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ABSTRACT
Every day, lifelogging devices, available for recording differ-
ent aspects of our daily life, increase in number, quality and
functions, just like the multiple applications that we give to
them. Applying wearable devices to analyse the nutritional
habits of people is a challenging application based on ac-
quiring and analyzing life records in long periods of time.
However, to extract the information of interest related to
the eating patterns of people, we need automatic methods
to process large amount of life-logging data (e.g. recognition
of food-related objects). Creating a rich set of manually la-
beled samples to train the algorithms is slow, tedious and
subjective. To address this problem, we propose a novel
method in the framework of Active Labeling for construct-
ing a training set of thousands of images. Inspired by the
hierarchical sampling method for active learning [6], we pro-
pose an Active forest that organizes hierarchically the data
for easy and fast labeling. Moreover, introducing a classi-
fier into the hierarchical structures, as well as transforming
the feature space for better data clustering, additionally im-
prove the algorithm. Our method is successfully tested to
label 89.700 food-related objects and achieves significant re-
duction in expert time labelling.

Categories and Subject Descriptors
Computing Methodologies [Image Preprocessing and Com-
puter Vision]: Scene Analysis—Time-varying imagery; Color;
Object recognition; Shape

Keywords
Active labelling, food-related object recognition.

1. INTRODUCTION
It is clear that every day, technology is a little bit more

present in our daily life. There are unlimited aspects and
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Figure 1: Picture of the wearable camera SenseCam.

usual tasks in which Pervasive Computing (Ubiquitous Com-
puting) can improve our quality of life. A way in which this
emerging field can help us the most, is based on our feed-
ing habits and all their related aspects: nutrition, physical
activities, emotions and social interaction. And one of the
most evident problems, for which we could be interested in
logging every bit of the diet of a person, would be healthy
weight management.

An adequate and rich nutrition is clearly an important is-
sue to take into account for anyone who wants to be healthy.
Nutrition problems are widely known in our society, although
not everyone is concerned about it and does much to solve
them. Obesity and anorexia are diseases called ”diseases
of the XXI century”. Given the advantages of keeping a
record of feeding habits, interventional psychologists treat-
ing obese people, ask to record their lifestyle by writing
diaries with annotation of all feeding activities during the
days. However, several studies have reported that people
tend to underestimate their food intake, meanwhile overes-
timating their physical activities [18].

An application based on lifelogging could make a big leap
to solve this problem. People who clearly need help with
their nutrition-related habits, could get an incredible bene-
fit by collecting more explicit and objective the information
related to their day-to-day by wearable cameras. Moreover,
taking into account the importance of nutrition to prevent
diseases, every person could also take a great advantage from
a device like that. Hence, life-logging by a wearable camera
appears as a natural solution by being able to objectively
acquire day-by-day the feeding habits of persons. Starting
by recognising objects related to feeding, and ending by be-
ing able to analyse the components of every meal, as well as
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defining the eating patterns of people, are important steps
towards the success [7]. In this paper, we focus on using lifel-
ogging technology and dealing with the huge amount of data
that it produces to recognise objects closely related to nutri-
tion and eating habits, more precisely, automatic recognition
of dish objects in lifelogging records. To our knowledge, this
work for first time addresses the problem of Active Labeling
applied to the field of food-related object recognition.

1.1 Lifelogging and Wearable Devices
Lifelogging refers to the process of capturing large por-

tions of peopleŠs lives by typically wearing computer or
other digital devices. There are many different devices that
help us logging any kind of information related to our daily
routine, or any other sensor that can ”sense” what we are
doing, where we are, what we are looking at, etc. Even our
smart phones can become a powerful lifelogging machine
that can feed us with a wide range of useful information. A.
Sellen and S. Whittaker in [23] summarized the benefits of
pervasive computing, in general, and lifelogging, in partic-
ular, as the ”Five Rs”: recollecting, reminiscing, retrieving,
reflecting and remembering intentions.

For logging the nutritional habits of a person, we can use
one of the multiple wearable cameras that are available in
the market for general users or researchers. In this work,
we use the Microsoft’s SenseCam (see Figure 1). SenseCam
is designed for any lifelogging issues, although, its main re-
search goal, when it was created, was improving the mem-
ory retention of Alzheimer’s patients. S. Hodges et al. [15]
proved that people with memory problems using SenseCam
used to delay significantly the progression of the disease by
reviewing their records captured by the camera. Since then,
SenseCam and other wearable cameras have been success-
fully applied for multiple purposes [15, 16, 7].

SenseCam is able of taking on average about 4200 im-
ages per day. Once switched on, it captures continuously
2 frames per minute, up to 12 hours per day. The cam-
era has a privacy button to be switched-off, when necessary.
Once connected to a computer, all pictures are automati-
cally downloaded and removed from the camera.

1.2 Food-Related Object Recognition
Given the problem of monitoring the nutritional habits of

an individual, we reformulate it as a problem of recognising
objects related to nutrition in the surroundings of our sub-
ject. Analysing the photos taken by the SenseCam along
the day, we want to know when and for how long people are
in contact with food. Thus, similarly as it had been done
in [20, 14], we need to construct a robust classifier to au-
tomatically detect food-related objects, taking into account
the variation of their instances in all of their variants, shapes
and positions.

Today, there is a large battery of supervised classification
algorithms (KNN, AdaBoost, Decision Trees, Neural Net-
works, Support Vector Machines, etc.) [9] applied to many
problems in computer vision. A common feature for most of
them is that they need a large set of training data to achieve
high performance. This amount of input data is necessary
to learn the important patterns that describe the objects in
order to be able to automatically determine if a new object
tested by the classifier, is or not an instance of the substance
that we are detecting in the images.

The main disadvantages of most supervised classifier tech-
niques are that: 1) we need large amounts of labeled training
samples, and 2) the variables (features) related to our ob-
jects are too complex in order to develop a highly reliable
unsupervised classifier. Active learning is a field of machine
learning whose main purpose is guiding the process of man-
ually annotating large amounts of data optimizing it [24, 6].
In contrast to Active learning, where the main goal is to
learn in the fastest possible way, the goal of Active labeling
is to guide the labeling process of all samples the fastest way
possible (minimizing time, effort, clicks, etc.). This problem
can be of interest in severl applications such as annotating
all samples of a set for training or validation purposes.

1.3 Active Labeling
The basic features of an active learning method are: en-

vironments on which we have large numbers of samples to
label, and the necessity of an expert to label and validate
the training samples [25, 11]. Roughly speaking, we can di-
vide most of the Active Learning approaches into two types
[5]:

1. Classifier-Based Active Learning: Having a distribu-
tion of samples and a subset already labeled by a mas-
ter, the method determines the next region of data
distribution (based on the classifier that we are using)
to be inspected by the master, which is where the clas-
sifier’s uncertainty of unlabeled samples is higher [17].

2. Data Distribution-Based Active Learning: In this ap-
proach, the data queried is based on information of
data distribution instead of classifier performance.

Hierarchical Sampling (HS) method [6, 5] forms a part
of the second group. This particular method starts by cre-
ating a Hierarchical Cluster binary Tree (HCT) of all the
samples to label using their features as guidelines for the
partition. The HCT is constructed using the Single Link-
age approach [13, 12] and K-Means [19] clustering. Once
the HCT has been created, the labels of samples of the dif-
ferent clusters are queried to the master according to a cer-
tain criterion. The algorithm uses an uncertainty and purity
measure (called score or bound) in order to decide: 1) how
pure the clusters (nodes in the HCT) are, according to their
known labels, and 2) if their sub-clusters should be consid-
ered. Thus, once the master has answered the labels of an
iteration, the next queried cluster (node of the HCT) de-
pends on its ”purity” (the more similar the samples’ labels
are, the higher the probability of the cluster being chosen
to label will be) [6]. We chose the HS algorithm, as a main
skeleton of this work, due to its two main advantages:

1. It guides the labeling process through a previously cal-
culated HCT depending on the impurity (or uncer-
tainty) of the set of labels that reside in that particu-
lar level of the HCT, traveling downwards dividing the
sets but never upwards.

2. It presents a method to explicitly obtain the error
bounds or impurity of each of those clusters after each
query step.

Due to these properties, the algorithm optimizes signifi-
cantly the master’s labeling effort and achieves results very
competitive to the state-of-the-art, as verified by labeling
several public domain databases [6, 5].

46



Pre-processing
Load Set X

Load Hierarchical 
Clustering Tree

Classifier initial trimming

Query label predictions

Label 
samples

All 
predicted 

labels 
confirmed?

Fill Query and 
Cluster boxes

All 
samples 
labeled?

Query 
button 

clicked?

Division of the 
queried samples' 

clusters

Bound calculation

Store labels and useful 
data

Retrain classifier 

Label 
samples

Repeat the 
process for 
each Set X

Take photos 
during the day

NO

YES

YES

NO

NO

YES

Figure 2: Scheme summarizing the basic functioning of the food-related object recognition application.

2. ACTIVE FOREST METHOD
The technique we propose is for creating a large set of

training data for a food-related classifier. It follows the HS
approach to treat the images of interest. We extend it by
integrating the method used by [8, 21] which gives the mas-
ter the authority of labeling some queries (Queries) sampled
randomly [6] as well as validating a whole cluster (Cluster)
with high value of purity[8]. In the latter case, homogeneous
clusters are labeled with a single click. Thus, the algorithm
achieves to optimize the number of clicks and decrease the
time of unlabeled samples annotation.

Given our goal, which is labeling thousands of high dimen-
sional samples in the minimum time possible, the set to label
can be so huge that applying HS is getting computationally
infeasible. Taking that into account, we made our data come
in batches (e.g. corresponding to different days), we propose
a novel method, called Active Forest which consists in split-
ting the data into different bags, for which different HCTs
are constructed.

Our structure can be visualized as a forest of trees. A nat-
ural question arises: once the samples of a tree have been
labeled, how do we transfer this knowledge to the next tree.
Before constructing the next tree, we train a classifier on
the objects of the already labeled data HCTs, and apply
it to trim the samples set before constructing its HCT. All
samples from the next set that are classified with high con-
fidence, are labeled as a group by the master, and the rest is
used to construct the HCT. Thus, in parallel to the labeling
process, the Active forest also contains a supervised classi-
fier that can predict the class labels of the data and reduce
the samples to be labeled on the next step. Without loss of
generality, we tested two of the most popular classifiers: K-
NN [22] and AdaBoost [10], although any other supervised
classifier can be applied.

Adding the supervised trimming data process as a step
before each labeling session of the next tree, gives us the
following benefits:

1. Smaller sets for an easier task given to the master.
2. No loss of information between the labeling sessions.
3. Decrease on the labeling time due to the smallest HCT

constructed from the trimmed data.

Another issue is the optimal division of each partition set
or clusters/nodes of the HCT in subsets using the cluster-
ing approach. Originally, in the HS approach it is done by
applying unsupervised clustering. Note that moving down-
wards on the HCT, in each iteration, some of the samples of
each partition set are already labeled. In the Active forest,
we look for a transformation of the feature space of the cur-
rent partition set, so as to minimize the distance between
samples of the same class and maximize the distance be-
tween samples from different classes. In this way, we claim
that sub-clusters will tend to be more ”pure”. To this pur-
pose, we apply the Linear Discriminant Analysis [26, 2, 4],
combined with a previously applied Principal Component
Analysis [1]). By doing so, we optimize the purity of each
cluster and reduce the dimensionality of the original high-
dimensional feature space for faster clustering.

The flow diagram is given in Fig.2. Each of the labeling
sessions is started by: a) trimming off samples classified with
high confidence and confirmed by the master, and b) con-
structing the HCT to be labeled. Afterwards, the HS+LDA
approach is applied in addition of using the Queries and the
Cluster boxes for the master to choose. Finally, when all
samples are labeled, the classifier is retrained to be used in
the next set of labeling. The pseudo-algorithm definition is
as follows:

Input: One of the sets of unlabeled images with their cor-
responding features.

Step 1: Initialize an empty tree structure T for keeping
track of the pruning followed, the labeled and unlabeled sam-
ples that are in each cluster and their purity measure.

Step 2: If we have labeled more sets previously, apply ini-
tial trimming by the classifier trained on the previous HCTs.

Step 3: Choose randomly unlabeled samples and query the
master.

Step 4: Save labels, set samples to ”labeled” and increase
the number of clicks.

Step 5: While there is any unlabeled sample:
Step 6: Get bounds (purity) of each node of the HCT and

the most probable class assignment for each one (which will
be temporary set as predicted until user’s approval).
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Figure 3: Main screen of our active labeling appli-
cation with its different sections highlighted.

Step 7: Query N random samples and put them on the
window (”Queries”) with their predicted labels.

Step 8: Query the first M samples from the purest cluster
and put them on the window (”Cluster”) with their predicted
labels.

Step 9: After user’s approval save labels, set samples to
”labeled” and increase the number of clicks (only from the
chosen window samples).

Step 10: If user selected ”Queries”: apply LDA and K-
means in the new feature space to generate bi-partition of
the clusters, where each of the queried samples belonged to.

Step 11: End While
Step 12: Retrain the KNN classifier with the new labels.
Output: Labeled images corresponding to the current HCT

and the trained classifier.

2.1 Food-Recognition Application for Active
Labeling

After taking the photos with our lifelogging device along
the day, images are pre-processed by: image crop by slid-
ing window, set division for creating the trees for that day,
and image features extraction. For each region, we extract
the HOG descriptor and the mean (R,G,B) colors. We start
the labeling process that is repeated until all the trees from
that day are completely labeled. The Active forest is imple-
mented in a user-friendly application to create the labeling
set of the food-related objects. Figure 3 visualizes a scheme
of its main window. On the top, the user has the possibility
to add a new class and define its label. Bellow, a compacted
view of all samples is presented where different colors code
the labels of the samples, and black means ”unlabeled”. In
the center, we have two groups of images: on the right, we
have a ”Cluster” that are the first samples of the cluster with
higher purity. On the left, we have the ”Queries” that are
sampled randomly. Their frame shows the predicted label
to be confirmed by the master. On the bottom, we have the
statistics in terms of number of ”clicks” (corrections) of the
master and the percentage of the video that is labeled until
the current step.

3. RESULTS
In order to validate the performance of the Active forest

approach, we formed a validation set composed by: a public
domain and a home-made database. We performed differ-
ent tests to tune all the possible parameters and to compare

Figure 4: Samples from the three classes: NP (left),
P (centre), SP (right).

the time needed for each labeling strategies. Given the aim
of recognition of food-related objects, we illustrate the ap-
proach on plate recognition where any meal can be available.
Without loss of generality, we assumed three different classes
or labels for our data (Figure 4):

1. No Plate (NP): The image does not show any plate or
it is too far away from the camera.

2. Plate (P): There is a clear plate near the centre of the
image and the subject is close to it, or a maximum 5%
is out of the field of view.

3. SemiPlate (SP): A plate is only partially visible.

3.1 Data Sets
During the lifelogging acquisition of images, different tasks

of the subject’s everyday life were recorded. We selected
mealtime records of 6 different days (business days or hol-
idays) that led to a total of 408 images. Apart from the
SenseCam images, we decided to incorporate plate images
from Image-Net.org. To sum up, we used 508 images (408
from SenseCam and 100 from Image-Net) from which, us-
ing different scales and crops as a compulsory preprocessing,
we obtained 89.709 images (regions) divided in 24 different
sets of approximately 4000 images each (basis of the Active
Forest technique).

3.2 Sensitivity & Specificity
In order to get the optimal performance of the classifiers,

we computed the sensitivity and the specificity of the KNN
and the AdaBoost classifiers with different parameters. To
perform these tests, we used a 10-fold cross-validation always
with balanced classes, on which, as a first result, and due
to the low performance using a NP vs P vs SP classifier,
we decided to use cascade Combined Classifier [3]. It first
discriminates NP vs (P + SP) as a first step; if the sample
is classified to (P+SP), a second classifier will discriminate
between P vs SP.

In order to compare the results of the AdaBoost and the
KNN, we tested the sensitivity and specificity of the first
classification step, NP vs (P + SP) (see Figure 5 (top)). In
this figure, NT is the number of tests performed, and NR is
the number of rounds. Given the opposite nature of sensitiv-
ity and specificity, we give the results according to the ratio
between both measures. An alternative would be to use the
F-measure. Figure 5 (bottom) gives the tests on the classi-
fication of P vs SP. We could see that both classifiers give
approximately the same performance but to distinguish NP
vs (P + SP), KNN is slightly better. Although, AdaBoost is
slightly better in discriminating P vs SP, we decided to use
the KNN for both classification problems due to its more
stable results and less dependence on the parameters. We
decided to take a conservative value of k equal to 15 due to
its better generalization capability.
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Figure 5: Sensitivity and Specificity of NP vs (P +
SP) classifier (top), and Sensitivity and Specificity
of P vs SP classifier (bottom)

3.3 Precision and Likelihood
The trimming step separates groups of objects with high

likelihood (LH) assigning them a class, so that there is a
high probability that the user will not have to correct their
predicted labels. So we are interested in finding a likeli-
hood threshold for the groups that optimizes the precision
of the classifier (i.e. the groups should contain as much true
positives as possible keeping only up to a small % of false
positives). Figure 6 illustrates the precision of the KNN as
a function of the LH threshold. Considering that a 95-97%
of precision would be enough for the predicted labels to be
trimmed with high probability to form a pure cluster, we
fixed the corresponding LH values (NP: 0.7, P & SP: 0.7,
P: 0.9, SP: 0.8) as thresholds to use in the supervised trim-
ming procedure before constructing the next HCT. All sam-
ples that fall below these thresholds, will participate in the
structure to be labeled by the hierarchical sampling method.

3.4 Active Forest Results
Finally, we present the performance results of our method.

We used 89.709 labeled image regions and simulated the
labeling on a MacBook Pro 2.66 GHz Intel Core i7 using
Matlab running on Windows 7 on a VM. We ran 3 times
each of the simulations shown in Figure 7.

Our first result is that the Active forest manages to label
the set of 89.709 images, which turned out to be an im-
possible task for the HS method due to software and hard-
ware limitations when creating the HCT. Moreover, each
of its main contributions, results in improvement of the
method: Figure 7 shows the results obtained by the Active
Forest (blue), Active Forest with LDA (green) and Classifier
(KNN) + Active Forest + LDA (red). We can see that, us-
ing Active forest allows us to label the images in up to 0.08
s/image, adding LDA improves it achieving 0.049s/image
and adding the KNN classifier additionally reduces the time,
achieving 0.03s/image, which represents an improvement of

Figure 6: Precision vs Likelihood using KNN classi-
fier for each of the labels of the Combined Classifier.

62% (all representing simulation times). We should note
that in this simulation, the time needed by the masterŠs to
”click” on an image is not considered, the time is spent in
the algorithm execution. Interpreting the results, we can
say that splitting the set and constructing several HCTs,
the minimal time (that is the inferior limit), despising the
master reaction time, will be about 1 hour and 42 minutes.
Meanwhile, using the complete Active forest+LDA+KNN
will label the set in 40 minutes (plus the time of masterŠs
reaction). Since our tests shew that the number of master
”clicks”was approximately the same in these cases, the times
of the three algorithms would increase by a constant. When
tests were done with a real master, the time increased to
0.55s per image.

Note that the theoretical bounds of HS are directly appli-
cable to the Active forest, too. Since the purity estimation
of each HCT node depends only on the number of labeled
and unlabeled data, as well as the ratio of labels per class,
the same estimation can be applied for the Active forest.

4. CONCLUSIONS
In this paper, we propose a novel technique (Active For-

est), that allows to label large amounts of data. Our method
contributes in three directions: 1) It extends hierarchical
sampling method to a forest of hierarchical structures in
order to make possible treating a huge volume of data; 2)
It uses a trimming process applied by a supervised classifier
before each labeling session has started that additionally op-
timizes the labeling time by 62%; and 3) Applying Linear
Discriminant Analysis and a K-Means clusterisation on the
nodes of the structure allows a dimensionality reduction of
the feature space as well as a better clustering, minimizing
the distances between samples of the same class and maxi-
mizing distances between different classes. Still, the Active
forest maintains the same theoretical bounds as in the HS
extracted from the purity of each node of the trees.

We integrated the Active forest method in a user-oriented
application (Figure 3) that allows for an easy and fast la-
beling of huge amounts of data. Our application for Active
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Figure 7: Labeling time of Active forest simulation.

Labeling is not limited to the binary classification and can
be easily adapted for labeling multiple types of objects.
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J. Vitrià, and P. Radeva. Interactive labeling of wce
images. In Pattern Recognition and Image Analysis,
pages 143–150. Springer, 2011.

[9] R. O. Duda, P. E. Hart, et al. Pattern classification
and scene analysis, volume 3. Wiley New York, 1973.

[10] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[11] P. H. Gosselin and M. Cord. Active learning methods
for interactive image retrieval. Image Processing,
IEEE Transactions on, 17(7):1200–1211, 2008.

[12] J. C. Gower and G. Ross. Minimum spanning trees
and single linkage cluster analysis. Applied statistics,
pages 54–64, 1969.

[13] J. A. Hartigan. Consistency of single linkage for
high-density clusters. Journal of the American
Statistical Association, 76(374):388–394, 1981.

[14] H. Hoashi, T. Joutou, and K. Yanai. Image
recognition of 85 food categories by feature fusion. In
Multimedia (ISM), 2010 IEEE International
Symposium on, pages 296–301. IEEE, 2010.

[15] S. Hodges, L. Williams, E. Berry, S. Izadi,
J. Srinivasan, A. Butler, G. Smyth, N. Kapur, and
K. Wood. Sensecam: A retrospective memory aid. In
UbiComp 2006: Ubiquitous Computing, pages
177–193. Springer, 2006.

[16] Y. J. Lee, J. Ghosh, and K. Grauman. Discovering
important people and objects for egocentric video
summarization. In IEEE Conference on CVPR, pages
1346–1353. IEEE, 2012.

[17] M. Li and I. K. Sethi. Confidence-based active
learning. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 28(8):1251–1261, 2006.

[18] S. W. Lichtman, K. Pisarska, E. R. Berman,
M. Pestone, H. Dowling, E. Offenbacher, H. Weisel,
S. Heshka, D. E. Matthews, and S. B. Heymsfield.
Discrepancy between self-reported and actual caloric
intake and exercise in obese subjects. New England
Journal of Medicine, 327(27):1893–1898, 1992.

[19] J. MacQueen et al. Some methods for classification
and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
page 14. California, USA, 1967.

[20] C. Morikawa, H. Sugiyama, and K. Aizawa. Food
region segmentation in meal images using touch
points. In Proceedings of the ACM multimedia 2012
workshop on Multimedia for cooking and eating
activities, pages 7–12. ACM, 2012.

[21] P. Radeva, M. Drozdzal, S. Segui, L. Igual,
C. Malagelada, F. Azpiroz, and J. Vitria. Active
labeling: Application to wireless endoscopy analysis.
In International Conference on HPCS’2012, pages
174–181. IEEE, 2012.

[22] T. Seidl and H.-P. Kriegel. Optimal multi-step
k-nearest neighbor search. In ACM SIGMOD Record,
volume 27, pages 154–165. ACM, 1998.

[23] A. J. Sellen and S. Whittaker. Beyond total capture: a
constructive critique of lifelogging. Communications of
the ACM, 53(5):70–77, 2010.

[24] B. Settles. Active learning literature survey. University
of Wisconsin, Madison, 2010.

[25] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. The
Journal of Machine Learning Research, 2:45–66, 2002.

[26] M. Welling. Fisher linear discriminant analysis.
Department of Computer Science, University of
Toronto, 2005.

50



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move down by 23.83 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20130827092655
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Down
     23.8320
     0.0000
            
                
         Both
         3
         AllDoc
         3
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     5
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move left by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20130827092655
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
    
     Fixed
     Left
     7.2000
     0.0000
            
                
         Both
         3
         AllDoc
         3
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     5
     6
     5
     6
      

   1
  

 HistoryList_V1
 qi2base





