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ABSTRACT
Retrieving visual object from a large-scale video dataset is
one of multimedia research focuses but a challenging task
due to imprecise object extraction and partial occlusion.
This paper presents a novel approach to efficiently encode
and retrieve visual objects, which addresses some practical
complications in surveillance videos. Specifically, we take
advantage of the mask information to assist object represen-
tation, and develop an encoding method by utilizing highly
nonlinear mapping with a deep neural network. Further-
more, we add some occluded noise into the learning pro-
cess to enhance the robustness of dealing with background
noise and partial occlusions. A real-life surveillance video
data containing over 10 million objects are built to evalu-
ate the proposed approach. Experimental results show our
approach significantly outperforms state-of-the-art solutions
for object retrieval in large-scale video dataset.

Categories and Subject Descriptors
I.4.10 [Image Representation]: Multidimensional; I.5.4
[Applications]: Signal processing

General Terms
Algorithms, Experimentation, Theory

Keywords
Object retrieval, Video search, Autoencoder

1. INTRODUCTION
The increasing number of cameras produce a huge amount

of video data. It is an urgent need to develop intelligent tech-
niques for object indexing and retrieval in a large-scale video
data. Content-based object retrieval is an advanced multi-
media application, which is benefitted from efficient repre-
sentation [8] and indexation [13, 7] approaches. Although
this problem attracts increasing research interests [14, 4, 10,
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1, 7] in recent years, developing an efficient object retrieval
solution, especially for surveillance videos, is still a chal-
lenging task, primarily due to three issues. First, such a
solution involves a series of processing, such as background
modelling, object extraction and representation, which are
all crucial but challenge tasks. Second, the appearance of the
same object is inconsistent under different cameras, which
add the difficult with the combination of view and pose
change. Finally, complex conditions such as low resolution,
illumination, noise, shadows, and partial occlusions embod-
ied with surveillance environment, make the objects inher-
ently subtle and even vague for human to recognize, thus
considerable computations are required to discern them.

As analysis above, in this paper a content-based object re-
trieval approach is proposed based on deep learning, which is
to encode object together with mask information efficiently.
A multi-model deep learning strategy is proposed to restruc-
ture the training set and improve retrieval performance when
the background is very noisy and with partial occlusions.
Moreover, we collect a real-life dataset contains more than
10 million objects for evaluation. Our method outperforms
other hash methods 10% on object retrieval in surveillance
video.

2. RELATED WORK
Object retrieval in surveillance mainly focuses on the ob-

jects, such as persons and vehicles [5, 18, 15]. Calderara
et al. [2] proposed the architecture for person retrieval in
multi-camera surveillance with the non-overlapping views,
and estimated the color probability distribution with a mix-
ture of Gaussians. Feris et al. [5] extracted a set of fine-
grained attributes for moving vehicles such as time, direc-
tion, dominant color, dimensions and speed, etc. Then they
automatically ingested the attribute metadata into a back-
end database system through a web-based service-oriented
architecture. Thornton et al. [15] focused on attributes of
gender, hair/hat color, clothing color, and bag (if any) po-
sition and color. A generative model was proposed to build
the corresponding descriptors for person search. Yang and
Yu [18] combined color histograms and three different tex-
ture descriptors to real-time recognize eight kinds of clothes
in surveillance videos.

Recent researches indicate that the generic descriptors ex-
tracted from the deep neural networks are very powerful.
Hinton [9] applied a 19 layers very deep autoencoder to en-
code natural images into binary codes and achieve satisfac-
tory results. However, it focused on the whole image, not
the object we are interested in. Inspired by [9], in this pa-
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Figure 1: Overall framework.

per through mapping the object and mask information ex-
tracted from surveillance videos to short binary codes with
deep learning, a very deep representation is learned to ensure
similar objects have similar binary codes.

3. OVERVIEW
The framework of the proposed approach is illustrated

in Fig. 1. In the training phase, background subtraction
and multi-object tracking [19] is performed for surveillance
videos to extract active objects such as a person and a car.
Two sub-images are extracted for each object: the color
image of the object block and the corresponding mask im-
age. Then a multimodel deep neural network is trained to
encode the object and mask image into a 128 bit binary vec-
tor. In the retrieval phase, user can select an interesting
object from the query image through an interactive oper-
ation. Afterwards the selected object is encoded with the
learned deep neural network. Then the generated 128 bit
code is used to retrieve similar objects in the database with
hamming distance.

4. DEEP OBJECT REPRESENTATION
Autoencoder (AE) was firstly proposed by Hinton in 2002.

As a deep neural network (DNN), it is composed with stacks
of restricted Boltzmann machine (RBM) and is used to trans-
fer input vectors into relative short codes with a highly non-
linear mapping function. With the progress of DNN the-
ory and GPU technique, it becomes practical to train AE
with acceptable computation ability. The training process
is divided into two phases: unsupervised pre-train and su-
pervised fine tune. To initialize the deep neural network,
the encode part is trained generatively layer by layer. Then
the weights and off-set vectors are unrolled to initialize the
decode part. Afterwards, the whole neural network is fine-
tuned with back propagation.

4.1 Mask assisted object coding
While in surveillance videos, the same object may appear

in different scenes, or the same location in a frame but at dif-
ferent time. Thus they are surrounded with different back-
ground noise. Sometimes, e.g. in the case of traffic jam, an
object is surrounded by many other objects. The denoised
autoencoder (DAE) [16] is designed to increase robustness
when dealing with global noise. It is trained to reconstruct a

clean “repaired” input from its noisy version. Formally, the
input v’s noised version ṽ is construct through a stochastic
mapping. The noisy version ṽ will be then mapped through
AE to reconstruct a clean version of ṽ by v̂. Note that the
reconstruction error is L =

∑N
i=1 |vi − v̂i|2.

However, DAE is not proper for our object retrieval prob-
lem in surveillance videos due to two reasons. First, the
encoding phase of DAE is encouraged to be robust for noise
in the whole image, not the background area of image. Sec-
ond, the distribution of foreground object is related to back-
ground area. If noise is only added to the background area,
the training process will be confused. Details are shown as
follows.

Suppose the foreground and background part of input im-
age v are represented by f and b respectively. The appear-
ance of foreground and background are represented by α and
β respectively. And objective factors such as lighting, color
deviation and stochastic noise are governed by θ. Then the
distribution of v is formulated as,

p(v|f, b, α, β, θ) ∝ p(v|f, b)p(f |α, θ)p(b|β, θ) (1)

Eq. 1 demonstrates that foreground and background are
both related to θ. If the noise is added to the background
area of image, the right part of Eq. 1 will be changed to
p(v|f, b)p(f |α, θ)p(b|β, θ̃), this will confuse the learning pro-
cess.

Since moving objects are usually extracted with back-
ground subtraction, it is natural to incorporate the mask
information to enhance object representation. Inspired by
[11, 12], to learn a feature representation robust to different
background images, we adopt a mask assisted multimodal
deep neural network to learn discriminative object codes.

The mask image is represented by m, which is as the ob-
ject context information. Then the object encoding solution
α can be solved with autoencoder as,

argmax
α

p(v̂, m̂|v,m)

∝ p(v̂, m̂|b, f)p(b, f |v,m)

∝ p(v̂, m̂|b, f)p(f |α, θ)p(b|β, θ)p(α, β, θ|v,m)

(2)

In fact the optimization problem is often recast as,

argmin
α

L = |v − v̂|2 + |m− m̂|2 (3)
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Figure 2: Different coding designs with DNN.

By introducing mask information, the multimodel autoen-
coder could learn the context appearance of object by min-
imizing the reconstruction error.
To illustrate our multimodel learning structure, different

coding designs of deep neural networks are given in Fig. 2.
(a) is to directly learn the feature codes with autoencoder.
(b) is to learn with the object region only. (c) is to learn
with denoising autoencoder. (d), (e) and (f) are our multi-
model solutions. (d) is to jointly learn with object images
and mask images together. (e) is to multimodel learn with
object images and mask images. For multimodel neural net-
work, the training set is copied and divided into two totally
equal parts. The first part includes input object images and
mask images. In the second part, mask images are all trans-
formed to pure black images. In the pre-training phase, the
two parts are both used. while in the fine-tuning phase,
both parts are tuned by the first part. Thus even for the
user input without effective mask image, this multimodel
autoencoder is expected to reconstruct object image with
complete mask image. In this way, the deep neural network
is supposed not only to encode the object itself, but also to
segment it from different background.

4.2 Occlusion processing
Another challenge confronted by surveillance videos is the

partial occlusion problem, especially in crowed scene such
as shopping mall and residential quarters. To address this
challenge, we further add some occlusion noise into the mul-
timodel autoencoder, as shown in Fig. 2(f). The training set
is designed to comprise occlusion noise. Specifically, we in-
sert some random patches into the object image, and for each
patch the pixels are set to zero. Then these noised images
and un-noised images compose the whole training set. In
the pre-training phase, the noised images and the un-noised
images are both used. While in the fine-tuning phase, those
noised patch is fine-tuned with the un-noised patch. In this
way, the learned object codes could reconstruct the missing
regions for partial occluded object.

5. EXPERIMENTS

5.1 Dataset and setting
Since there no available large scale surveillance dataset

that provides the object and mask images, to evaluate the
performance of the proposed approaches we collect surveil-
lance videos with HD cameras mounted at residential en-

Table 1: Retrieval results of different approaches
with 128 bit codes (MAP %).

original noise occlude(0.25) occlude(0.5)

ITQ(32bit) 39.09 38.28 15.45 4.93
raw(32bit) 46.93 37.92 18.80 5.21
ITQ 52.43 50.20 39.11 6.08
LSH 49.41 46.45 35.81 6.75
SH 48.22 44.98 30.64 8.19
raw 50.02 46.81 23.57 5.90
and 52.98 52.98 40.26 11.39
noise 53.85 50.10 22.64 11.85
joint 62.11 60.91 39.71 12.33
multi 64.91 65.46 40.38 12.56
multi-occ 65.02 60.25 41.27 18.61

trances inside university. We utilize background subtrac-
tion and object tracking to extract object images and corre-
sponding mask images, and build a dataset about 10 million
objects. The object dataset covers different weather condi-
tions, different lighting effects, and different periods of time.

The color object blocks are resized to 32 × 32 with three
channels and the binary mask images are resized to 32× 32
with only one channel. Then a 4096 dimension vector is built
to represent the object. To obtain more training instances,
all images are flipped left to right to double the training set.

We train on 10 million images that have been prepro-
cessed by subtracting from each pixel to its mean value over
all images and then dividing by the standard deviation of
each pixels over all images. The first RBM in the stack has
8192 binary hidden units and 4096 linear visible units with
unit variance Gaussian noise. All the remaining RBM’s have
N binary hidden units and 4N binary visible units until it
reaches the designed size. Details of training process is simi-
lar to [9]. The entire training procedure for each multimodel
autoencoder takes about 1 day on a Nvidia Tesla M2075.

5.2 Retrieval results
Total 43 queries are used to evaluate the proposed ap-

proach. Mean Average Precision (MAP) is used to quantita-
tively measure the performance. To compare the robustness
for background noise and partial occlusion, four groups of
queries images were carried out for each approach. The first
group includes clean object images and mask images. In the
second group, Gaussian noise was added to query images. In
the third group, 0.25% of object region in queries is random
occluded. The same setting was used for the fourth group
queries with occluded block size of 50% of query objects. In
addition to the original autoencoder, some classic hashing
approaches LSH (locality sensitive hashing) [3], SH (spec-
tral hashing) [17], ITQ (iterative quantization) [6] are also
compared, and retrieval results of different approaches with
128 bit codes are shown in Tab. 1.

From Tab. 1, “raw” that directly learns with autoencoder
[9] achieves satisfactory results even for short codes (32 bit).
But it seems that those linear hash methods achieve better
robustness in partial occlusion conditions for 128 bit codes.
When mask image is introduced, the retrieval performance
is effectively boost even for one modality learning. With
128 bit codes, the MAP is increased 12.09% for “joint” with
simple object images and mask images than “raw”. For the
multi-modality learning “multi”, as our expect, the MAP
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Figure 3: Retrieval accuracy of different approaches.

Figure 4: Retrieval results with occlusion.

raised 4.55% in noised conditions. And for the occluded
learning “multi-occ”, the MAP increased 6.28% for half oc-
clusions than “multi”, 10.42% than SH [17].
Fig. 3 shows the accuracy with different result set size in

the experiment with 50% occlusion. The mask assisted ob-
ject coding approaches “joint’, “multi” and “multi-occ” out-
perform hash methods such as LSH [3], SH [17] and ITQ [6].
And the“multi-occ” reaches the best result, which shows the
effective of our multimodel DNN for robustness of occlusion.
Fig. 4 gives some examples in occlusion conditions.

6. CONCLUSION
In this paper, a mask assisted object encoding approach

is presented to boost retrieval performance in surveillance
videos. The object image and mask image are used to learn
multimodel deep neural network that map similar objects to
similar binary codes. Additionally, occlusion noise is added
into the training set for reconstructing the whole object
to handle partial occlusion. Experiments and comparisons
demonstrate the efficiency of the proposed approach.
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