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ABSTRACT

Traditionally, kernel learning methods require positive defini-
tiveness on the kernel, which is too strict and excludes many
sophisticated similarities, that are indefinite. To utilize those
indefinite kernels, indefinite learning methods are of great
interests. This paper aims at the extension of the logistic re-
gression from positive definite kernels to indefinite ones. The
proposed model, named indefinite kernel logistic regression
(IKLR), keeps consistency to the regular KLR in formulation
but it essentially becomes non-convex. Thanks to the positive
decomposition of an indefinite kernel, IKLR can be trans-
formed into a difference of two convex models, which follows
the use of concave-convex procedure. Moreover, aiming at
large-scale problems in practice, a concave-inexact-convex
procedure (CCICP) algorithm with an inexact solving scheme
is proposed with convergence guarantees. Experimental re-
sults on multi-modal datasets demonstrate the superiority of
the proposed IKLR model over kernel logistic regression with
positive definite kernels and other state-of-the-art indefinite
learning based methods.

KEYWORDS

indefinite kernel, logistic regression, concave-inexact-convex
procedure

1 INTRODUCTION

Kernel methods [16] are powerful statistical machine learning
techniques, which have been widely and successfully used.
The representative kernel-based algorithms include Support
Vector Machine (SVM, [19]), Kernel Logistic Regression (KL-
R, [24]), Kernel Fisher Discriminant Analysis (KFDA, [12]),
and so on. In above kernel-based methods, the corresponding
kernel matrix is required to be symmetric and positive semi-
definite to satisfy Mercer’s condition. Accordingly, these
methods can be well analyzed in the Reproducing Kernel
Hilbert Spaces (RKHS) [5].
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However, in practice, we often meet some sophisticated
similarity or dissimilarity measures that are either indefi-
nite (real, symmetric, but not positive definite) or for which
the Mercer condition is difficult to verify. For example, in
multimedia area, one can use the human-judged similarities
between concepts and words in music recommendation [20],
video recommendation [17], or utilize dynamic time warping
[9] for time series, or consider the Kullback-Leibler diver-
gence between probability distributions. In these cases, many
learning models boil down to be non-convex due to the used
indefinite kernel which violates Mercer’s condition. Hence,
there is both practical and theoretical need to properly handle
these measures.

To use indefinite similarities in classification task, there
have been some discussions, mainly on SVM. In theory, learn-
ing with indefinite kernels is discussed in the Reproducing
Kernel Krĕın Spaces (RKKS) [10, 11], instead of the conven-
tional reproducing kernel Hilbert spaces (RKHS) for positive
definite kernels. In practice, two kinds of algorithms are con-
sidered to deal with indefinite kernels: i) kernel approxima-
tion and ii) non-convex optimization. Kernel approximation
aims to transform the indefinite kernel matrix into a positive
semi-definite matrix by spectrum modification. For example,
“flip”: the absolute value of the negative eigenvalues; “clip”:
the negative eigenvalues cut to zero; “shift”: all eigenvalues
plus a positive constant until the smallest eigenvalue is zero.
However, above operations actually change the indefinite ma-
trix itself, and thus may cause in the loss of some important
information involved with the kernel. The second approach
is to directly solve the corresponding non-convex problem.
For SVM with indefinite kernles, [4] applies the SMO-type
algorithm and [1, 22] uses the concave-convex procedure (C-
CCP) [23] algorithm that decomposes the objective function
into the difference of two convex functions.

In this paper, we investigate the use of indefinite kernels
on kernel logistic regression (KLR). It is a representative
classifier and has been widely and successfully applied in
many fields. However, indefinite kernel logistic regression
(IKLR) has not yet been investigated in the past. To extend
kernel used in KLR from positive definite kernels to indefinite
ones, we need to carefully discuss the indefinite model and
its corresponding algorithm. In formulation, based on the
representor theorem in RKKS, the IKLR model shares the
similar formulation with that of the regular KLR. However,
using indefinite kernel makes the problem non-convex and
hard to solve. To tackle this issue, we decompose the objec-
tive function into the difference of two convex functions and
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then the CCCP algorithm is applicable. Moreover, aiming
at large-scale problems in practice, a concave-inexact-convex
procedure (CCICP) algorithm is proposed to obtain early
termination during each iteration. We theoretically demon-
strate the convergence of CCICP with the provable guarantee.
Experiments on various multi-modal datasets suggest that
in most cases our IKLR method outperforms not only the
conventional KLR with positive kernels but also other recent
algorithms with indefinite kernels.

2 KERNEL LOGISTIC REGRESSION

Kernel logistic regression has been proven to be a powerful
classifier with several merits [8] when compared with other
traditional classifiers. It can naturally provide probabilities
and straightforward extend to multi-class classification prob-
lems. Specifically, it only requires solving an unconstrained
quadratic problem, and thus, the computation time can be
much less than that of other methods, such as SVM which
needs to solve a constrained quadratic optimization problem.

Here we briefly introduce KLR in the binary classification
setting. In this setting, given a training set

{
(xi, yi)

}n
i=1

, an
instance space X , an output space Y, and a training sample
xi ∈ X with its corresponding label yi ∈ {+1,−1} in the
space Y. We aim to learn a function f : X → Y based on
these n training samples, so that when given a new input
z ∈ Rm (m is the feature dimension) from the test sample
set Z = [z1, z2, · · · , zs] with s test samples, we can predict
its label y. Many people have noted the relationship between
a classifier (e.g. SVM, logistic regression) and regularized
function estimation in the reproducing kernel Hilbert spaces
(RKHS) [5]. For instance, fitting a logistic regression problem
is equivalent to:

min
f∈H

λ

2
‖f‖2H +

1

n

n∑
i=1

ln
(

1 + exp
(
− yif(xi)

))
, (1)

where H is the RKHS generated by the kernel K(·, ·), and λ
is the regularization parameter. Generally, the discriminant
function is formulated as f(x) = w>x+b 1, where w ∈ Rm is
a weight vector parameterizing the space of linear functions
mapping from X to Y. By the representer theorem [15] in
RKHS, the optimal f∗(x) can be formulated as:

f∗(x) =

n∑
i=1

βiK(x,xi) ,

where K is a kernel function in RKHS and the coefficient
vector β ∈ Rn. Accordingly, the formulation of kernel logistic
regression can be obtained as:

min
β

λ

2

n∑
i=1

n∑
j=1

βiβjKij+
1

n

n∑
i=1

ln
(

1+exp
(
−yi

n∑
j=1

βjKij

))
,

(2)

1We omit the bias term in theatrical discussions for simplicity but
include it in numerical experiments.

where Kij = K(xi,xj) is a kernel matrix. With some abuse
of notation, in [24], Eq. (2) can be written in a compact form:

min
β

λ

2
β>Kβ +

1

n
1> ln

(
1 + exp(−y �Kβ)

)
, (3)

where 1 denotes the all-one vector, the operator � is element-
wise multiplication, and y = (y1, y2, · · · , yn)>. Traditionally,
in Eq. (3), we require the positive semi-definite property on
the kernel matrix K, and thus the optimization problem is
formulated as a convex unconstrained quadratic program-
ming. To find the optimal β, the Newton-Raphson method
can be used to iteratively solve such optimization problem.

3 INDEFINITE LEARNING IN
KERNEL LOGISTIC REGRESSION

3.1 IKLR Model

In indefinite learning, using indefinite kernels in Eq. (3) makes
Mercer’s theorem not applicable, which means that the func-
tional space spanned by indefinite kernels does not belong to
RKHS. To tackle indefinite kernels in theory, the Reproduc-
ing Kernel Krĕın Spaces (RKKS) [11] is introduced to provide
a justification for feature space interpretation. In this case,
the primal optimization problem of our IKLR model is for-
mulated as a stabilization problem instead of a minimization
problem. We reformulate Eq. (1) in RKKS as follows:

stablize
f∈HK

λ

2
‖f‖2HK

+
1

n

n∑
i=1

ln
(

1 + exp
(
− yif(xi)

))
, (4)

where HK is the RKKS generated by the kernel K(·, ·). In
[11], Ong et al. verify the existence of the representer theorem
in RKKS. That is, if the optimization problem in Eq. (4) has
a saddle point, it admits the following expansion:

f∗ =

n∑
i=1

βiK(xi, ·) ,

where K is a kernel function in RKKS and β is the coefficient
vector. Since this condition is easily satisfied, the logistic
regression problem with indefinite kernels can be expressed
in RKKS, which arrives at:

stab
β

λ

2
β>Kβ +

1

n
1> ln

(
1 + exp(−YKβ)

)
, (5)

where the label matrix Y ∈ Rn×n is a diagonal matrix,
of which the ith diagonal element is yi. It can be seen
that Eq. (5) shares the similar formulation with Eq. (3).
However, due to the indefinite property of the kernel matrix
K in Eq. (5), such non-convex optimization problem must
be analysed in the Krĕın space.

3.2 Kernels in Krĕın Space

The feature space in indefinite learning is given by a Krĕın
space [6], which is an indefinite inner product space endowed
with a Hilbertain topology, yet its inner product is not nec-
essarily non-positive. The Krĕın space is with the following
explicit definition in [3].
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Definition 3.1. An inner product space is a Krĕın spaceHK
if there exist two Hilbert spaces H+ and H− spanning HK
such that i) All f ∈ HK can be decomposed into f = f+ +f−,
where f+ ∈ H+ and f− ∈ H−, respectively. ii) ∀f, g ∈ HK ,
〈f, g〉HK = 〈f+, g+〉H+ − 〈f−, g−〉H− .

The existence of RKKS implies that an indefinite kernel
K has a positive decomposition on a given set X such that:

K(u,v) = K+(u,v)−K−(u,v),∀u,v ∈ X ,

where K+ and K− are two positive definite kernels. Thus the
objective function in Eq. (5) can be rewritten as:

stab
β

f(β) =
λ

2
β>(K+−K−)β+

1

n
1> ln

(
1+exp(−YKβ)

)
.

(6)
To obtain K+ and K−, one can decompose the symmetric in-
definite kernel matrix K by eigenvalue decomposition, namely
K = V >ΛV , where V is an orthogonal matrix and the di-
agonal matrix Λ is defined as Λ = diag(µ1, µ2, · · · , µn), of
which elements are eigenvalues of K with µ1 ≥ µ2 ≥ · · · ≥ µn.
Without loss of generality, we assume that the first v eigenval-
ues in Λ are nonnegative and the remaining n−v eigenvalues
are smaller than zero. As a result, K+ and K− can be
formulated as:{

K+ = V > diag(µ1 + ρ, · · · , µv + ρ, ρ, · · · , ρ)V ;

K− = V > diag(ρ, · · · , ρ, ρ− µv+1, · · · , ρ− µn)V.
,

where ρ is chosen as ρ > −µn to guarantee these two matrices
K+ and K− positive definite. By this decomposition of
K, the objective function in Eq. (6) can be decomposed as
f(β) = g(β)− h(β) with:

g(β) =
λ

2
β>K+β +

1

n
1> ln

(
1 + exp(−YKβ)

)
,

h(β) =
λ

2
β>K−β.

(7)

4 IKLR MODEL WITH THE CCICP
ALGORITHM

In this section, we present a CCICP algorithm to efficiently
solve such non-convex problem. Further, the convergence
analysis of the CCICP algorithm in IKLR is theoretically
demonstrated.

4.1 Solving with CCICP

Based on the above discussions, the objective function f(β)
in Eq. (6) can be formulated as the difference of two convex
functions g(β) and h(β). Therefore the CCCP algorithm is
an appropriate choice to solve such problem. Here we briefly
introduce the main idea of the CCCP and then detail our
CCICP algorithm.

The CCCP algorithm decomposes the non-convex objective
function f(β) into the difference of two convex functions
g(β) and h(β): f(β) = g(β) − h(β). In each iteration,

h(β) is replaced by its first order Taylor approximation h̃(β)
around its current solution, and then the original non-convex
objective function f(β) can be approximated by the convex

function f̃(β) = g(β)− h̃(β). Accordingly, the sub-problem

f̃(β) is formulated as a simpler convex form and then solved
by an off-the-shelf convex solver (e.g. a gradient descent
method). Theoretical analyses suggest that CCCP is able to
converge to a local minima [18].

Nonetheless, it can be observed that such sub-problem
needs to be solved at each iteration in CCCP, which makes the
solving process inefficient especially for a large-scale dataset.
To tackle this issue, we propose a concave-inexact-convex
procedure (CCICP), that only requires an inexact solution for
the sub-problem. By doing so, the CCICP algorithm is able
to effectively speed up the solving process. To be specific, the
inexact solution β(t+1) lies in an δ-neighborhood around the

actual result β
(t)
∗ = argmin

β
f̃(β). Since a gradient descent

algorithm is used, it satisfies f̃(β(t+1)) ≤ f̃(β
(t)
∗ ). Here β(t+1)

is bounded by β
(t)
∗ with the following formula:

β(t+1) ∈ Uδ(β
(t)
∗ ) ,

{
β | ‖β − β(t)

∗ ‖ ≤ δ
}
.

In this case, the Karush-Kuhn-Tucker (KKT) condition for

β(t+1) does not hold, namely:

∇β f̃(β)|β=β(t+1) 6= 0 .

Without loss of generality, we assume that:

∇β f̃(β)|β=β(t+1) = ε‖β(t)‖ , (8)

where ε corresponds to the bounded error, and its choice will
be discussed in Section 4.2.

Based on the above analyses, we detail the CCICP algorith-
m in our IKLR model. The function h(β) is linearized by its

Taylor approximation at β(t): h̃(β(t)) = λβ(t)>K−(β−β(t)).
As a result, the sub-problem is reformulated as:

f̃(β,β(t)) =
λ

2
β>K+β+

1

n
1>ln

(
1+exp(−YKβ)

)
−h̃(β(t)) .

(9)
We employ the gradient descent method to solve this convex
optimization problem, in which the gradient of f̃(β,β(t))
with respect to β is computed as:

∇β f̃(β,β(t)) = λK+β −
1

n
KYWq− λK−β

(t) , (10)

where W = diag[exp(−YKβ)] is a diagonal matrix whose ith

diagonal element is exp(−yiK(i)β), and q = (q1, q2, · · · , qn)>

by defining

qi =
1

1 + exp
(
− yi

∑n
j=1 βjKij

) , ∀i = 1, 2, · · · , n. (11)

To obtain the inexact solution β(t+1) ≈ argmin
β

f̃(β,β(t)) in

the sub-problem, the early termination scheme occupied by
Eq. (8) is executed to obtain early stop during each itera-
tion. Specifically, under the inexact solving scheme with the
bounded error assumption, the rationality of such approx-
imation and the convergence of the CCICP algorithm will
be theoretically demonstrated in Section 4.2. The detailed
procedure of the CCICP algorithm for IKLR is summarized
in Algorithm 1.

After obtaining the output β̃ by Algorithm 1, in the test
process, we firstly construct the test kernel matrix K associat-
ed with the training sample set X and the test sample set Z,
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Algorithm 1: CCICP for indefinite kernel logistic re-
gression.

Input: the indefinite kernel matrix K and two positive
semi-definite kernel matrices K+ and K−, the
label matrix Y, and the regularization
parameter λ.

Output: the coefficient vector β.
1 Set: stopping criteria: tmax = 15, the stepsize η = 0.2,

and the decay factor τ = 0.5;

2 Initialize t = 0 and β(0), and compute ε;

3 Repeat

4 Obtain h̃(β(t)) = λK−β
(t);

5 Obtain the sub-problem f̃(β) by Eq. (9);

// Inner Loop: Solve β(t+1) = argmin
β

f̃(β).

6 Initialize k = 0 and β
(t)
k := β(t);

7 while ‖∇f̃(β
(t)
k )‖ > ε‖β(t)

k ‖ do

8 Obtain the gradient ∇f̃(β
(t)
k ) by Eq. (10);

9 β
(t)
k+1 := β

(t)
k − τ

kη∇f̃(β
(t)
k );

10 k := k + 1;

11 end

12 Output β(t+1) := β
(t)
∗ that minimizes Eq. (9);

// Inner Loop completes.

13 t := t+ 1;

14 Until t = tmax ∨ ‖β
(t)−β(t−1)‖2
‖β(t)‖2

≤ ε;
15 Output the stationary point β̃ that minimizes Eq. (7).

namely Kij = K(xi, zj), and then compute the classification
score of the ith test sample p(zi), which is defined as:

p(zi) =
exp

(
K(i)zi

)
1 + exp

(
K(i)zi

) , ∀i = 1, 2, · · · , s ,

where K(i) represents the ith row of the test kernel matrix
K. If the classification score p(zi) > 0.5, we label zi with
+1, otherwise it is assigned to −1, which completes a predict
progress for a test sample.

4.2 Convergence Analysis of CCICP

With the aforementioned inexact operation, the CCICP algo-
rithm is expected to speed up the optimization process. For
the ease of such algorithm in theory, we carefully consider the
convergence of CCICP by investigating an inexact sequence
{β(t)}∞t=1 generated by Algorithm 1, and then further analyse
its convergence rate in the proposed IKLR model.

The key convergence analysis result of the CCICP is sum-
marized by Theorem 4.2, that is, when the error ε is upper
bounded, the sequence {β(t)}∞t=1 generated by a given point

β(0) ∈ Rn still converges to a stationary point.
Before proving Theorem 4.2, we need the following Lemma

4.1 to aid the proof.

Lemma 4.1. Given a sigmoid function R(x) = (1 + ecx)−1

where c ∈ {+1,−1}, and for two arbitrary variables x1, x2 ∈

(−∞,+∞), there exists a bound such that∣∣R(x1)−R(x2)
∣∣ ≤ 1

4

∣∣x1 − x2∣∣ . (12)

Proof. Because R(x) is a differential function, by La-
grange mean value theorem, there exists at least one point
ξ ∈

(
min(x1, x2),max(x1, x2)

)
such that∣∣R(x1)−R(x2)

∣∣ =
∣∣(x1 − x2)R′(ξ)

∣∣ ,
where the range of |R′(ξ)| satisfies:

|R′(ξ)| = eaξ

(1 + eaξ)2
=

1

eaξ + e−aξ +2
≤ 1

4
.

Then we can conclude the proof:∣∣R(x1)−R(x2)
∣∣ =

∣∣(x1 − x2)R′(ξ)
∣∣ ≤ 1

4
|x1 − x2| .

�

Next we are ready to prove Theorem 4.2 as follows.

Theorem 4.2. The sequence {β(t)}∞t=1 with an inexact
operation generated by CCICP still converges to a local min-
imum or a stationary point if the bound error ε in Eq. (8)
(i.e. ε1 and ε2 in Eqs. (14) and (15)) satisfies:

max
{
ε1, ε2

}
< λ

(
‖K+‖ − ‖K−‖

)
− ‖K‖

2

4n
. (13)

Proof. Let φ : U ⊂ Rn → Rn be a point-to-set map,
β(t+1) ∈ φ(β(t)) such that:

φ(β(t)) = argmin
β

f̃(β,β(t)) ,

which generates an inexact sequence {β(t)}∞t=1 through the

rule β(t+1) ∈ φ(β(t)), where φ(β(t)) satisfies the bounded
error assumption, that is:

∇β f̃(β,β(t))|β=φ(β(t)) = ε‖β(t)‖ .

Specifically, the map φ is said to be global convergent2 if for
any chosen initial point β(0), the sequence converges to a
point for which a necessary condition of optimality holds.
Therefore, the key is to prove that the map φ is a contraction
mapping for two arbitrary points a,b ∈ int(U) such that:∥∥φ(a)− φ(b)

∥∥ ≤ α‖a− b‖ ,

for a distance metric ‖ · ‖, where α ∈ [0, 1).
Suppose that φ(a) and φ(b) satisfy:

∇β f̃(β,a)|β=φ(a) = ε1‖a‖ , (14)

∇β f̃(β,b)|β=φ(b) = ε2‖b‖ , (15)

where ε1 and ε2 correspond to the bounded error, that lead
to the inexact sequence {β(t)}∞t=1. For simplicity, suppose
ε1 ≤ ε2, and the subtraction between Eqs. (14) and (15) can
be formulated as3:

λK+

[
φ(a)−φ(b)

]
= λK−(a−b)+

1

n
KYh+ε1‖a‖−ε2‖b‖ ,

(16)

2It does not imply convergence to a global optimum for all initial

values β(0).
3If ε1 > ε2, we use the subtraction between Eq. (15) and (14).
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where h is a n-dimensional vector, of which the ith element
is defined as:

hi =
1

1 + exp
(
yiK(i)φ(a)

) − 1

1 + exp
(
yiK(i)φ(b)

) .
By Lemma 4.1, we have:

|hi| ≤
1

4
|K(i)φ(a)−K(i)φ(b)|, ∀i = 1, 2, · · · , n,

and then ‖h‖∞ satisfies4:

‖h‖∞ ≤
1

4
|K(s)φ(a)−K(s)φ(b)| ≤ 1

4
‖K(s)‖1 ·‖φ(a)−φ(b)‖∞

≤ 1

4
‖K‖∞‖φ(a)− φ(b)‖∞ ,

where s = argmin
i

∣∣K(i)φ(a)−K(i)φ(b)
∣∣, i = 1, 2, · · · , n.

Due to the positiveness of K+, Eq. (16) can be reformu-
lated as:

φ(a)−φ(b)=
1

λ
K−1

+

{
λK−(a− b) +

1

n
KYh + ε1‖a‖ − ε2‖b‖

}
.

Subsequently, it can be bounded by using ‖ · ‖∞ (we omit
the notation for simplicity), that is:

‖φ(a)−φ(b)‖≤
1

λ
K−1

+

{
λK−(a−b)+

1

n
KYh+ε1‖a‖−ε2‖b‖

}
≤
∥∥K−1

+ K−
∥∥ ‖a−b‖+ 1

λn

∥∥K−1
+ KY

∥∥ ‖h‖+ ε2

λ
‖K−1

+ ‖
∣∣∣‖a‖ − ‖b‖∣∣∣

≤
∥∥K−1

+

∥∥∥∥K−∥∥ ‖a− b‖+
1

4λn

∥∥K−1
+ K

∥∥∥∥K∥∥ ‖φ(a)− φ(b)‖
+
ε2

λ

∥∥K−1
+

∥∥ ‖a− b‖ .

Hence we can obtain:

‖φ(a)− φ(b)‖ ≤
‖K−‖+ ε2

λ

‖K+‖ − 1
4λn
‖K‖2

‖a− b‖ . (17)

Likewise, if ε2 < ε1, the above formulation can be rewritten
as:

‖φ(b)− φ(a)‖ ≤
‖K−‖+ ε1

λ

‖K+‖ − 1
4λn
‖K‖2

‖b− a‖ . (18)

Accordingly, Eqs. (17) and (18) can be reformulated into a
uniform framework as follows:

‖φ(a)− φ(b)‖ ≤
‖K−‖+ max{ε1,ε2}

λ

‖K+‖ − 1
4λn
‖K‖2

‖a− b‖ .

Further, to guarantee that the map φ is a contraction map-
ping, we require:

α ,
‖K−‖+ max{ε1,ε2}

λ

‖K+‖ − 1
4λn
‖K‖2

< 1 .

After some straightforward algebraic manipulations, ε1 and
ε2 can be upper bounded as shown in Eq. (13). Finally, the
map φ served as a contraction mapping is well theoretical
demonstrated if the error is upper bounded. By the fixed
point theorem, we can conclude the proof. �

4Here we use |a>b| = ‖a‖p‖b‖q , where 1
p + 1

q = 1.

4.3 The Convergence Rate of our CCICP
Algorithm

Here we are also interested in the convergence rate of the
CCICP in our IKLR model. Salakhutdinov et al. [14] have
studied the local convergence of the CCCP, that is, depending
on the curvature of g(β) and h(β), CCCP would exhibit
either quasi-Newton behavior with fast, typically superlinear
convergence or first-order convergence behavior. Assume
that the sequence {β(t)}∞t=1 converges to the fixed point β̃:

β̃ = φ(β̃), we can Taylor expand it in the neighborhood

of the fixed point β̃ since the mapping φ is continuous and
differentiable. That is:

β(t+1) − β̃ ≈M ′(β̃)(β(t) − β̃) ,

where M ′(β̃) = ∂M
∂β

∣∣
β=β̃

, termed as the convergence matrix

which controls the quasi-Newton behavior. Near the local
optimum, this matrix is related to the curvature of the convex
function g(β) and the concave function −h(β), namely:

M ′(β̃) =

[
∂2h(β)

∂ββ>

∣∣∣
β=β̃

][
∂2g(β)

∂ββ>

∣∣∣
β=β̃

]−1

,

which can be interpreted as a ratio of concave curvature to
convex curvature.

In the proposed CCICP algorithm, the fixed point β̃ gener-
ated by the sequence {β(t)}∞t=1 with a bounded error. In this
case, it can be also approximated by the Taylor expansion
around the actual fixed point. As a result, we can analyse the
local convergence of CCICP in our model as abovementioned.
After two Hessian matrices ∇2

βh(β) and ∇2
βg(β) obtained,

the convergence matrix is determined by:

M ′(β̃) = λK−
( 1

n
K>H(β̃)K + λK+

)−1

,

where H = diag
(
q1(1 − q1), · · · , qn(1 − qn)

)
, and qi is de-

fined in Eq. (11). Given an indefinite kernel matrix K, the
convergence rate is determined by the ratio of K− from
the concave part and K+ from the convex part. Generally,
in indefinite kernel learning, eigenvalues of K+ are usually
much larger than that of K−. In this case, K+ occupies a
dominant position for the convergence. Hence, the CCICP
algorithm will exhibit a quasi-Newton behavior and possess
fast, typically superlinear convergence. In the experiments,
such condition will be satisfied in real-world dataset and the
convergence of CCICP will be further demonstrated. Note
that different convex-concave decompositions do not change
the final results of our algorithm; while they only change the
convergence rate.

5 EXPERIMENTS

In this section, we evaluate the IKLR model on two bench-
marks with a collection of multi-modal dataset from multi-
media and machine learning areas.

5.1 Experiment Setup

For the kernel setting, we choose a truncated `1 distance
(TL1) indefinite kernel [7] incorporated into our model, which
is defined as K(u,v) = max{τ − ‖u− v‖1, 0}. As discussed
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Table 1: Statistics for various datasets with n train-
ing samples represented by a m-dimensional feature.
The notations µmax and µmin denote the maximum
and minimum eigenvalues of the TL1 kernel over
training samples. Specifically, the large-scale data
sets are highlighted by bold.

Dataset m(feature) n(#num) µmin µmax

monks1 6 124 -2.094 94.077

monks2 6 169 -2.535 131.14

monks3 6 122 -1.764 95.376

parkinsons 23 195 0.127 1200.4

sonar 60 208 1.452 3024.6

SPECT 21 80 -1.145 353.11

transfusion 4 748 -0.336 818.74

splice 60 1000 -1.325 2885.3

EEG 14 14980 -0.444 7312.0

guide1-t 4 4000 -0.805 4116.7

madelon 500 2000 14.825 27015

in [7], the performance of the TL1 kernel is not very sensi-
tive to the parameter τ , and thus it is fixed to τ = 0.7m
as suggested. In addition, as a representative positive defi-
nite kernel, the radial basis function (RBF) kernel is added
for comparison, defined as: K(u,v) = exp(−‖u − v‖2/σ2).
The regularization parameter λ, and the kernel width in
Gaussian kernel σ, the trade-off parameter C in SVM are
respectively tuned via a five-fold cross validation over the
values {0.0001, 0.001, 0.01, 0.1, 1, 5, 10} on the training set:
one of these five subsets is used for validation in turn and
the remaining ones for training.

5.2 Results on UCI Dataset

In this section, eleven real-world datasets from UCI Machine
Learning Repository [2] are used to evaluate the performance
of IKLR with other five algorithms. For each dataset nor-
malized to [0, 1], we randomly pick up half of the data for
training and the rest for test. Table 1 lists a brief description
of these datasets including the feature dimension m, the
number of training samples n, the minimum and maximum
eigenvalues of the training TL1 kernels. It can be observed
that the absolute value of the maximum eigenvalue in each
dataset is always much larger than that of the minimum one,
which means that the CCICP will possess fast in our IKLR
model as discussed in Section 4.3.

We compare IKLR with other representative state-of-the-
art indefinite kernel learning based algorithms including:
“Flip”, “Clip”, and “Shift” [21]: three methods directly con-
vert the indefinite kernel matrix generated by TL1 kernel into
a positive semi-definite matrix using the spectrum transfor-
mation. Then we take the modified kernel matrix into kernel
logistic regression. “KSVM” [10]: a method transforms TL1
kernel from RKKS to RKHS, and then trains the convex dual
form of SVM. “KLR” [24]: a representative classification

method uses logistic regression with the RBF kernel just for
self-verification.

We test the above algorithms on these eight small-scale
datasets, where the procedure is repeated 10 times, and then
the average classification accuracy and its standard deviation
on test data are reported in Table 2. The best classification
accuracy on each dataset in the sense of average accuracy is
highlighted in bold.

In terms of the results in Table 2, we firstly analyze six
datasets in which the training TL1 kernel is indefinite, name-
ly: monks1, monk2, monks3, SPECT, transfusion, and splice.
It can be observed that IKLR achieves a promising perfor-
mance in most of datasets. Specifically, in monk1 and splice
datasets, the proposed IKLR method achieves the improve-
ment with respective 7.0% and 14.3% than the second best
one. The huge promotion benefits from the fact that the TL1
kernel with τ = 0.7m is robust and has good adaptiveness
to different non-linearity in different areas among the data
distribution. In addition, in the remaining six datasets, our
algorithm ranks the first on three datasets and the second
on the other two datasets. Specifically, compared to the
representative indefinite learning based algorithm KSVM,
the proposed IKLR method shows a favorable performance.

Lastly, we analyze two parkinsons and sonar datasets in
which the training TL1 kernel is still positive definite. It can
be observed that all compared algorithm achieve a similar
classification accuracy without distinct difference. As a result,
designing an advanced and delicate kernel in kernel logistic
regression is more flexible to achieve promising performance,
not limited to a positive definite kernel.

To further validate the effectiveness of the proposed inexact
scheme, we investigate the performance of our methods on
three large-scale data sets in Table 3. One can see that CCCP
without any inexact scheme achieves the best performance
on classification accuracy. However, the early stop condition
makes our CCICP algorithm much efficient on training time.

Above results demonstrate that the proposed IKLR model
not only outperforms non-convex optimization and kernel
approximation with a statistically significant evidence on
the indefinite training kernel, but also achieves a favorable
classification accuracy on the training dataset with positive
definite kernels. Moreover, the inexact scheme can effectively
speed up the training process of the proposed algorithm.

5.3 Results on ESC Dataset

Environmental sound classification (ESC) is one of the ob-
stacles in research activities. We accomplish this auditory
recognition task by the proposed IKLR model on ESC-10
dataset [13]. The ESC-10 dataset is a selection of 10 classes
that represents three general groups of sounds, namely tran-
sient sounds (sneezing, dog barking, clock ticking), sounds
events with strong harmonic content (crying baby, crowing
rooster), and sound event with structured noise (rain, sea
waves, fire crackling, helicopter, chainsaw).

In the experiment, we extract a ubiquitous feature in
speech processing, namely mel-frequenct cepstral coefficients
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Table 2: Test classification accuracy of (mean±std. deviation) of each compared algorithm on UCI datasets.
The best performance is highlighted in bold.

KLR(RBF) [24] Flip Clip Shift KSVM [10] CCICP

monks1 0.668±0.052 0.695±0.075 0.648±0.070 0.685±0.063 0.586±0.102 0.765±0.065
monks2 0.662±0.071 0.498±0.110 0.506±0.116 0.489±0.092 0.626±0.037 0.669±0.093
monks3 0.779±0.073 0.723±0.090 0.805±0.021 0.870±0.036 0.640±0.083 0.830±0.072

parkinsons 1.000±0.000 0.990±0.010 0.999±0.003 0.998±0.007 0.945±0.039 1.000±0.000
sonar 0.789±0.022 0.546±0.045 0.539±0.042 0.504±0.054 0.608±0.072 0.794±0.060

SPECT 0.737±0.092 0.652±0.026 0.706±0.022 0.667±0.034 0.893±0.024 0.764±0.059
splice 0.642±0.093 0.513±0.017 0.619±0.057 0.604±0.033 0.515±0.029 0.785±0.050

transfusion 0.741±0.048 0.734±0.095 0.717±0.020 0.736±0.038 0.762±0.006 0.726±0.129

Table 3: Results of CCCP and CCICP on several large-scale data sets.

Dataset EEG guide1-t madelon

Method CCCP CCICP CCCP CCICP CCCP CCICP

Accuracy 0.769±0.042 0.725±0.042 0.962±0.003 0.955±0.003 0.624±0.080 0.609±0.051

Training time 17171.0 848.885 1314.3 47.229 305.29 8.1293

Test time 0.1237 0.1304 0.0020 0.0028 0.0008 0.0064

Table 4: Comparison of average classification accu-
racy (%) of different algorithms where µmax and µmin

denote the maximum and minimum eigenvalues of
the TL1 kernel over training samples.

µmin µmax SVM(RBF) KSVM IKLR

−0.068 722.45 64.3% 68.1% 75.7%

(MFCC), where each speech clip is divided into numerous
frames. For each frame, a 12-dimensional MFCC is extracted
to represent the current frame in each clip with default set-
tings5. By doing so, a speech clip is represented by a MFCC
matrix where each row of this matrix is a 12-dimensional
MFCC for a frame. Then we compute their means and stan-
dard deviations across frames with average pooling operation.
As a result, a feature vector created in this way is treated
as an input to effectively represent a speech clip. For these
speech clips in ten classes, we randomly divide these clips
in each class into two non-overlapping training and testing
sets which contain almost half of the samples in each class.
Learning is performed with a 5-fold cross-validation regime.

Here we choose three representative classifiers including
SVM with RBF, KSVM [10] with TL1 kernel, and our IKLR
algorithm to evaluate the classification performance. Table 4
reports the average test accuracy (%) across above three al-
gorithms. We can see that the average classification accuracy
ranges from 64.3% for SVM with the RBF kernel to 75.7%
for our IKLR method, with KSVM with the middle (68.1%).
This result reinforces to demonstrate the effectiveness of our
IKLR algorithm with the TL1 indefinite kernel.

5http://dx.doi.org/10.5281/zenodo.12714

Figure 1: Convergence plots for CCICP (red) and
CCCP (blue) on the monks1 dataset, with objective
value versus iteration.

5.4 Algorithm Convergence

The experiments about the convergence of CCICP algorithm
are conducted on the monks1 dataset as shown in Fig. 1. One
can see that CCICP only takes 5 iterations to converge on the
monks1 dataset, while CCCP converges with 16 iterations.
Therefore, such inexact scheme makes the proposed IKLR
model much more efficient, which demonstrates the efficiency
of our algorithm in each iteration.
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6 CONCLUSION

This paper introduced the IKLR model to consider the indef-
inite kernel learning in logistic regression algorithm. Despite
that it shares the similar formulation with that of KLR, it is
in essence non-convex and thus has to be analysed in RKKS
with explicit demonstration. The proposed CCICP algorith-
m is able to effectively solve such non-convex problem by
decomposition methods, and adopts an inexact scheme with
early stopping the sub-problem to decrease the computation-
al complexity. The convergence of our algorithm has been
demonstrated with theoretical guarantees and experimental
validation. Specifically, the CCICP exhibits quasi-Newton
behavior or typically superlinear convergence because the con-
vex part in our IKLR model dominates the concave part. Ex-
tensive comparative experiments from multi-modal datasets
validate the superiority of the proposed IKLR model to other
algorithms with positive definite/indefinite kernels. Further,
the results also enlighten us to design a proper indefinite
kernel and does not limit to a positive definite kernel.
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