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ABSTRACT
Monocular simultaneous localization and mapping (SLAM) is a key
enabling technique for many augmented reality (AR) applications.
However, conventional methods for monocular SLAM can obtain
only sparse or semi-dense maps in highly-textured image areas.
Poorly-textured regions which widely exist in indoor and man-
made urban environments can be hardly reconstructed, impeding
interactions between virtual objects and real scenes in AR apps. In
this paper, we present a novelmethod for real-timemonocular dense
mapping based on the piecewise planarity assumption for poorly
textured regions. Specifically, a semi-dense map for highly-textured
regions is first calculated by pixel matching and triangulation [6, 7].
Large textureless regions extracted by Maximally Stable Color Re-
gions (MSCR) [11], which is a homogeneous-color region detector,
are approximated using piecewise planar models which are esti-
mated by the corresponding semi-dense 3D points and the proposed
multi-plane segmentation algorithm. Plane models associated with
the same 3D area across multiple overlapping views are linked and
fused to ensure a consistent and accurate 3D reconstruction. Ex-
perimental results on two public datasets [15, 23] demonstrate that
our method is 2.3X∼2.9X faster than the state-of-the-art method
DPPTAM [2], and meanwhile achieves better reconstruction ac-
curacy and completeness. We also apply our method to a real AR
application and live experiments with a hand-held camera demon-
strate the effectiveness and efficiency of our method in practical
scenario.1
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1 INTRODUCTION
Acquiring the relative camera pose between a moving camera and a
scene and meanwhile estimating 3D structure of the scene, i.e. also
named Simultaneous Localization and Mapping (SLAM) in the area
of robotics, are two key tasks for applying AR applications in an
unknown environment. The monocular camera stands out as one of
the most convenient sensors for SLAM due to its simplicity to use,
superior size, weight and power characteristics, low cost and large
deployment in personal electronic devices (e.g. smartphones, tablets,
small drones, etc.). A SLAM system relies solely on a monocular
camera is also denoted as monocular SLAM.

During the past decades, several efforts have been made for ac-
curate, robust, efficient monocular SLAM. One of the most notable
works is PTAM [17] which proposed to split the two tasks of SLAM,
i.e. tracking and mapping, into two separate parallel threads, and
updated maps for only keyframes. The implementation style of
parallelizing tracking and mapping and the utilization of keyframe-
based map management enabled PTAM to achieve real-time speed
with a satisfactory accuracy and robustness on a standard dual-core
CPU, and these two strategies are widely used by most of modern
visual SLAM systems such as ORB-SLAM [20] and LSD-SLAM [6],
and visual odometry systems such as SVO [12] and DSO [5]. Despite
advances in monocular SLAM, most existing systems can only pro-
vide a sparse or semi-dense map of a scene, in which depths of only
points with sufficiently large gradients are obtained. A sparse or
semi-dense map is sufficient for localization while not convenient
for AR applications in which virtual objects usually need to interact
with the physical scene. However, estimating a fully dense map
is quite challenging for conventional monocular SLAM especially
for textureless regions, such as surface of a table, black computer
screen, etc., which commonly exist in indoor and urban manmade
environments. This is because in most conventional SLAM systems,
maps are constructed by finding correspondences between frames
and then applying triangulation to correspondences for depth es-
timation. Thus, the computational complexity increases linearly
with the density of a map, yielding difficulties in achieving both
efficiency and a high map density. Additionally, the great difficulties
in finding reliable correspondences in regions with little texture
limit the amount of pixels for accurate depth estimation.

In order to achieve dense mapping, DTAM [21] performs pixel-
wise depth estimation by minimizing an energy function com-
posed of a data term which computes photometric errors between
corresponding pixels and a regularization term which enforces
smoothness of estimated depth. The expensive optimization proce-
dure is accelerated by powerful GPUs for real-time performance.
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However, DTAM requires rich texture and large-parallax camera
motions for accurate depth estimation, it still performs poorly at
large textureless regions. In recent years, some efforts have been
made to integrate semantic information based on object recogni-
tion [3, 18, 22] or structure/layout of a scene [10] with monocular
SLAM for dense mapping. That is once a particular object is rec-
ognized the prior shape information of the object is employed to
densify the scene map in SLAM. However, accurate object recog-
nition is also a challenging problem; incorrect recognition results
could degrade the performance of depth estimation. Several recent
works proposed handling high-gradient and low-gradient regions
separately to achieve both a good reconstruction accuracy and map
density in real-time. For instance, in [14] the authors proposed a
multi-level mapping which partitions an image adaptively accord-
ing to the gradient magnitudes in a region: high-gradient regions
are represented at higher resolutions to capture fine details, while
low-texture regions are represented at coarser resolutions to ap-
proximate planar structure. The most similar to us is [2] in which a
dense mapping system named DPPTAM is proposed by exploiting
planar structure. However, the performance of DPPTAM highly
relies on extraction of superpixels [1] which is usually time consum-
ing and has a low repeatability among frames. In addition, it is hard
to guarantee that each superpixel consists of a single planar object.
As a result, several reconstructed superpixels could be discarded
due to the existence of multiple planar/non-planar regions, low
repeatability of superpixels on other frames, yielding nontrivial
and unnecessary cost. In the domain of computer vision, several
methods [4, 13, 19] have been proposed to perform dense map-
ping from a single image based on convolutional neural networks
(CNNs). However, the accuracy of depth estimation using CNNs is
much lower than motion stereo. Additionally, CNN-based methods
are computationally expensive and require powerful GPUs for ac-
celeration. How to integrate CNN-based method into conventional
SLAM systems is also a very challenging problem.

In this paper, we present a new system which is inspired by
DPPTAM yet with three important modifications to enable an up to
2.9X speedup, better map completeness and accuracy comparing to
DPPTAM: 1) We replaced the superpixel method of DPPTAM with
a much more efficient and repeatable homogeneous region detector,
called MSCR [11], for extracting candidate planar regions (CPRs).
An ultrafast method based on dual projection of 3D semi-dense
points is applied for matching CPRs among keyframes; only CPRs
that can be reliably matched across consecutive keyframes are used
for depth estimation, reducing unnecessary cost for constructing
3D structure for non-reliable CPRs. 2) We performed multi-plane
segmentation to reconstruct all piecewise planar regions in each
CPR. Iterative RANSAC [9] is applied to sparse 3D points located in
each CPR for multi-plane model estimation. Pixels which lie in the
CPR while do not have 3D depth information are assigned to one
of the estimated plane models or removed as outliers. In contrast,
in DPPTAM the superpixels containing multiple planes and non-
planar objects are discarded, yielding a relative low utilization of
superpixels. 3) Piecewise planar regions which are visible across
multiple overlapping keyframes are linked and fused for a more
accurate and consistent reconstruction. Experimental results on
two public datasets, i.e. TUM [23] and [15] demonstrate that our

dense mapping method outperforms the state-of-the-art method
DPPTAM [5] in terms of faster speed and, better map completeness
and accuracy. We also applied our method to an AR application to
demonstrate its effectiveness in practical AR scenarios.

2 PRELIMINARY
2.1 Notation
We define I t : Ω → R image captured at time t, where Ω ⊂ R2

represents the image pixel domain. We denote the camera intrinsic
matrix K ∈ R3x3, the camera pose at frame t with respect to the
world coordinates as:

Ttw =
[
R t
0 1

]
∈ SE(3) (1)

where R ∈ SO(3) and t ∈ R3. The coordinate of a 3D point in
the world coordinates is denoted as Pw = (x ,y, z)T ∈ R3 and its
projection to a 2D frame i is 2D coordinates in image coordinates
denoted as u = (u,v)T ∈ Ω which can be computed based on the
camera projection model π : R3 → R2 :

u = π (TtwPw ) (2)
The projection model π is determined by the intrinsic camera pa-
rameters K. Similarly, the 3D points Pc in camera coordinates can
be recovered from their 2D projections u by the inverse projection
model π−1 : R2 → R3

Pc = π−1(u, ρu ) (3)
where ρu ∈ R represents the depth of 2D point u in the camera
frame.

2.2 Homography Model
Denote a 3D plane model Π =

[
nT ,d

]
, where n is the unit normal

vector of the plane Π and d is the distance along the normal of
plane Π to the origin in the current camera. Every pixel uk inside a
plane Π in frame k can be mapped to frame j via the homography
matrix HΠ in homogeneous coordinates as:

uj = HΠuk (4)

where HΠ is induced by plane model Π:

HΠ = K(R + tnΠ/dΠ)K−1 (5)

where R and t are the relative rotation and translation between
frame k and frame j, K is the camera intrinsic matrix.

3 METHOD
Figure 1 shows the overview of our system, which runs three par-
allel threads: tracking, semi-dense mapping and dense mapping.
The tracking thread tracks the camera pose for every frame and
selects keyframes for the subsequent semi-dense and dense map-
ping (Sec. 3.1). The semi-dense mapping thread estimates depth
of high-gradient pixels which are then used for dense mapping
of piecewise planar regions (Sec. 3.2). The dense mapping thread
takes the semi-dense map, keyframes and camera poses of every
keyframe as inputs and outputs a dense map based on the piece-
wise planarity assumption (Sec. 3.3). Specifically, the dense mapping

Session: Systems 1 – Systems and Applications MM’17, October 23–27, 2017, Mountain View, CA, USA

511



Figure 1: Overview of our system which consists of three
main modules running on three parallel threads: tracking,
semi-dense mapping for high-gradient pixels and dense
mapping for textureless regions.

module consists of four main components: First, candidate planar
regions (CPRs) are extracted at every keyframe based on a blob
detector named maximally stable color regions (MSCR). Second,
CPRs are matched across different keyframes and for those which
can be repeatability detected and reliably matched in consecutive
keyframes are identified for further processing. Third, we perform
multi-plane segmentation for each CPR based on the semi-dense
map and then assign the remaining pixels within the CPR to one
of the reconstructed planes or non-planar regions to form a dense
map. Finally, plane models which are visible across different over-
lapping views are linked for outlier removal and multi-plane fusion,
yielding a more accurate and consistent 3D reconstruction. In the
following, we detail each step.

3.1 Direct Method for Pose Tracking
In our method we employ a direct method [6, 12] for pose tracking
due to its low computational complexity and high robustness. Specif-
ically, the direct method estimates the camera pose by minimizing
photometric errors of high-gradient pixels at the corresponding
reprojection locations:

Tnk = argmin
T

∑
Ω

wiδ
2
i (6)

where Tnk represents the transformation from last keyframe k to
current frame n, δ2 is the intensity residual defined as the photo-
metric difference between pixel i in frame n and its reprojection
location in last keyframe k :

δ i = In (π (Tnk · π−1(ui , ρi ))) − Ik (ui ) (7)

To increase robustness to occlusion and to remove outliers, each
residual is weighted with wi as proposed in [16]. For each high-
gradient pixel ui with known depth ρi in keyframe k , we back-
project the pixel to 3D coordinates and then reproject it into frame
n. Eq. (6) can be interpreted a nonlinear weighted least-squares
problem which can be solved by a standard Gauss-Newton algo-
rithm.

3.2 Semi-dense Mapping for High-Gradient
Pixels

The semi-dense mapping thread estimates the high-gradient pixel
depth through pixel matching and the triangulation method. Map-
ping accuracy mainly depends on the accuracy of pixel matching.
As stated in previous studies [7], a small baseline gives a unique

but imprecise matching result and thus we select frames whose
baseline between the last keyframe is over a threshold for depth
estimation. For each high-gradient pixel with unknown depth in a
keyframe, we exhaustively search its matching pixel on the epipo-
lar line in the selected frame based on sum of absolute intensity
differences (SAD). Once matching pixels are obtained, and then
inverse depth is calculated via triangulation and its uncertainty is
estimated according to the method in [6, 7].

3.3 Dense Mapping for Low-Gradient Pixels
Gradients of pixels in textureless regions are usually quite small,
thus they are difficult to find corresponding matches across views
via epipolar line search and in turn unable to have reliable depth
estimation based on the triangulationmethod.We observe that most
textureless regions largely consist of homogeneous planar regions.
Therefore, if we could have a few pixels with depth estimation on
a plane we can calculate the 3D plane parameters and in turn have
depth estimation for every pixel on the plane. Based on this idea, we
perform dense mapping for low-gradient pixels by first extracting
candidate planar regions and then estimating plane parameters
based on semi-dense map and keyframes from the previous steps.

3.3.1 Candidate Planar Region Extraction via MSCR. Several
methods have been proposed for detecting candidate planar re-
gions (CPRs) for real-time monocular dense mapping. For instance,
in DPPTAM [2] the authors employed superpixels [8] computed us-
ing graph-based segmentation. However, extracting superpixels is
computational expensive, i.e. over 100ms on an Intel i7-4790 proces-
sor. Additionally, due to the low repeatability of superpixels, active
matching is desired to identify the true contour of each superpixel
and remove unreliable superpixels which consist of non-planar
objects for reconstruction. As a result, many 3D superpixels are
rejected in the active matching step, yielding a low utilization of
superpixels and unnecessary computational waste. To save the cost
for detecting CPRs, the authors in [14] partitioned each frame into
varying sized grids according to the gradients in each grid. Large
grids are assumed to be homogeneous regions and small grids con-
sist of high gradient pixels. The homogenous regions are directly
matched and triangulated to have a coarse estimation. Hole-filling
and linear interpolation is then applied to increase the density of
coarser resolution depth map. However, finding reliable correspon-
dence for homogeneous regions, i.e. large grids, is nontrivial.

To address the above limitations, in this paper we employed
a blob region detector, named MSCR [11], for extracting CPRs.
Specifically, MSCR is an ultrafast color-based affine covariant region
detector with high repeatability. MSCR detect stable regions based
on proximity and similarity in colour. A prune procedure based
on the margin and the area size is employed for outlier filtering.
MSCR can adapt to the image contours so as to occupy the entire
homogeneous colour region. Compared to superpixels used in [1],
CPRs detected by MSCR are much more repeatable and faster to
compute, i.e. over 2X faster than using superpixel segmentation.
Figure 2 (a) ∼ (b) display two exemplar keyframes and (c) ∼ (d)
show the corresponding CPRs detected by MSCR.

3.3.2 CPRMatching. It is inevitable that CPRs detected byMSCR
could contain false positives which include little planar objects (e.g.
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Figure 2: (a) ∼ (b) show two examplar keyframes #1 and
#2. (c) ∼ (d) display candidate planer regions extracted by
MSCR from keyframes #1 and #2. (e) illustrates the proce-
dure of CPR matching via dual projection between consecu-
tive keyframes. The green line and orange line denote a pair
of matching CPRs and mismatched CPRs respectively.

CPR 1○ in the left image of Figure 2(e)). Approximating these re-
gions using plane models could yield large reconstruction errors.
Therefore, it is necessary to exclude these false positives prior the
following processing. In addition, it is common that some planes
which are separate in 3D coordinates are spatially adjacent 2D
CPRs, such as CPRs 5○ and 6○, which correspond to partial table
surface and floor respectively. However, for pixels which locate
at the borderline of the two CPRs, it is hard to tell which CPR
these pixels should belong to. Due to the limited number of pixels
with depth for plane estimation, incorrect pixel assignment could
yield nontrivial amount of noises and consequently lead to large
reconstruction errors.

To address the above two problems, we perform CPR match-
ing with the primary goal to remove false positive CPRs which
contain little planar objects and assign semi-dense points to the
correct corresponding CPRs. Specifically, we observe that the color
difference for non-planar regions from two different viewpoints is
greater than that of planar regions due to non-uniform shadow of
non-planer objects and different reflection properties of different
components of a non-planer object. Therefore, non-planer objects
could be accidentally detected on a keyframe, e.g. a chair and part
of the table are incorrectly detected by MSCR as a CPR on keyframe

#1, while as viewpoint changes greater color differences can be
seen among the back of the chair, chair cushion and the handrail,
yielding disconnected components and mis-detection of a CPR on
keyframe #2. In contrast, real planar objects can be much more
reliably detected on both keyframes even with viewpoint changes,
e.g. CPRs 2○ and 3○. Matching CPRs across different views could
also facilitate correct assignment of pixels residing at borderline.
Since from some viewpoints the two adjacent CPRs could become
apart, then on these keyframes the CPR assignment of pixels can
be easily propagated to cases in which CPRs are spatially adjacent.

In this work, we propose an ultrafast yet effective CPR matching
method via dual projection of 3D semi-dense points. We denote
CPRs detected on the keyframe k as {mk

1 ,m
k
2 ...m

k
n } and the semi-

dense points as {Sk1 , S
k
2 ...S

k
n }, where each Ski (1 ⩽ i ⩽ n) is a 3D

point set whose 2D projection to the keyframe k locate within CPR
mk
i . To search matching CPRs between two keyframes k and l , we

project each Ski on keyframe k to another keyframe l to get a series
of 2D pixels {ul } by the projection model:

{ul } = π (TlkS
k
i ) (8)

Next, we count the number of pixels fall into every CPR in the
keyframe l . The oneml

j which possesses the most pixels and also
exceeds a predetermined threshold σ is considered as a candidate
match. In this paper, σ is set as half of the number of 3D semi-
dense points | |Ski | |. Similarly, we project the corresponding semi-
dense point set Slj ofm

l
j to the keyframe k via the projection model

to identify a candidate matching CPR of ml
j on the keyframe k .

If Ski and Slj are mutually matched with each other, we consider
them to be a true matching pair. Otherwise, they are discarded for
further processing. In our experiments, a CPR which can be reliably
matched across four views is considered to be a true positive planar
or piecewise planar region and is used for the subsequent dense
mapping.

Figure 2(e) illustrates the CPR matching process. The red dots
on CPRs 2○ and 3○ are projected pixels of semi-dense 3D points
belonging to CPR 3○ to the keyframe #1 and those of CPR 2○ to the
keyframe #2 respectively. Since majority of semi-dense points from
CPR 3○ can be projected into CPR 2○ and vice versa, we consider
CPRs 2○ and 3○ are mutually matched. If CPR 2○ can find mutually
matched CPRs on four consecutive frames, we consider CPR 2○ as
a true positive. For CPRs which cannot be matched to any CPRs on
one consecutive frame, e.g. CPR 1○, it will be directly rejected as
false positives.

3.3.3 Multi-Plane Segmentation. The CPR matching step can
exclude the majority of regions which consist of only non-planar
objects. However, it is inevitable that some CPRs could contain
multiple planes, i.e. piecewise planar regions such as the CPR 1○
in Figure 3(a). The red dots in Figure 3 (a) are projected pixels of
3D semi-dense points (Figure 3(b)) which locate in CPR 1○. For
those cases, we employ the RANSAC algorithm [9] iteratively to
estimate each plane model Π1, ...Πn progressively. Specifically, for
each CPRmk

i we iteratively select three points randomly from the
corresponding semi-dense point set Ski . In each iteration, the se-
lected points should not be collinear and meanwhile the pairwise
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Figure 3: Multi-Plane Segmentation.

Euclidean distance between the selected points should be suffi-
ciently large. Each plane hypothesis is evaluated by the number
of 3D points within a threshold distance to the plane model. Once
RANSAC converges, the plane hypothesis with the most inliers
is considered as the major plane Π1. If the number of remaining

outliers is sufficiently large (i.e. more than 10% of | |Ski | |), we remove
the inliers fitting the major plane model Π1 from Ski and repeat
the RANSAC algorithm again in the remaining points to detect
another plane Π2. Such progress iterates until the remaining points
is less than 10% of | |Ski | |. Consequently, for CPRm

k
i a set of n planes

Πk
i = {Π1, ...Πn } are obtained.
Once plane models Πk

i are obtained, the next step is to assign
every 2D pixel withinmk

i to one of the plane models. If only one
plane is discovered, all 2D pixels within CPRmk

i are assigned to this
plane model Π1 =

[
nT1 ,d1

]T . Accordingly, the 3D coordinates of
any pixel uki j in CPRmk

i can be calculated by solving the following
equations: {

nT1 Pi j + d1 = 0
uki j = πPi j

(9)

If multiple planes are discovered like CPR 1○ in Figure 3, we perform
a region segmentation based on the following two steps for pixel
assignment:

• Pixel assignment based on plane intersection line: Given the
estimated plane models, we can calculate the intersection
lines of multiple planes in 3D coordinates. By projecting
the 3D intersection lines to the 2D keyframe, we obtain
a set of 2D lines which can act as classifiers partitioning
pixels into several parts as shown in Figure 3(c).

• Pixel assignment via Normalized Cross Correlation(NCC)

measurement: For each plane model Πj =
[
nTj ,dj

]T
, we

calculate its homography matrix HΠj according to Eq. (5).
For each pixel uki j in a CPRmk

i on keyframe k , we project
coordinates of a small patch (9 × 9) around uki j , denoted as
Pki j , to another keyframe l using all plane model-induced
homography matrixes HΠ1 ,HΠ2 , ...HΠn , yielding P

l
i jΠ1
=

HΠ1P
k
i j , ...P

l
i j−Πn

= HΠnP
k
i j . For each projected patch

on keyframe l , we calculated a NCC score between the
projected patch Il

(
Pli j−Π·

)
and the original patch Ik

(
Pki j

)
on keyframe k according to Eq. (10)

NCCΠ· =

∑
Il (Pli j−Π·

) · Ik (Pki j )√∑
Il (Pli j−Π·

)
2 ·∑ Ik (Pki j )

2
(10)

For each pixel uki j , it will be assigned to the plane model
Π∗ which can achieve the maximum NCCΠ∗

.
Note that each of the above steps could contain noise, in particular
in contiguous regions. We combine the assignment results from
both steps. That is, after processing the above two steps each pixel
have two plane model assignments, as shown in Figure 3(c) and
(d). If the assignment results are consistent, the pixel will be as-
signed to the corresponding plane. Otherwise, the assignment of the
pixel is determined according to its 8-neighborhoods’ assignments.
In principle, applying NCC measurement across multiple views
can improve the assignment accuracy, while linearly increasing
the computational time. In practice, we perform this process with
only one consecutive keyframe for a good trade-off between the
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Figure 4: Reconstruction error and completeness ratios be-
tween our method and DPPTAM [2] for each keyframe.

speed and accuracy. The procedure of multi-plane segmentation is
illustrated in Pseudo Code1.

3.3.4 Outlier Removal andMulti-view Plane Fusion. Since a piece-
wise planar region can be visible in several keyframes, i.e. multiple
matching CPRs across views, it is necessary to obtain consistent
plane models across overlapping views. However, in practice it
is unavoidable that small variations (or even large differences) in
plane models are derived from matching CPRs, due to variations
or errors in the depth maps. To address this problem, we establish
links across nearby views betweenmutually matching CPR-induced
planes, fuse the linked planes and remove outliers whose distance
is over a threshold distance to the fused plane. Specifically, as de-
scribed in Sec. 3.3.2 we perform CPR matching and estimate plane
model for only a CPR that can be mutually matched on four con-
secutive keyframes. Therefore, for each CPRmk

i and its mutually
matched CPR m

(k±∆)
i (∆ = 1, 2) , we can first link the estimated

plane models Πk
i ofmk

i with the plane models of Π(k±∆)
i . Such link-

age can propagate to CPRs on the following consecutive keyframes.
Then for each plane model Πk

i j in set Πk
i , if sufficient number of

points, i.e. 90% belong to Πk
i j can be projected into the plane Π

(k±∆)
il ,

then the two planes Πk
i jand Π

(k±∆)
il are linked. Once we linked all

planes, for each linkage a new plane is estimated based on all 3D
points belonging to the planes in this linkage. Pixels with large
distance to the newly fused plane are then removed as outliers.

4 EXPERIMENT
We quantitatively evaluated the proposedmethod using 4 sequences
Seq1: over table from [15] and Seq2, Seq3, Seq4 are fr3/nonstru
cture_texture_near_withloop, fr3/structure_texture_far, fr2/xyz from
TUM RGB-D dataset [23], respectively. We first examine the utiliza-
tion of CPRs for dense mapping by comparing the depth estimation
error and reconstruction completeness of our method with DPP-
TAM [2] for each keyframe. A high completeness with a small
depth estimation error per keyframe indicate that more CPRs can
be effectively used, yielding a high CPR utilization rate and efficient

Table 1: Average mapping time per keyframe (ms)

Dataset [2] Ours Speedup

Seq1 209 72 2.9X
Seq2 174 72 2.4X
Seq3 231 85 2.7X
Seq4 190 82 2.3X

reconstruction. Then, we tested the overall reconstruction error,
completeness as well as runtime for each video sequence of the
public datasets. Finally, we tested our system with a hand-held web
camera in our own scenario and apply it to an augmented reality
application. A demo video of the reconstruction results of our own
scenario and AR app can be found in the supplementary material
accompanying the paper. The platform we used for all evaluation
is an Intel i7-4790, 3.6GHz quad core based laptop, equipped with
16 GB of RAM, running Ubuntu 14.04 operating system. We used
the source code implementation provided by the authors of [2] for
the evaluation of the baseline method DPPTAM.

4.1 Utilization of CPR
Figure 4 displays two ratios: 1) reconstruction error ratio which
is calculated as the mean reconstruction error of DPPTAM over
that of our method for each keyframe, and 2) the completeness
ratio which is computed as the percentage of reconstructed pixels
achieved by our method over that of DPPTAM for each keyframe.
We desire high completeness with small reconstruction error, thus
numbers of error ratio and completeness ratio greater than 1 denote
superior performance of our method to DPPTAM. From Figure 4 we
observe that for most keyframes of the tested video sequences, our
method achieves more accurate depth estimation and higher com-
pleteness. This result implies that the utilization of CPR is greater
than that of superpixels in [2], and in turn for the same physical
planes our method can reconstruct them earlier than DPPTAM and
fewer keyframes are required to achieve the same completeness for
our method. We believe the two main reasons for better utilization
of CPR are as follows: (1) We employed MSCR which was originally
designed for local feature detection for extracting CPRs. The re-
peatability of MSCR is much higher than the superpixel method [2]
used in DPPTAM. As a result, more CPRs can be correctly matched
across different keyframes and used for 3D plane reconstruction.
In comparison, due to the low repeatability of superpixels in DPP-
TAM, many reconstructed 3D planes are removed during the active
matching step since they fail to find correct matches in consecu-
tive keyframes and in turn yield a low utilization efficiency and
unnecessary computational cost. (2) We leveraged multi-plane de-
tection and an effective classification method for assigning each
pixel in a CPR to the corresponding 3D plane model. Therefore, for
CPRs which contain multiple planes or even non-planar regions
our method can still reconstruct subsets of pixels which locate on
piecewise planar regions. In contrast, DPPTAM rejects all superpix-
els which consist of more than one plane, yielding a low utilization
and reconstruction efficiency.
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Table 2: Runtime breakdown for each step (ms)

CPR
Extraction

CPR
Matching

Multi-Plane
Segmentation

Outlier
Removal

50∼55 5∼8 10∼15 3∼5

Table 3: Relative Inverse Depth Error [%]

Dataset [2] [14] Ours

Seq1 4.58 — 4.00
Seq2 1.8 6.2 1.6
Seq3 3.4 2.7 2.5
Seq4 7.8 — 7.9

Table 4: Average Keyframe Completeness [%]

Semidense Dense for
textureless Total

Dataset [2] Ours [2] Ours [2] Ours
Seq1 38.3 37.3 10.5 14.2 48.8 51.5
Seq2 36.1 37.5 14.4 17.3 50.5 54.8
Seq3 45.1 46.4 8.8 11.4 53.9 57.9
Seq4 31.5 33.4 9.0 12.2 40.5 45.6

4.2 Overall Performance Evaluation
4.2.1 Runtime. We evaluated the average runtime per keyframe

for dense mapping. Table 1 compares the runtime of our method
and DPPTAM for the four public video sequences. In general, our
method takes about 72 ∼ 85ms to estimate depth of a keyframe,
which is 2.3 ∼ 2.9X faster than DPPTAM. Table 2 displays the run-
time breakdown for each step. Specifically, extracting CPRs using
MSCR takes the majority of the time, i.e. 50 ∼ 55ms per keyframe,
multi-plane segmentation takes 10 ∼ 15ms and CPR matching and
outlier exclusion use a negligible amount of time. The two main
reasons why our system can achieve faster speed than DPPTAM are:
Firstly, the CPR Extraction is fast than superpixel extraction method
used in DPPTAM. Secondly, the CPR matching step filters many
unstable regions prior to the subsequent reconstruction process,
greatly improving the reconstruction efficiency.

4.2.2 Reconstruction Accuracy. We evaluated the reconstruction
accuracy using the relative inverse depth error, a metric widely
used in many SLAM and dense mapping systems [14]. Specifically,
the relative inverse depth error is defined as Eq. (11):

E =
1
N

·

N∑
i=1

|
1/ρes_i − 1/ρдt_i

1/ρдt_i
| (11)

where N represents the total number of pixels with depth esti-
mation, and ρes_i and ρдt_i are estimated depth and groundtruth
depth respectively. Table 3 compares the relative inverse depth er-
ror of our method with DPPTAM as well as alternative monocular
dense mapping method [14], i.e. multi-level mapping. In general,
our method outperforms the other two methods (except for Seq4:

Figure 5: Completeness as a function of relative inverse
depth error for the four video sequences.

fr2/xyz) by achieving smaller error value. Since multi-level map-
ping [14] did not provide source code, thus it is difficult for us to
completely duplicate their implementation. Therefore, the number
of Table 3 for multi-level mapping was those reported in [14] and
missing results for the Seq1: over table and Seq4: fr2/xyz is due to
lack of evaluation for the two sequences in the original paper.

4.2.3 Completeness. We plotted the completeness achieved by
piecewise plane approximation as a function of relative inverse
depth error in Figure 5. As can be seen, for all video sequences given
the same depth error our method can produce denser map, i.e. bet-
ter completeness, than DPPTAM. Table 4 provides the overall map
completeness when the relative inverse depth error is smaller than
10%, including both semi-dense mapping based on pixel matching
and triangulation and dense mapping using the piecewise planarity
constraint, for our method and DPPTAM [2]. Results show that for
semi-dense mapping for high gradient pixels, our method achieves
similar completeness as [2], while for the dense mapping for tex-
tureless regions, our method outperforms [2] by ∼ 4%. The total
map completeness including both semi-dense and dense mapping
achieved by our method is 45.6% ∼ 57.9%. Figure 6 illustrates ex-
emplar keyframes of the four videos and the final reconstruction
results.

4.3 Application to Augmented Reality
We developed a simple AR application to investigate the perfor-
mance of our system for practical AR tasks, in particular interac-
tions between virtual object and real scenes with large textureless
regions. Our application is "hide-and-seek" in which a virtual car-
toon character is randomly initialized at a location in the physical
world around the user; the user can use the hand-held camera as a
"magic glass" to look for the virtual character. Once the user starts
searching, our system initialises and starts to localize the camera
position and reconstructs the 3D scene around the user. If the vir-
tual character appears in the view of the hand-held camera, it can
escape and hide itself in the real scene, e.g. behind a real box. A
major difference of our AR app with the popular "pokemon go"
is that our app enables interactions between the virtual character
with the real scene, i.e. the virtual character can ’sense’ the depth
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Figure 6: Exemplar keyframes of the four video sequences and the dense reconstruction obtained by our method. For the
reconstructed results, pixels in red are reconstructed based on the piecewise planar assumptions and the remaining pixels are
reconstructed using the semi-dense mapping method.

Figure 7: The system can provide dense mapping of the cap-
tured scene efficiently. The virtual character can be aug-
mented in the real scene and interact with the physical ob-
ject, e.g. hide behind the real red box or run on the surface
of the box.

of real scene even regions with little texture information such as
table surface, and in turn yield more immersive user experience.
Some snapshots of our application is illustrated in Figure 7 and also
demonstrated in the supplementary demo video.

5 CONCLUSION
In this paper, we present a novel method for real-time dense map-
ping based on pixel matching for highly textured regions and piece-
wise planemodel approximation for textureless regions. Specifically,
candidate planar regions are extracted by homogeneous-color re-
gion detector MSCR and then are filtered by dual projection based
CPR matching. After that 3D piecewise planes are reconstructed for
each CPR based on multi-plane segmentation and the correspond-
ing semi-dense map. Multiple plane models derived from the same
3D planes across different overlapping views are linked and fused
for accurate and consistent 3D reconstruction. Our experimental
results show that the use of piecewise planarity approximation
for textureless regions allows us to reconstruct scenes with poorly
textured areas at a low computational complexity and a satisfactory
accuracy. We have compared our method against the state-of-the-
art monocular dense mapping method DPPTAM [2] on four public
video sequences with groudtruth depth. Results show superior per-
formance of our method to DPPTAM in terms of 2.3X∼2.9X faster
speed, better reconstruction accuracy and completeness. We also
integrated our dense mapping method into a direct method based
SLAM system and applied it to a real AR application. The live exper-
iments show that our system can produce dense map in real-time
and enable interactions between the virtual object and real scene.
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