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ABSTRACT
Content-aware image resizing (or image retargeting) is a
technique that resizes images for optimum display on devices
with different resolutions and aspect ratios. Traditional ob-
jective quality of experience (QoE) assessment methods are
not applicable to retargeted images because the size of a
retargeted image is different from its source. In this work,
three determining factors for humans visual QoE on retar-
geted images are analyzed. They are global structural dis-
tortion (G), local region distortion (L) and loss of salient
information (S). Different features are selected to quantify
their respective distortion degrees. Then, an objective qual-
ity assessment index, called GLS, is proposed to predict
viewers’ QoE by fusing selected features into one single qual-
ity score. Several regression models used for feature fusion
are discussed and compared. Experimental results demon-
strate that the proposed GLS quality index has stronger
correlation with human QoE than other existing objective
metrics in retargeted image quality assessment.

Categories and Subject Descriptors
I.4.7 [Computation Methodologies]: Image Processing
and Computer Vision—Feature Measurement

Keywords
Image retargeting; Quality assessment; QoE assessment;
Content-aware image resizing

1. INTRODUCTION
Content-aware image resizing (or image retargeting) is a

technique that addresses the increasing demand to display
image contents on devices of different resolutions and as-
pect ratios. Traditional resizing techniques do not meet this
requirement since they either discard important informa-
tion (e.g. cropping) or introduce visual artifacts by over-
squeezing the content (e.g. homogenous scaling). The goal
of image retargeting is to change the aspect ratio and the
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resolution of images while preserving its visually important
content and avoiding noticeable artifacts.

Several content-aware image retargeting solutions have
been proposed in the last 7-8 years. They can be classified
into two types: discrete and continuous approaches [19]. A
discrete approach resizes an image by removing unimportant
pixel regions iteratively [1, 15, 18] while a continuous ap-
proach conducts resizing through non-uniform image warp-
ing [7, 21, 25]. Most previous work has demonstrated nov-
elty in problem formulation and algorithmic design. How-
ever, evaluation on the performance of different retargeting
methods remains to be ad hoc as most of them rely on simple
visual comparison or small-scale user studies. Clearly, there
is a need to develop a better methodology for evaluating all
retargeting results in a systematic and quantitative way.

Recently, Rubinstein et al. [17] conducted a systematic
study on eight state-of-the-art retargeting algorithms
through a large scale user study. Besides collecting and
analyzing subjective evaluation results, they evaluated the
performance of six distances as possible objective measures
for retargeted images. However, there exists significant dis-
agreement between their chosen measures and subjective
evaluation results. Thus, a better objective QoE assessment
index for retargeted images is still in need.

Objective image QoE assessment indices have been ex-
tensively studied in the last decade [8, 22]. They can be
divided into three categories: full-reference (FR), reduced-
reference (RR) and no-reference (NR). However, traditional
image QoE assessment indices are not applicable in the con-
text of image retargeting for the following reasons. For FR
and RR methods, one underlying assumption is that the size
of the original image should be matched with that of the
distorted image. Since the original and retargeted images
differ significantly in sizes and aspect ratios, this assump-
tion does not hold. Furthermore, a retargeted image should
preserve as much important information in its original im-
age as possible. Thus, referring to the original image is an
indispensable part in evaluating a retargeted result which
rules out NR methods.

In this paper, we attempt to address the QoE assessment
issue and propose a novel objective index that accounts for
three major determining factors for humans visual percep-
tion on retargeted images. These factors include: the global
structural distortion (G), the local region distortion (L) and
the loss of salient information (S). Various features are cho-
sen to quantify their respective distortion degrees. Then, an
objective quality assessment index, called GLS, is developed
to predict viewers’ QoE by fusing these features into one
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quality score. In developing the GLS quality index, we com-
pare several regression models in fusing multiple features.
It is shown by experimental results that the proposed GLS
index has stronger correlation with human QoE than other
existing objective indices in retargeted image quality assess-
ment. The effectiveness of new extracted features is the
basis for the impressive performance gain of the proposed
GLS index as compared with other existing QoE indices.

The rest of this work is organized as follows. Related
previous work on image retargeting, distorted image quality
assessment, and retargeting image QoE assessment is re-
viewed in Section 2. Three major distortion types for image
retargeting are analyzed in Section 3. Then, the GLS assess-
ment index for retargeted images is proposed in Section 4.
Experimental results and related discussion are presented in
Section 5. Finally, concluding remarks are given and future
research directions are pointed out in Section 6.

2. REVIEW OF RELATED WORK

2.1 Image Retargeting
Content-aware image resizing methods can be classified

into discrete and continuous approaches [19]. For the dis-
crete approach, image resizing is achieved by identifying
and discarding unimportant image contents. The cropping-
based method [2] identifies the most prominent components
in an image with saliency-based measures and cuts out a
rectangular region as the desired retargeting result. This
method clearly fails when there are two salient objects lo-
cated at the two ends of an image. The seam carving method
[1] resizes an image by iteratively removing paths of pixels
with the least amount of saliency. This method may lead to
local distortion of a salient object such as a human fact and
yield an unpleasant result. Realizing that no single retarget-
ing operator could perform well on all images, Rubinstein,
Shamir and Avidan proposed the multi-operator method
[18] that combines three different operators; namely, scal-
ing, cropping and seam carving, to achieve a more robust
result across a wide range of images. For the continuous
approach, image retargeting is formulated as a global opti-
mization problem [25, 21] where the salient image regions
ought to be well preserved while non-salient regions are al-
lowed to be squeezed or stretched.

2.2 Distorted Image QoE Assessment
Objective image QoE assessment, which studies the de-

gree of quality degradation due to distortions such as addi-
tive noise, blurring and compression, is a hot research topic
in recent years [8]. Early work evaluates degraded image
quality using the pixelwise distortion measure such as the
mean squared errors (MSE) and the peak signal-to-noise ra-
tio (PSNR). Although the MSE and PSNR values are simple
to calculate, they do not correlate with human subjective vi-
sual experience well. To overcome this problem, other qual-
ity indices have been proposed to account for characteristics
of the human visual system (HVS). Examples include con-
trast sensitivity function (CSF) masking [3], just noticeable
difference (JND) threshold [24], structure similarity (SSIM)
[23], feature similarity (FSIM) [27], etc. One common as-
sumption of the aforementioned full-reference image quality
indices is that the size and the aspect ratio of the source
image and its distorted one are the same. Since the size
of a retargeted image is different from its source, these in-

dices are not applicable to the QoE assessment of retargeted
images.

2.3 Retargeted Image QoE Assessment
The first comparison study on retargeted image quality

was presented in [17]. In this work, the authors conducted a
large scale user study to compare the performance of eight
representative state-of-the-art image retargeting methods.
In addition to performance evaluations based on user re-
sponses, six objective image distance measures were evalu-
ated and compared with actual human perception. Since
none of these six measures was in well alignment with hu-
man ranking, there is a need to search for other retargeted
image quality indices that can offer better agreement. A
similar study was conducted by Ma et al. [12], in which a
different image retargeting database was built and evaluated
by human viewers. Several existing objective QoE measures
were evaluated. It was concluded that a better quality index
could be obtained by combining the shape distortion mea-
sure and the content information loss. Although in-depth
performance analysis on QoE index design was conducted
in [12] and [17], none of them offers a satisfactory retar-
geted image QoE index. Recently, Liu et al. [10] proposed
an objective QoE assessment method for image retargeting
using a top-down approach. Although the method is capa-
ble of measuring both local and geometric distortions using
the SSIM index, it does not account for information com-
pleteness which will be shown to play an important role in
the quality assessment of retargeted images.

In this work, we will start with identifying three dominant
distortion types for image retargeting; namely, the global
structural distortion (G), the local region distortion (L) and
the loss of salient information (S). Then, features are ex-
tracted to characterize the severity of these distortions. Fi-
nally, we propose a GLS quality index that adopts a machine
learning methodology to fuse all distortion features.

3. IMAGE RETARGETING DISTORTION
ANALYSIS

In this section, we identify three main distortion types
of image retargeting – global structural distortion, local re-
gion distortion and loss of salient information. The first
two distortion types introduce visual unpleasing artifacts to
retargeted results such as over-squeezing the object shapes
(global) or breaking the prominent lines (local). The third
type does not necessarily introduce visually noticeable ar-
tifacts, yet the retargeted result fails to preserve all salient
information in the original image. Understanding the char-
acteristics of these major distortion types would lay out a
basis for the GLS quality index design, which will be elabo-
rated in Section 4.

3.1 Global Structural Distortion
Global structural distortion occurs when an image is over-

squeezed or over-stretched after retargeting, leading to un-
pleasing shape deformation of prominent objects. This dis-
tortion is especially noticeable when the salient object is
improperly deformed and/or different parts of a salient ob-
ject are deformed unproportionally, leading to inconsistency
as compared with the original image. This type of distortion
produces artifacts at the global scale.

Both discrete and continuous image retargeting methods
could potentially produce global structural distortion. For
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Figure 1: Two examples of global structural distor-
tion. Upper row: the original image of face (left)
and the retargeted result by [1] (right). Lower row:
the original image of lotus (left) and the retargeted
result by scaling (right).

example, as shown in Fig. 1, the global structure of the
prominent object in the face image is heavily distorted be-
cause the relative positions of eyes, nose and mouth are mis-
aligned after retargeting. However, the shape of each indi-
vidual face component (eyes, nose, mouth, etc.) are kept
intact. In other words, there is no distortion in local re-
gions. For image lotus, there is also heavy global structural
distortion as the prominent object (flower) is over-squeezed
after retargeting.

3.2 Local Region Distortion
After retargeting, some local regions in the image may be

heavily distorted, especially near those regions with promi-
nent edges. Discrete retargeting methods, such as seam
carving [1], may introduce broken lines when the removed
region overlaps with a prominent edge region. On the other
hand, continuous retargeting methods may result in heavy
edge bending when the underlying mesh behind the edge
region undergoes significant warping. The local region dis-
tortions become less noticeable at regions with homogeneous
textures, (e.g. sky, surface, wall, etc.) and irregular textures
(e.g. trees, grass, sand, etc.) [26]. We show an example of
heavy local region distortion using the seam carving method
in Fig. 2. Prominent edges are heavily bended after retar-
geting since many of the removed seams passed through the
edge of pencils.

3.3 Loss of Salient Information
Besides reducing visual artifacts, a good retargeted im-

age should be able to include all important content in its
original image as much as possible. Loss of salient informa-
tion is a distortion type commonly introduced by discrete
operators such as cropping. When the salient object is too
large and/or spans across the whole image, cropping will in-
evitably discard some important information. For example,
as shown in Fig. 3(a), there are four different buildings in
the original image, each of them with similar visual impor-
tance. To retarget this image to half of its original width, a
simple cropping method will inevitably discard some salient
information, leaving only two of the buildings in the retar-
geted result. A better retargeting method for this image
should be able to remove redundant information from each

Figure 2: Illustration of local region distortion. Left:
the original image of pencil. Right: the retargeted
result using the seam carving method in [1] with
three zoomed-in local regions.

building but preserve all four buildings as shown in Fig. 3(b)
(b). This type of distortion is less observable for continuous
retargeting methods, since different regions of an image are
scaled disproportionately without discarding pixels in them.

(a) (b)

Figure 3: Illustration of loss of salient information:
(a) the original image of Marble and its cropping re-
sult, where the yellow box shows the optimum crop-
ping result. (b) a better retargeted result obtained
by [18].

The objective quality indices examined in [10, 17] pri-
marily focus on measuring distortions (global or/and local).
However, they do not pay much attention to the importance
of information completeness. In contrast, we attempt to find
good features to characterize all three distortion types and
combine them into one single score for quantitative evalua-
tion of retargeted results in this work.

4. GLS QUALITY INDEX FOR
RETARGETED IMAGES

In this section, we will introduce the proposed GLS qual-
ity index for retargeted images. Given the original image,
I, and its retargeted results Îi (i=1,2,3,...), we would like
to compute an objective quality score Si for each result to
achieve the following two objectives:

1. the relative rank of retargeted results is consistent with
the subjective ranking;

2. the predicted quality score matches with subjective
quality scores.

We will first introduce the overall framework in Section 4.1
and, then, describe each stage in detail in Sections 4.2-4.5.
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Figure 4: The system framework in computing the proposed GLS quality index for retargeted images.

4.1 Overview of System Framework
The challenge of objective image QoE assessment lies in

formulating effective features and fusing them into a single
number to predict the quality score. In the proposed GLS
scheme, we first conduct saliency analysis and SIFT feature
mapping to determine whether I is a salient or non-salient
image and build the mapping correspondence between I and
Îi. For each retargeted result Îi, we extract features to quan-
tify the three types of distortions as mentioned in Section
3. A pre-trained machine learning model is used to fuse all
features into one single quality score as the final result. The
machine learning model is trained using subjective evalua-
tion results of existing image retargeting databases [12, 17].
Fig. 4 shows the overall system framework in computing the
proposed GLS quality index.

4.2 Saliency-based Classification
The first step is to determine whether the source image,

I, is a salient or non-salient image. If an image contains
one salient object which does not cover the entire image, it
is considered as salient. Otherwise, if all contents in I have
equal visual importance or its salient object is too large and
fills up the entire image, I is viewed as non-salient. This
classification step is commonly known as data grouping in
handling large-scale databases. The main purpose of image
grouping is to separate images of different characteristics
into multiple disjoint groups so that we can train different
prediction models for them separately. This grouping pro-
cess allows us to design a more accurate prediction model
since there is a stronger correlation between the training and
test images.

There are many algorithms proposed for saliency compu-
tation and, without loss of generality, we simply choose one
and adopt the GBVS method [5] here. The salient image
classification problem is conducted based on analyzing the
histogram of the obtained saliency map, which takes a value
ranging from 0 to 255. The saliency value ”0” means the
lowest saliency level (i.e., no saliency) and ”255” means the
highest saliency level (i.e. strongest saliency). As shown
in Fig. 5, the saliency histogram of a typical salient image
usually consisting of a steep peak followed by a quickly de-
scending tail as shown in Fig. 5(a). On the other hand,

for a typical non-salient image, the histogram usually has a
low-rising peak and a slowly decaying tail as shown in Fig.
5(b). The canal boat image in Fig. 5(b) is classified to a
non-salient one since its salient region is too large.

τ30 = 0.86

(a) salient image (eagle)

τ30 = 0.45

(b) non-salient image (canal boat)

Figure 5: Classification based on the saliency map
histogram analysis for two representative images:
the original image I (left), the saliency map (middle)
and its histogram (right).

We define the percentage of pixels below brightness level
x as

τx =

∑
x h(x)

N
, x = 1, 2, · · · , 256,

where h(x) is the number of pixels at bin x in the histogram
and N is the total number of pixels in image I. In our
experiments, we adopt the following simple rule to decide
whether an image is a salient one or not. If τ30 > δ with
threshold δ = 0.70, it is a salient image. Otherwise, it is a
non-salient one.

4.3 SIFT Mapping and Mesh Formulation
The next step is compute the mapping correspondence

between SIFT features [11] of the original image, I, and its

retargeted results, Îi. This correspondence will help serve
as the basis for feature extraction as elaborated in Section
4.4.

260



We first extract the SIFT features from I and match them
with those of each retargeted image Îi. We discard all SIFT
features that are not successfully matched so that we have
an equal number of SIFT features for each image pair, I
and Îi, at the end of the matching process. Then, we formu-
late two graphs for each image pair (I, Îi). Each vertex in
the graph represents one matched feature in the original im-
age. The graph formulation is completed by connecting all
neighboring vertices using delaunay triangulation as shown
in Fig. 6.

As a result, we associate each image pair, I and Îi, with
two graphs denoted by G = (V,E) and Ĝi = (V̂i, Êi),

where |V| = |V̂i| and, for each vertex v ∈ V, there is a

unique mapping m(v) = v̂i, where v̂i ∈ V̂i. With such a
mapping in place, we have converted the problem of mea-
suring the distance between I and Îi to the problem of com-
puting the graph similarity between G and Ĝi.

(a) (b)

Figure 6: SIFT feature mapping and graph formu-
lation between the original image and its retargeted
result: (a) original image I (top), matched SIFT fea-
tures (middle) and its formulated graph G = (V,E)

(bottom), (b): retargeted result Îi (top), matched
SIFT features (middle) and its formulated graph

Ĝi = (V̂i, Êi) (bottom).

4.4 Extraction of Features
There are two key issues in objective image QoE assess-

ment: 1) extraction and representation of appropriate fea-
tures, and 2) pooling of features into one single number to
represent quality score. We will address the first issue in this
section and focus on the issue of feature fusion in Section 4.5.

4.4.1 Graph Structure Similarity
The graph structure similarity feature measures the

amount of global structural distortion in the retargeted im-
age. To compute this feature, we make use of the results
in Section 4.3, where the problem of comparing image pair,

I and Îi, is reformulated as comparing the graph similarity
between G = (V,E) and Ĝi = (V̂i, Êi).

If there is little global structural distortion during the re-
targeting process, the relative positions of V̂i should be close
to those of V and the shape of each triangle in G should be
similar to the corresponding matched triangle in Ĝi. As a
result, the global structural distortion in Îi can be measured
using shape deformation of each mesh triangle.

To measure the shape deformation of each triangle, we
make use of the log-polar spatial representation scheme [16],
which is computationally more efficient than methods such
as RANSAC. It encodes the relative positions and orienta-
tions between each pair of nodes in the graph. Fig. 7 shows
an example of 5-bit (32 regions) log-polar representations
and its corresponding spatial and orientation codes. In our
case, we use a spatial code with 8 bits, where the first 3
bits represent the relative orientation angle (quantized into
8 sectors) and the remaining 5 bits represents the relative
distance (quantized into 32 levels).

The shape deformation between two triangles is measured
using the modified inconsistency sum method [16]. That is,
to compare the log-polar codes of nodes in the triangle, we
compute the distance between two triangles Tk and T̂k as

dk =

3∑

i=1

Ci,k ⊗ Ĉi,k,

where k and i are indices for triangles and its three nodes,
respectively, and Ci,k (i=1,2,3) are the codes for node i in
triangle Tk, and ⊗ denotes the XOR operator. For the test
images used in our experiments, the typical range for k is
between 200 and 1000. If a triangle inG is perfectly matched
with the corresponding triangle in Ĝi, then dk = 0. Then,
we add up the distances for all triangle pairs and obtain the
distance between two graphs, G and Ĝi, as

f1 =
∑

k

dk.

4.4.2 Graph Patch Similarity
To measure the degree of local region distortion in the re-

targeted result, we consider a feature called the graph patch
similarity. If there is prominent local region distortion such
as broken edges or edge bending, the patch difference should
be significant.

Figure 8: The degree of local region distortion is
measured by using the graph patch similarity, where
the Euclidean distance of local patches of matched
graph nodes are computed and summed up over the
entire graph.

For each image pair I and Îi, we compare the similarity
of local patches of size N × N centered around each node
in graphs G and Ĝi, where N is chosen to be 15 in our
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Figure 7: Log-polar spatial representation scheme [16]. This example shows the 5-bit (32 regions) log-polar
representation of a triangle: the position and orientation codes of each triangle node.

experiment. We use pi,k and p̂i,k to denote patches centered
at the node with index i of the triangle with index k in these
two graphs, respectively. Then, the graph patch similarity
feature can be computed as

f2 =
∑

k

3∑

i=1

d(pi,k, p̂i,k),

where d(pi,k, p̂i,k) represents the Euclidean distance between
patches pi,k and p̂i,k. We show an example of three matched
features and the corresponding local patches for comparison
in Fig. 8.

4.4.3 Information Completeness
The features of information completeness characterizes

how well the retargeted image, Îi, preserves the important
content of the original image, I. When I is a salient image
and contains a prominent object, preserving this salient ob-
ject and its surrounding region is important at the expense
of regions of lower saliency. However, all contents that pos-
sess similar importance for non-salient images, they should
be preserved in a more uniform manner.

First, we need to determine a region in I that should be
present in the retargeted image Îi. This region, denoted by
P̂i, is called the impact area of Îi. To determine the impact
region P̂i, we reverse-map all matched SIFT nodes in Îi back
to I as shown in Fig. 9, and find a tight rectangular bound-
ing box, which is denoted as P̂i. Based on the saliency map,
we classify pixels in I into three regions: critical, important
and ordinary as shown in Fig. 10. For a good retargeted
result, its impact area P̂i should contain as much critical
and important regions as possible.

Then, to quantify the information completeness, we can
define a feature that measures the amount of saliency value
covered by the impact region. It is written as

f3 = α · Pc

Nc
+ (1− α) · Pi

Ni
,

whereNi andNc are the total numbers of pixels of important
and critical regions and Pi and Pc are the total numbers of
important and critical region pixels inside the impact area
P̂i, respectively. The weighting parameter α is empirically
chosen to be 0.70. The value of f3 ranges from 0 to 1. If
all the important and critical regions are encircled by the
impact area, we have f3 = 1.0.

original image retargeted image

Figure 9: Illustration of the reverse mapping of the
matched SIFT nodes in the retargeted image to the
source image to compute the impact area P̂i in the
source image. The white region in the bottom left
indicates a region where the underlying information
can be found in the retargeted image while the black
region means this part of information is lost after
retargeting.

4.5 Feature Fusion and Model Selection
For effective image quality prediction, not only is the fea-

ture selection important but also the mechanism to fuse all
features into one single quality score. There is no straight-
forward solution to feature fusion since the contribution of
each feature to the final quality score may be different and is
difficult to determine. A few basic pooling methods can be
employed, including simple summation, multiplication and
linear combinations of features. However, all these methods
implicitly make assumptions on the relative importance of
each feature, and there is lack of convincing ground for the
assumptions.

In the proposed GLS quality index, we take advantage of
the subjective human evaluation results and employ the ma-
chine learning technique to find a mapping function between
the features discussed in Section 4.4 and the final quality
score.
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ordinary criticalimportant impact area

original image

saliency map

Figure 10: Illustration of the information complete-
ness feature computation: the original image (left
top), the saliency map (left bottom) and the seg-
mentation of the saliency map into the critical re-
gion (white), the important region (gray) and the

ordinary region (black), and the impact area P̂i en-
circled by the green dash line.

In addition to features f1, f2 and f3, we consider three
more auxiliary features. They are:

• f4: the total number of matched SIFT node pairs be-
tween I and Îi;

• f5: the average matching strength of all matching SIFT
node pairs;

• f6: the average matching strength of top 50 matched
SIFT node pairs.

These three features measure how good the matching is be-
tween I and Îi. The matching strength represents the dis-
tance between each matching feature pair. For each retar-
geted result, we extract the six features {f1, f2, ..., f6} from
the given image and normalize them to the range of [0, 1].

To determine the optimal fusion rule, we conduct experi-
ments with the following eight fusion methods and compare
their performance in our current application context:

1. Direct feature addition (add)

2. Direct feature multiplication (multi)

3. Linear regression (lin)

4. Logistic regression (log)

5. Logistic regression with L1 penalty (log-L1 )

6. Support vector regression with linear kernel (svr-lin)

7. Support vector regression with polynomial kernel (svr-
pol)

8. Support vector regression with RBF kernel (svr-rbf )

Note that the last six of the above eight fusion methods are
based on machine learning.

In the training phase, each candidate model is presented
with a training set {fp, yp} and the model parameters are
estimated. The training sets are obtained from subjective
evaluation results from existing public datasets, where fp are
the feature descriptors and yp corresponds to the subjective
score. We utilize the cross-validation scheme for each candi-
date model and choose the optimal model whose objective
scores have the highest correlation with human subjective

evaluation results. During the test phase, the trained opti-
mal model is presented with the feature descriptors of the
test image, and it predicts the estimated objective quality
score.

5. EXPERIMENTAL RESULTS

5.1 Datasets
For the experiments, we make use of two public databases

for image retargeting: the RetargetMe database [17] and the
CUHK database [12].

The RetargetMe database contains 80 images, each with
eight retargeted results obtained by eight methods: Nonho-
mogeneous Warping (WARP) [25], Seam-Carving (SC) [1],
Scale-and-Stretch (SNS) [21], Multi-Operator (MULTI) [18],
Shift-Map (SM) [15], Streaming Video (SV) [7], Cropping
(CR) and Homogeneous Scaling (SCL). The subjective eval-
uation results on 37 images for all eight retargeting methods
are provided in this database (37 × 8 = 296 results). The
evaluation was conducted with 210 human participants and
scores were computed using pairwise comparison method, in
which participants were shown two retargeted images side-
by-side and were asked to choose their preferred ones.

The CUHK database contains 171 retargeted results from
57 image sources. In addition to the eight retargeting meth-
ods studied by [17], this database includes results from two
more targeting methods; namely, the optimized seam carv-
ing and scale method [4] and the energy-based deformation
method [6]. Unlike the pair-wise comparison scheme used
in [17], the subjective evaluation in this study employed the
5-category discrete scale (”Bad”, ”Poor”, ”Fair”, ”Good” and
”Excellent”) to obtain the mean opinion scores (MOS) of
viewers for each retargeted result.

5.2 Test Methodology
For both databases, we employ the 10-fold cross-validation

method to evaluate the performance of the proposed GLS
quality index. That is, the data is equally divided into ten
parts: one chunk is used for testing and the remaining nine
parts are used for training. The experiment is repeated with
each of the ten chunk used for testing. The averaged accu-
racy of the test based on all ten chunks is taken as the final
performance measure.

5.3 Comparison of Feature Fusion Methods
For performance evaluation, we consider the following five

metrics: 1) the Kendall rank coefficient τ , 2) the Pearson
linear correlation coefficient r, 3) the Spearman rank or-
der correlation coefficient ρ, 4) the root mean square error
(RMSE) between subjective and objective quality scores,
and 5) the outliers ratio (OR).

For a perfect match between the objective and subjective
scores (or rank), we have

• τ = 1.0

• r = 1.0

• ρ = 1.0

• RMSE = 0

• OR = 0

Table 1 shows the Kendall rank coefficient of the eight
different fusion methods as discussed in Section 4.5 for the
RetargetMe database. Since the subjective evaluation for
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Figure 11: An example where the proposed GLS index is strongly correlated with the subjective rank (with
Kendall rank coefficient τ = 0.857). The original and eight retargeted images of the Obama image and the
corresponding subjective rank [17] and the objective rank computed using the GLS index are shown.

this database is based on the pairwise comparison, it is dif-
ficult to determine the mean opinion score (MOS) and we
evaluate the performance of these fusion methods with the
Kendall rank coefficient only. We see from Table 1 that
the machine-learning-based fusion methods perform signifi-
cantly better than simple feature addition or multiplication.
In particular, the logistic regression fusion method outper-
forms all others. Furthermore, adding the L1 penalty further
improves the Kendall rank coefficient from 0.355 to 0.382.

Table 1: Kendall rank coefficient τ of different fusion
models for RetargetMe database [17]

add multi lin log log-L1 svr-lin svr-pol svr-rbf
τ 0.058 0.095 0.301 0.355 0.382 0.307 0.308 0.306

Table 2 compares the performance of different fusion meth-
ods for the CUHK database. Since the mean opinion scores
(MOS) are provided in this database, we can conduct per-
formance comparison using multiple metrics. As shown in
Table 2, the logistic regression (yet without L1 penalty) out-
performs all other fusion methods under almost all perfor-
mance metrics except for SROCC, where the linear regres-
sion is slightly better than the logistic regression.

5.4 Comparison of Objective Quality Indices

Table 3: Performance comparison of five objective
image QoE indices for RetargetMe database [17]

BDS[20] EH[13] SIFT-Flow[9] EMD[14] GLS
τ 0.083 0.004 0.145 0.251 0.382

In this section, we compare the proposed GLS quality in-
dex with four other objective QoE indices for retargeted
images. They are:

• Bidirectional Similarity (BDS) [20]

• Edge Histogram (EH) [13]

• SIFT-Flow [9]

• Earth Mover Distance (EMD) [14]

Table 3 and Table 4 compare the performance among
all five QoE indices for the RetargetMe and the CUHK
databases, respectively. We see from the experimental re-
sults that the proposed GLS index performs better than all
existing QoE indices by a significant margin in all four per-
formance metrics.

5.5 Discussion
The proposed GLS index outperforms all other existing

QoE indices for two main reasons. First, the GLS index
design is based upon three dorminant distortion types for
image retargeting as discussed in Section 3. The other qual-
ity indices consider only one or two of these distortion types
but none of them consider all three together. For exam-
ple, EH [13], SIFT-Flow [9] and EMD [14] do capture the
global structural distortion and the local region distortion
of retargeted images, but fail to consider the information
completeness factor. The BDS index [20] measures infor-
mation completeness in a bidirectional way, but it fails to
consider either global or local distortions that occurred in
the retargeting result fully.

The second reason that explains the good performance of
the proposed GLS index is that the machine-learning tech-
nique is adopted to fuse features effectively to yield one fi-
nal quality score. Although our feature design takes into
consideration all three distortion types, determining relative
weights of multiple features still remains a challenge. In the
GLS index, we address this challenge by training a machine
learning model that learns from existing subjective evalua-
tion results and intelligently determines the optimal feature
weights for each specific image. The more subjective evalua-
tion results we have for the fusion model training, the better
the predicted objective score for each retargeted result.

We offer further insights into the performance of the GLS
quality index by examining two examples. We show the
evaluation of eight retargeted results for image Obama in
Fig. 11. This image contains two salient objects: President
Obama and the boy. As shown in the subjective result,
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Table 2: LCC, SROCC, RMSE and OR of different fusion models for CUHK database [12]
lin log log-L1 svr-lin svr-pol svr-rbf

r 0.4402 0.4622 0.3961 0.3656 0.3711 0.3658
ρ 0.4939 0.4760 0.4002 0.4038 0.3821 0.3961

RMSE 12.204 10.932 14.026 12.894 13.259 13.212
OR 0.2046 0.1345 0.2163 0.2339 0.2022 0.2267

Table 4: Comparison with other objective image QoE metrics for CUHK database [12]
BDS[20] EH[13] SIFT-Flow[9] EMD[14] GLS

r 0.2896 0.3422 0.3141 0.2760 0.4622
ρ 0.2887 0.3288 0.2899 0.2904 0.4760

RMSE 12.922 12.686 12.817 12.977 10.932
OR 0.2164 0.2047 0.1462 0.1696 0.1345

cropping performs the best since the two salient objects can
perfectly fit into one cropping window and very little salient
information is lost. On the other hand, seam carving [1]
and warping [25] perform the worst as they introduce heavy
global structural distortion (on President Obama) and local
region distortion (the document in President’s hand).

As shown in the rank order table of Fig. 11, the objective
rank computed with the proposed GLS index correlates well
with the subjective rank in [17]. The Kendall rank coefficient
is equal to τ = 0.857. The best one and the poorest four
image retargeting methods identified by the GLS index are
identical with subjective evaluation results. The only slight
difference lies in the methods that are ranked from 2 to 4.
The GLS index favored the result of the streaming video
method [7] while the subjective evaluation ranks the multi-
operator method [18] as the second.

However, there are individual cases where the proposed
GLS index does not agree well with the subjective evalua-
tion results. We show the evaluation results of the Buddha
image in Fig. 12. For this case, there is a large discrep-
ancy between the subjective and objective evaluation results
with Kendall rank coefficient τ = −0.357. The GLS index
gives the highest preference to cropping, seam-carving [1]
and warping [25]. However, these three are among the worst
performing methods according to subjective evaluation re-
sults, thereby leading to a negative Kendall rank coefficient
value. The mismatch between the objective and subjective
ranks may be explained by the shortage of training data.
In the training data set, there is no image similar to the
Buddha image which contains the face of a human statue
as opposed to an authentic human face. If similar cases are
available in the training data or face-detection is added to
the saliency detection module, we may expect the proposed
machine-learning-based GLS index to learn from these cases
and provide more accurate prediction.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel objective quality of

experience (QoE) index, called the GLS index, to evaluate
image retargeting results. We first identified three key fac-
tors related to human perception on the quality of retargeted
images. They are global structural distortion, local region
distortion and loss of salient information. Using this knowl-
edge as guidance, we found effective features that capture
these distortion types and utilized machine learning to fuse

all features into one single quality score. One major advan-
tage of applying the machine learning tool is that the feature
weights can be determined automatically. It was shown by
experimental results that the proposed GLS index outper-
forms four other existing objective indices by a significant
margin in all performance metrics of consideration.

Since the performance of the machine learning method
will be improved with more training data, a larger database
with more subjective evaluation results for image retargeting
is desired. The prediction of objective scores will be greatly
improved with a model trained with more complete data set
that contains all distortion types. In addition, this work is
mainly focused on evaluating retargeting results of images.
Objective QoE assessment for retargeted video will be an
important extension of the current work.
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