. So when the output of fc8 layer in our
architecture is in a two-dimensional space, we can expect that using
this architecture visualizes the dataset.2

Fig. 5 and Fig. 6 show the results of visualization for MNIST
and CIFAR-10 datasets, respectively. Both of them visualize 5000
samples from the datasets. Different colors and markers denote the
feature description from fc8 layer for different semantic classes.
The black markers and lines denote the quantized codewords in
SOM learned by our DeepSOM method and their locations on the
map. In this experiment, the size of SOM is set to 20 × 20 for clear
visualization. These two figures show the capability of our method
on visualization. On the other hand, these two figures prove that
the images which locate at a small region in the input space will
activate the same node on SOM, and the nodes which locate closely
on SOM share the same semantic label. This reflects the effect of
the supervised quantization objective in our DeepSOM method.

5 CONCLUSIONS
In this paper, we propose a new deep supervised quantization
method by Self-Organizing Map (SOM) for Approximate Nearest
Neighbour search problem. Our method combines the Convolu-
tional Neural Networks (CNN) and Self-Organizing Map into a
unified deep architecture, which is abbreviated as DeepSOM in
this paper. Our DeepSOM method simultaneously optimizes the
supervised quantization objective and minimizes the classification
error. The proposed supervised quantization objective is to mini-
mize the differences on the map between similar image pairs, and
maximize the differences on the map between dissimilar image
pairs. By optimization, the deep architecture can simultaneously
extract deep features and quantize the features into the suitable
node in Self-Organizing Map. The experiments on several pub-
lic standard datasets prove the superiority of our approach over
the existing ANN search methods. Besides, our deep architecture
shows great potential to classification and visualization tasks in the
experiments.
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