Crowd-sourcing Applied to Photograph-Based Automatic
Habitat Classification

Mercedes Torres
University Of Nottingham
Jubilee Campus, Wollaton Road
Nottingham, NG8 1BB, UK

psxmt3@nottingham.ac.uk 2nd. author

ABSTRACT

Habitat classification is a crucial activity for monitoring en-
vironmental biodiversity. To date, manual methods, which
are laborious, time-consuming and expensive, remain the
most successful alternative. Most automatic methods use
remote-sensed imagery but remotely sensed images lack the
necessary level of detail. Previous studies have treated au-
tomatic habitat classification as an image-annotation prob-
lem and have developed a framework that uses ground-taken
photographs, feature extraction and a random-forest-based
classifier to automatically annotate unseen photographs with
their habitats. This paper builds on this previous frame-
work with two new contributions that explore the benefits
of applying crowd-sourcing methodologies to automatical-
ly collect, annotate and classify habitats. First, we use
Geograph, a crowd-sourcing photograph website, to collect
a larger geo-referenced ground-taken photograph database,
with over 3,000 photographs and 11,000 habitats. We test-
ed the original framework on this much larger database and
show that it maintains its success rate. Second, we use a
crowd-sourcing mechanism to obtain higher-level semantic
features, designed to improve the limitations that visual fea-
tures have for Fine-Grained Visual Categorization (FGVC)
problems, such as habitat classification. Results show that
the inclusion of these features improves the performance of
a previous framework, particularly in terms of precision.
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1. INTRODUCTION

Habitat classification is the process of mapping all habi-
tats present in an area according to a determined scheme
[9]. The purpose of classifying habitats is twofold: it helps
to reduce the complexity present in the natural world and,
by categorizing habitats, their characterization and compar-
ison can be done much more efficiently and effectively. In
the UK, Phase 1 is one of the most widely used schemes [9].
This standardized hierarchical classification was designed to
provide a detailed record of the vegetation present in an
area. However, it relies very heavily on human surveyors.
This is laborious, expensive, time consuming and, given the
similarities between some of the habitat classes, subjective
[9].

Approaches have been developed with the aim of automat-
ing the habitat classification process but, to our knowledge,
the only alternative which takes into consideration the whole
of the Phase 1 scheme is presented in [19, 20, 18]. One of
the main reasons why no other alternatives with accurate re-
sults have been developed is because most of the automatic
habitat classification methods for other schemes use remote-
sensed imagery [4]. However, given the level of detail neces-
sary to distinguish between some Phase 1 habitats, remote-
sensed imagery has been proven to be insufficient [17]. We
approach habitat classification as a FGVC problem and we
develop an automatic image annotation framework based
on feature extraction and random projection forests to au-
tomatically classify habitats. Moreover, we have used an al-
ternative source of information that has obtained promising
results, as shown in [19, 18]: ground-taken imagery. These
photographs present two advantages over remote-sensed im-
agery. First, ground-taken photography has a greater degree
of detail. For FGVC problems, such as habitat classification,
this is a decisive trait, since details will be crucial to differ-
entiate between similar habitat classes, i.e. different types
of grasses or heath mosaics. Second, they can be obtained
more easily than remote-sensed imagery, since the only re-
quirement are digital photographs.

In this paper, we present a further development of the
framework presented in [19]. In particular, we study the
effect on our system of crowd-sourcing methods when in-
corporated to two components: the source data and the
features extracted. We make two contributions. First, we
have updated our database using Geograph, a crow-sourcing
website whose aim is to collect geographically representa-
tive photographs and information for every square kilome-
tre of Great Britain and Ireland [14]. By using this crowd-
sourcing site, we have benefited from their large collection



of photographs to create a vast and robust database in a
straightforward manner. This database, called Habitat 3K,
will be made publicly available for the research communi-
ty. Secondly, we have used a crowd-sourcing methodology
to obtain higher-level semantic features using a “Wisdom-
of-the-crowd” approach. Several users are asked to anno-
tate Habitat 3K photographs with a simpler set of classes.
Their answers, and the certainty levels on their annotation-
s are recorded and transformed into medium-level features,
which we combine with low-level features as the input of
our classifier. We have carried out extensive experiments to
test the influence of these two elements and recall and preci-
sion results have shown that our original Random-Projection
Forest design is stable enough to handle a larger database,
such as Habitat 3K, which is three times larger than the o-
riginal Habitat 1K database presented in [18]. Experiments
also show that the inclusion of semantic information greatly
benefits the classification of all classes, particularly the pre-
cision of those which are commonly harder to classify, such
as Tall Herb and Fern (C) and Heathland (D). Consequently,
we can conclude that the addition of crowd-sourcing mecha-
nisms to the task of two automatic habitat classification has
had positive effects on the performance of the framework.

2. PREVIOUS WORK

Habitat Classification: There are numerous habitat
classification schemes that have been developed worldwide
[9]. Although their objectives and parameters are quite d-
ifferent, the classifications with better results rely heavily
on manual classification. This is labour intensive, costly,
subjective and can take a significant amount of time. On
the other hand, most of the automatic approaches proposed
either develop their own schemes [8] or focus on classify-
ing particular standard habitats [23]. The former leads to
results which are very dependent on the site and not eas-
ily comparable with other schemes and the later leads to
relative or incomplete results [1]. Most of the automatic
approaches proposed in the literature use remote sensing
imagery [8] in their design, which are particularly unsuited
for Phase 1 classification [17]. The use of aerial and satel-
lite imagery to categorize Phase 1 habitats presents several
disadvantages. The most crucial disadvantage is their lack
of detail. This results in incomplete data and coverage, lit-
tle or non-existent species information and even low-quality
information, caused by the presence of clouds or intensity
differences within the raster photographs. In this paper, we
study the performance of ground-taken photographs, which
are much easier to obtain than remote-sensed imagery and
present a much finer level of detail, which can be crucial
when classifying FGVC problems.

Image Processing: Automatic Phase 1 habitat classifi-
cation using ground-taken photos can be approached as an
image annotation problem. The aim is to identify which
habitats are present in which photos and where they are
localized. There are many approaches that have been devel-
oped for image annotation with general classes. [13] com-
bined image annotation with semantic information and bag-
of-features to classify photographs according to classes such
as grass, water, chair, road and cat. [15] used semantic tex-
ton forests to annotate and classify images with a similar
scheme. [11] also developed a method for scene recognition
based on partitioning an image into increasingly finer sub-
regions and computing their histograms. However, what
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makes the problem of habitat classification different from
general annotation problems is the nature of the classes. In-
stead of conventional and clearly separable classes, such as
trees, grass, boat, water [13], Phase 1 is a hierarchical classi-
fication whose classes are difficult to identify even for human
surveyors. The aim, instead of classifying trees or water, is
to classify which kind of trees (broad-leaved or coniferous) or
water (standing or running) appear in the photographs. In
Computer Vision, this type of problem is commonly referred
to as fine-grained visual categorization problems [5]. Other
examples include the categorization of leaves [10] and bird-
s [2]. FGVC and image annotation are deeply connected,
as most FGVC datasets and approaches work with differ-
ent types of annotations. For example CUB-200-2011 is a
dataset for birds with parts and attributes [21]. Additional-
Ly feature selection is crucial for FGVC problems and can
determine the success or failure of the classification. We
propose the inclusion of higher-level features to automatic
habitat classification to improve the limitations that using
visual features entail when classifying visually similar class-
es. Higher-level features are designed to incorporate seman-
tic information from an image that low-level features are un-
able to collect. Crowd-sourcing methodologies can be used
to extract this knowledge [7]. Through a “Wisdom-of-many”
approach [16], the opinions of several non-expert people are
taken into account in the classification. The combination
of low-level and medium-level features is designed to help
classify habitats which share very similar visual properties
and improve accuracy of our framework as a whole.

3. PHASE 1 HABITAT CLASSIFICATION

We are using Phase 1 Habitat Classification because it is
one of the most widely-used schemes. A robust classifica-
tion scheme, such as Phase 1, is an essential tool for nature
conservation since being able to identify and record species,
ecological communities and habitat types is vital to ensure
their protection. Phase 1 is a standardized hierarchical sys-
tem for classifying and mapping wildlife habitats. It was
first devised in the 1970s in the UK and it is designed for
rapid wildlife mapping over large areas of countryside. It
comprises ten broad categories: Woodland and scrub (A),
Grassland and marsh (B), Tall herb and fern (C), Heathland
(D), Mires (E), Swamp (F), Open water (G), Coastland (H),
Rock exposure (I), Miscellaneous (J). In total, the Phase 1
classification scheme contains 155 recognized habitat type-
s organized in three different tiers, from more general to
more specific. Each class is identified by its name, an alpha-
numeric code, a description and a mapping color. Current
implementations of the Phase 1 scheme rely on human sur-
veyors to map the habitats. This has many disadvantages:
surveyors need to be trained specifically in Phase 1 classi-
fication; depending on the size of the site to audit, manual
habitat classification can be expensive and time consuming;
finally, given the degree of detail required, it can be extreme-
ly laborious.

4. HABITAT CLASSIFICATION AS AN IM-
AGE ANNOTATION PROBLEM

We approach automatic habitat classification from an im-
age annotation perspective. The input are ground-taken
photographs and the output is a list of all possible habi-
tats ranked from most probable to less probable. Figure 1



shows an overview of the whole system. The method has
two main steps: first, in order to work with the images in a
more efficient manner, image features are extracted. Second,
the features extracted are used as the input of a Random
Projection Forest [19, 18] which calculates the probability
of occurrence of each possible habitat in the ground-taken
photograph. In this paper, we have focused on studying the
effect of crowd-sourcing applied to the first step of the frame-
work. For the second step, we follow the design presented
in [19].

Low-Level

Features Random Projection

Forests

m\ T T,
see Q
Medium-Level

A BAAE L

f
1677

Crowd-sourced

Ground-Taken

Photographs

Habitats
Features

semantic information

source data

Figure 1: Image Annotation-Based Habitat Classi-
fication.

4.1 Ground-Taken Photographs: Habitat 3K

In [18], Torres and Qiu presented a 1,086 ground-taken
photograph database, called Habitat 1K (H1K). In an effort
to include more variability on the photographs conditions
and to increase the number of habitats in the database we
created Habitat 3K (H3K). This database will be made pub-
licly available. H3K was created combining the photograph-
s from Habitat 1K and 2,005 photographs from Geograph
[14]. Geograph’s aim is to collect, publish, organise and pre-
serve representative images and associated information for
every square kilometre of Great Britain and Ireland [14]. It
maintains a database of over four million ground-taken pho-
tographs and it also stores their associated metadata, such
as geographical location, the time of the photo, etc. These
data are uploaded by a multitude of users, spread all over
the UK and they are freely available to the public. Geograph
photographs can be tagged and annotated.

We used Geograph to collect 2005 additional photographs
using their search-by-tag feature and by searching for the
ground-taken photographs with any of these tags: Arable,
Boundary, Coastal, Flat landscapes, Grassland, Heath, Scrub,
Hedge, Lakes, Park and Public Gardens, Rivers, Stream-
s, Drainage, Rocks, Scree, Cliffs, Wall, Woodland, Forest.
This feature enabled us not only to increase rapidly the size
of our database but also to access photographs from habitats
that, given our current geographical location, were difficult
to access, such as a wide range of Coastland (H) habitat-
s. In comparison with H1K, H3K is three times its size,
3094 against 1086 photographs, and it contains more than
twice the number of habitats, 11,344 habitat instances a-
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Figure 2: Habitat 3K.

gainst 4,344. Photographs from this database are shown in
Figure 2. H3K contains habitats from all possible Phase 1
classes except E and F. H3K has an average of 3.66 anno-
tations per image, a minimum number of 1 annotation per
image and a maximum of 6. Additionally, it contains a mix-
ture of high and low resolution photographs, taken during
all twelve months of the year in Great Britain. Its classifi-
cation is a mixture of the classification done by an expert
in Phase 1 and the classification obtained from Geograph’s
tagging system.

4.2 Higher-Level Features

Low-level features, such as the pattern features that were
extracted in [19], commonly collect only visual information
in the form of global or local statistics. However, there are
objects that, while belonging to completely different class-
es, might have similar visual properties. This is particularly
prominent in FGVC problems and makes their automatic
classification process extremely complicated if only visual
features are taken into consideration. For example, based
on colour, texture or pattern features alone, it is impossi-
ble to distinguish a tree that belongs to a Woodland (A.1)
habitat or a tree that belongs to a Hedge and Trees (J.1.2.)
formation. In these cases, there is a clear gap between the
visual characteristics of the objets within a photograph and
their semantic meaning. This phenomenon is known in the
Computer Vision field as the “Semantic Gap” [3]. It is cru-
cial to notice that the semantic gap problem is even more
pronounced and has more effect in FGVC problems, such
automatic habitat classification. FGVC problems aim to
accurately classify between classes that are visually similar
and have similar semantics [22]. These classes, as shown in
Figure 3, can be indistinguishable to the untrained eye. In
an effort to bridge this gap, we propose the introduction of
semantic information in the classification process. For this,
a new type of feature, often referred to higher-level features,
has been proposed [6].

We employ a crowd-sourcing methodology to extract se-
mantic information in an effort to improve the classifica-
tion. We refer to this semantic information as medium-level
knowledge. From them, we create medium-level features.
The aim of using humans and crowd-sourcing to collect this
semantic information is to create a system that can benefit
from both humans’ strengths, such as being able to differ-
entiate between different classes just by looking at a pho-
tograph, and computers’ strengths, such as being able to
carry out complicated calculations at a fast speed. More-
over, in order to take into consideration visual and semantic



(a) S.I. Grassland

(b) I. Grassland

Figure 3: Visual Similarity in FGVC. These similar
photos belong to different classes: Semi-Improved
and Improved Grassland.

information during the classification of habitats, we com-
bine low-level and medium-level features. The combination
of low-level and medium-level features is designed to help
classify habitats which share very similar visual properties
and improve accuracy of our framework as a whole.

To create the medium-level features, we show users pho-
tographs from our Habitat 3K database and we ask them
to annotate them with the classes that they see. Instead
of using the whole Phase 1 scheme, which can be confus-
ing for untrained humans, we have created a set of thirty
two basic classes, shown in Table 1, that users use to anno-
tate the photographs. Moreover, we ask them to record the
certainty of their classification. We then use the confidence
measures collected with the annotations from each user. For
each image x in the database, all the users’ responses stored
in a 32-dimension feature vector H(x) = (h1, ha,, ha3) that
is generated as follows:

n={ M)

Where ¢; is the degree of confidence that the user has
in that their annotation belongs to the correct class i in
the photograph x. Consequently, the vector H is what we
will refer to as medium-level features. This feature vector
is then combined with low-level visual features and used as
the input of the random-projection-forest classifier in our
framework to automatically annotate unseen ground-taken
photographs, as shown in Figure 1.

if class 7 is present
otherwise

Table 1: Medium-level Annotations.

Annotations
Trees - leaves Bushes Reed
Trees - mixed Fern Herbs
Trees - no leaves  Grass - flowers Grass - uniform
Grass - green Heath Water - running

Water - still CIiff - near water CIliff - no water

Rocks - Large Rocks - Small Sand
Shingles Crops Wall
Fence Hedge Sky
Other Blue Green
Red Yellow White
Brown Winter Summer

S. EXPERIMENTS

We designed two experiments to test each of the contribu-
tions of this paper. First, we evaluated the stability of our
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original framework by comparing precision and recall met-
rics [19] when using both H1K and H3K as input. As shown
in Figure 1, we extract two types of low-level features: pat-
tern features (CPAM [12]) and colour features (colour his-
tograms and colour moments). Second, in order to evaluate
the use of higher-level features, we compare the results ob-
tained in the previous experiment with those obtained from
combining medium and low-level features when classifying
H3K habitats. Additionally, in order to understand better
the effect of semantic features, we have calculated the con-
fusion matrices for first-tier habitats in H3K.

6. RESULTS

Figure 4 shows the recall and precision [19] results for first-
tier Phase 1 habitat classification when using our framework
with HIK and H3K with colour and pattern features and
with and without medium-level features. Moreover, Table 2
shows the confusion matrix for H3K when higher-level fea-
tures were excluded and included in our framework.

As can be seen when comparing H1K and H3K perfor-
mances, our framework is stable. It is able to maintain the
same level of accuracy in all cases, and, in the case of Heath-
land (D) habitats, even obtains more accurate precision re-
sults. Their classification in general improves greatly in H3K
given their much larger number of instances, 824 in H3K a-
gainst 135 in H1K. Moreover, it can also be seen that the
introduction of medium-level features helps the classification
of all habitats. Table 2 shows that the inclusion of semantic
information increases the percentages of correctly classified
habitats, presented in the diagonal of the matrix. Particu-
larly, Tall herb and Fern (C) classification shows an increase
of over 10% in accuracy, as do Heathland (D), Open Water
(G) and Coastland (H) habitats. Previously, these habitats
obtained less accurate results because the share similar visu-
al characteristics with other habitats. For example, heath-
land mosaics are extremely similar to scrub. Since in our
original framework the only information that was extracted
was their visual properties, we were unable to distinguish
properly between them. However, by using crowd-sourcing
methods and employing humans, we were able to add se-
mantic information in the classification process which was
crucial to increase their successful classification rate.

7. CONCLUSIONS AND FURTHER WORK

Automatic Phase 1 habitat classification is a FGVC prob-
lem with many ecological applications. We built on pre-
vious work [19, 18, 20], which presented a automatic im-
age annotation framework for habitat classification using
ground-taken photographs. We study the effect of crowd-
sourcing methods applied to habitat classification and make
two contributions: a 3,000 fully-annotated publicly-available
database, Habitat 3K, collected using the crowd-sourcing
database Geograph, and the creation and collection of se-
mantic higher-level features through a “Wisdom-of-the-crowd”
approach in which users annotate photographs with a sim-
pler set of classes. These annotations are combined with
low-level visual features as the input of our Random Pro-
jection Classifier. Experiments show that crowd-sourcing
mechanisms are a beneficial addition to our framework and
that they increase recall and precision of even the most diffi-
cult habitats to classify, such as Tall Herb and Fern (C) and
Heathland (D). Further work will include the addition of



A. Woodland and Scrub B. Grassland and Marsh C.Tall Herb and Fern
1 1 1
09 09 09
08 1 08 08
- e ————————— o % o
05 05 05
Tos Tos Tos
& & &
04 04 04
03 03 03
02 02 02
01 01 o L —m——
o o 0>
110 20 30 40 S0 60 70 8 9 100 10 120 130 140 150 1 10 20 30 40 0 60 70 8 9 100 110 120 130 140 150 110 20 30 40 50 60 70 8 9 100 110 120 130 130 150
Forestsize Forestsize Forestsize
D. Heathland G. Open Water H. Coastland
1 1 1
09 09 09
08 08 08
07 07 07
05 05 05
Jos fes HS
& .~ & &
04 04 04
03 \\\/\( /7_\_ S — 03 03
=) - o e
o [ e — o o =
o o o
110 20 30 40 S0 60 70 8 9 100 10 120 130 140 150 1 10 20 30 40 S0 60 70 80 90 100 110 120 130 140 150 1010 20 30 40 S0 60 70 8 S0 100 110 120 130 140 150
Forestsize Forest size Forest size
I. Rock Exposure and Waste J. Miscellaneous
1 1
09 09
08 08
07 07
05 05
Tos Tos
& &
04 04
03 03
02 02
01 01
o o
1 10 20 30 40 50 60 70 80 9 100 110 120 130 140 150 110 20 30 4 S0 60 70 8 9 100 110 120 130 140 150
Forest size Forestsize
A. Woodland and Scrub B. Grassland and Marsh C.Tall Herb and Fern
1 1 1
09 09 09
08 08 08
07 07
06 = —— —— 1 o5
H H
#os Eos
H H
04 04
03 03 03
02 02 02
———
01 01 01
o o o
110 20 30 40 S0 60 70 8 9 100 10 120 130 140 150 1 10 20 30 40 0 60 70 8 9 100 110 120 130 140 150 110 20 30 40 50 60 70 8 9 100 110 120 130 130 150
D. Heathland G. Open Water H. Coastland
1 1 1
09 09 09
08 08 08
07 07 07 /
05 05 05
H H H / \_~“
#os #os Eos
H i i ~_
04 04 04 /\7
03 03 03 4
o S ————— 02 02 \
I AN 01 01 \
o o o
110 20 30 40 S0 60 70 8 9 100 10 120 130 140 150 1 10 20 30 40 0 60 70 8 9 100 110 120 130 140 150 110 20 30 40 50 60 70 8 9 100 110 120 130 130 150
1. Rock Exposure and Waste J. Miscellaneous
1 1
09 09
08 08
07 07
05 _ o
H H
®os 2 o5
H H
04 04
03 03
02 02
01 01
o o
110 20 30 40 0 60 70 8 9 100 110 120 130 140 150 110 20 30 40 50 60 70 E0 0 100 110 120 130 140 150

m—H1K - Pattern

w—H3K - Color

s H1K - Color s H3K - Patte

m

w——H3K - MLF + Pattern ==——H3K - MLF + Color

Figure 4: First-tier recall (first three rows) and precision (last three rows) results for experiments with
pattern and colour features with H1K and H3K.

23



Table 2: Confusion Matrix of H3K when we do not use higher-level features (left) and when we do (right).

A B C D G H I J

A 52.92/57.82 9.99 17.83/13.51 13.73 0 0 0 5.53/4.95

B 5.10/4.89 52.14/58.11 5.35/4.63 18.37/15.8 0 0 0 19.04/16.57

C  42.57/33.99 6.60/5.61 3.63/13.86 34.32 0 0 0 12.87/12.21

D 29.98/27.55 43.81/37.74 0.97/0.24 5.83/20.63 0 0 4/2 15.41/11.41

G 0 3/2 0 4/3 35.55/43.08 0 22/18 35.66/33.55

H 6/4 11/10 0 0 0 3/20 37/28 43/38

I 8/7 0 0 3 0 67/59 0/9 22

J 4.11/3.40 2.66/2.25 0.53/0.32 1.01/0.85 0 0 0.16/0.05 91.53/93.14
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