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ABSTRACT
Recently, deep neural networks based hashingmethods have greatly
improved the multimedia retrieval performance by simultaneously
learning feature representations and binary hash functions. In-
spired by the latest advance in the asymmetric hashing scheme, in
this work, we propose a novel Deep Asymmetric Pairwise Hashing
approach (DAPH) for supervised hashing. �e core idea is that two
deep convolutional models are jointly trained such that their output
codes for a pair of images can well reveal the similarity indicated
by their semantic labels. A pairwise loss is elaborately designed to
preserve the pairwise similarities between images as well as incor-
porating the independence and balance hash code learning criteria.
By taking advantage of the �exibility of asymmetric hash functions,
we devise an e�cient alternating algorithm to optimize the asym-
metric deep hash functions and high-quality binary code jointly.
Experiments on three image benchmarks show that DAPH achieves
the state-of-the-art performance on large-scale image retrieval.
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1 INTRODUCTION
�e growing explosion of big data highlights the importance in
designing e�cient indexing and retrieval methods recently. Search-
ing for similar data samples in a given database essentially relates
to the fundamental problem of nearest neighbor search. Hashing
technique has become a popular nearest neighbor search technique
for image retrieval on large datasets [31]. Hashing methods are pro-
posed to map images to compact binary codes that approximately
preserve the data structure or semantic a�nity in original space.
�ese compact codes can substantially reduce the storage overhead
and also speed up image search signi�cantly.

Many hashing methods have been intensively studied and pro-
posed e.g., [8, 13, 19, 27, 28, 32, 39, 44, 45] for several decades. Re-
cently hashing research is focused on learning compact codes from
available training data, a.k.a. learning to hash. Di�erent from LSH,
the goal of learning to hash is to learn data-dependent hash func-
tions which generate more compact codes to achieve good search
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accuracy. Hence L2Hmethods have becomemore andmore popular
than data-independent methods in real applications. L2H methods
can be divided into unsupervised methods and supervised meth-
ods. Unsupervised hashing methods a�empt to integrate the data
properties, such as data distributions and manifold structures to
design compact hash codes with improved accuracy. Representative
unsupervised methods include spectral hashing (SH) [32], iterative
quantization hashing (ITQ) [8], isotropic hashing (IsoH) [10], an-
chor graph hashing (AGH) [20], inductive manifold hashing (IMH)
[28], etc. In addition, supervised methods can incorporate semantic
labels or relevance to mitigate the semantic gap and has demon-
strated superior image search accuracy compared with unsuper-
vised hashing algorithms. Exemplar supervised hashing schemes
include binary reconstructive embedding (BRE)[13], kernel-based
supervised hashing (KSH) [19], supervised discrete hashing (SDH)
[27]. Many other methods fall in this category [15, 22, 29, 35, 37].

�e appealing property of supervised hashing methods is to min-
imize the semantic gap between the similarities given in the original
space and in the hash coding space. In the hashing literature, pair-
wise similarity is widely adopt to make the distances of similarity
pairs in original space and Hamming space as consistent as possible,
i.e., semantically similar images should have similar binary codes.
Many supervised learning paradigms have been explored using
such pairwise semantic relationships to learn semantically relevant
hash function and have proven that preserving pairwise similarity
of data is important for achieving promising retrieval performance
[13, 19, 22].

In the pipeline of most existing pairwise-preserving supervised
hashing methods for images, each input image is �rstly represented
by a vector of traditional hand-cra�ed visual descriptors, followed
by separate projection and quantization steps to encode image
vector into binary codes. One shortcoming of these hand-cra�ed
feature methods is that the feature extraction procedure, which
means that the hand-cra�ed features might not achieve satisfactory
performance with the binary code learning procedure. To overcome
the shortcoming of existing hand-cra�ed feature based methods,
some feature learning based deep hashing methods have been re-
cently proposed to perform simultaneous feature learning and hash
code learning with deep neural networks [9, 14, 16–18, 33, 36, 43].
However, these deep learning to hash methods is symmetric hash-
ing scheme which similarity between two objects is approximated
by the Hamming distance between the outputs of the same hash
function. �e crucial disadvantage of these symmetric hashing
scheme is that the symmetric discrete constraint might be di�cult
to optimize and not necessary to learn binary codes of training data.
Furthermore, recent literature [21] proposes using two distinct
mappings to approximate the similarity a�nity by the Hamming
distance between two di�erent hashing functions. �ey refer to
such hashing schemes as “asymmetric hashing”. [21] has exhibited
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that the asymmetric discrete matrices can preserve more similarity
(label) information, which usually means be�er retrieval accuracy.

Motivated by the aforementioned observations, in this work, we
strive for the goal of designing e�cient framework based on asym-
metric hashing function and deep model for learning high-quality
hash codes. To achieve this goal, we propose a novel Deep Asym-
metric Pairwise hashing (DAPH). An overall view of the proposed
framework is illustrated in Figure 1. Here we use two deep neural
network to construct asymmetric hash functions to learn directly
from images, which provides much information than hand-cra�ed
features. A loss function de�ned on a set of pairs is designed for
pairwise similarity-preserving learning. To further improve the
quality of the hash functions, we also incorporate the independence
and balance properties with the binary codes. �e resulting prob-
lem with these binary constraints is NP-hard, which we solve by
an e�cient alternating algorithm optimizing over binary codes and
hash functions in an iterative way. Our main contributions include:

• To our best knowledge, DAPH is the �rst deep asymmetric
hashing method which integrates the feature learning and
asymmetric hash functions learning into the end-to-end
deep learning framework.

• DAPH aims to generate pairwise similarity-preserving bi-
nary codes as well as the semantic information rich asym-
metric hash functions. By taking advantage of the asym-
metric hash form, we are able to devise an e�cient alternat-
ing optimization algorithm for the employed optimization
problem.

• Experiments on several large datasets show the e�ective-
ness of DAPH and its advantage over many recently pro-
posed supervised hashing methods on image retrieval.

�e rest of this paper is organized as follows. Section 2 dis-
cusses the related works to our method. �e proposed approach
is elaborated in details in Section 3. In section 4, we present the
experimental evaluation on large-scale image datasets, followed by
the conclusion in Section 5.

2 RELATEDWORKS
As described before, existing learning to hash methods can be cate-
gorized into two categories: unsupervised hashing and supervised
hashing.

Unsupervised methods only utilize the feature information of
the training data to learn hash functions that can encode input data
pairs to binary codes. For example, Spectral Hashing [24] produces
hash codes through solving a continuously relaxed mathematical
program similar to Laplacian Eigenmaps; Iterative�antization [8]
proposes to minimize the quantization error on projected image
descriptors in order to alleviate the information loss caused by the
discrepancy between the input feature space and Hamming space;
Inductive Manifold Hashing [28] tries to generate nonlinear hash
functions.

Supervised methods try to leverage supervised information to
learn compact hash codes. Iterative quantization with canonical cor-
related analysis (CCA-ITQ) [8], the extension of ITQ, utilizes CCA
with labels to reduce the dimensionality of input data and binaries
the outcome through minimizing the quantization error. Minimal
Loss Hashing [22] introduces a pairwise hinge-like loss function
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Figure 1: Overview of the proposed DAPH method. �e
training procedure includes two stages: the pre-training
with the deep residual network (top) and the deep asymmet-
ric hash model training (bottom).

andminimizes its upper bound to learn similarity-preserving binary
codes. Binary Reconstruction Embedding [13] pursues hash func-
tions data points and the distances of corresponding hash codes.
Supervised Hashing with Kernels [19] utilizes the algebraic equiv-
alence between Hamming distance and code inner product and
employs a kernel formulation for target hash functions.

Recent progress in image classi�cation [12], object detection
[7], face recognition [30] and many other vision tasks [4] demon-
strates the impressive learning power of deep neural network. In
these di�erent tasks, the deep neural network can be considered as
a feature extractor guided by the objective functions speci�cally
designed for the individual tasks. �e successful applications of
deep learning in various tasks imply that the features learned by
deep neural networks can well capture the underlying semantic
structure of images in spite of signi�cant appearance variations.

�e earliest work in deep-learning-based hashing is Semantic
Hashing [24], which builds a stacked Restricted Boltzmann Ma-
chines to discover hidden binary units. [33] proposed a two-step
hashing strategy named CNNH. It �rst factorizes the data similarity
matrix to obtain target binary code and then jointly use the target
codes and image labels to guide the network parameter optimiza-
tion. [14] improved the two-stage CNNH by proposing DNNH,
a simultaneous feature learning and hash coding deep network.
[5] presented a binary encoding network built with purely fully-
connected layers.

Deep neural networks learn the image representation and hash
codes in one stage so that representation learning and hash learning
are tightly coupled to bene�t each other. [16] proposed a novel
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deep hashing method (DHN). DHN is the �rst end-to-end frame-
work which can perform simultaneous feature learning and hash
code learning for applications with pairwise labels. Nevertheless,
DHN focused on learning symmetric hashing function. Compared
to above deep hashing methods, we have two advantages: (1) We
propose to use two deep neural networks to generate asymmetric
hashing functions and learn e�cient image representation simulta-
neously. (2) We adopt the independence and balance properties to
the binary codes so as to generate high-quality binary code.

3 DEEP ASYMMETRIC PAIRWISE HASHING
In this section, we �rst describe the detailed formulation of the
proposed objective function for learning deep asymmetric hash
codes. �en the optimization of our target will be elaborated.

3.1 Problem De�nition
To help be�er understand this section, we �rst introduce some nota-
tion. We are given a training set ofN images: X = {x1,x2, · · · ,xn } ∈
RN×d1×d2×3, where xi is an image and d1/d2 is the height/width of
the corresponding image. Additionally, pairs of images are associ-
ated with similarity label si j . Here, we use S = {si j } to indicate the
similarity of two images where si j = 1 implies xi and x j are similar
and si j = 0 indicates xi and x j are dissimilar. �e supervised simi-
larity si j is typically de�ned by some semantic information such
as class labels. Let bi ∈ {−1, 1}k be the k-bit hash codes of image
xi ; hj ∈ {−1, 1}k be the k-bit hash codes of images x j . Our goal
is to learn two nonlinear mapping from X to k-bit binary codes:
F1 : xi → bi , F2 : x j → hj . �e two nonlinear hash mappings
should preserve the pairwise similarity in the input space. More
speci�cally, the binary codes bi and hj should have small Hamming
distance if si j = 1 otherwise if si j = 0.

3.2 Deep Hash Functions
As previously stated, deep hash functions using deep neural net-
works has more powerful learning capability than hand-cra�ed
features extracted in advance and thus is able to learn feature repre-
sentations for semantic similarity search. In this work, we propose
an architecture of deep convolution network designed for asym-
metric hash functions. �e whole model is shown in Figure 1.
�e network is comprised of two components: (1) An end-to-end
framework including two deep residual networks to integrate fea-
ture learning part and binary code learning part. (2) A designed
pairwise loss to preserve the pairwise similarity and generate the
high-quality binary code with the desirable properties of indepen-
dence and balancing.

�is architecture accepts input images with the pairwise form
and the input images are d1 × d2 × 3 size. For binary code learning,
we replace the top layer of the so�max classi�er in the original
ResNet50 with a new f ch hash layer of k hidden units, which trans-
form the �nal convolution representation to k-dimension binary
code. Let us denote the response vector on the topmost layer of the
�rst ResNet as ui = ϕ (xi ;θ1), where θ1 denotes the parameters of
the �rst ResNet50 for learning feature, ϕ (xi ;θ1) implicitly de�nes
the highly non-linear mapping from the raw image xi to binary-like
code ui ; the response vector on the topmost layer of the second
ResNet50 as zj = д

(
x j ;θ2

)
, where θ2 denotes the parameters of the

second ResNet, д
(
x j ;θ2

)
is the non-linear mapping from the raw

image x j to binary-like code zj . To encourage the f ch layer to be
binary codes, we utilize the hyperbolic tangent (tanh) function as
the activation function. For the topmost layer, we de�ne the binary
code as :

bi = sign (ui ) (1)

hj = sign
(
zj

)
. (2)

Next, we will introduce the DAPH objective of joint learning the
asymmetric hash functions and binary codes.

3.3 Objective Formulation of DAPH
�e key purpose of pairwise supervised hashing is to make Ham-
ming distance between binary codes small (large) for similar (dis-
similar) pairs. Many hashing loss functions have been devised by
using above design principal. In particular, [22] propose a hinge-
like loss function to learn compact binary codes. Other works
[19, 25] adopt smooth L2 loss de�ned on the inner product be-
tween hash codes. In this work, inner product is utilized to be a
good surrogate of the Hamming distance to quantify the pairwise
similarity. Given the binary codes B = {bi }Ni=1 ∈ {−1, 1}

k×N and
H =

{
hj

}N
j=1 ∈ {−1, 1}

k×N for all images X from two asymmetric
hashing mapping, the pairwise similarity preserving loss function
is de�ned as follows:

L =
∑
si j ∈S

(loд(1 + eΘi j ) − si jΘi j ) (3)

where Θi j =
1
2bi

Thj . (3) is the negative log likelihood of pairwise
similarity with the pairwise logistic function de�ned as follows:

p
(
si j |bi ,hj

)
=




σ
(
Θi j

)
si j = 1

1 − σ
(
Θi j

)
si j = 0

(4)

where σ (x ) = 1
1+e−x is the sigmoid function. Furthermore, a good

hashing method should produce binary codes with the properties:
(1) independence, i.e., di�erent bits in the binary codes are inde-
pendent to each other; (2) balance, i.e. each bit hash a 50% chance
of being 1 or -1. By incorporating the pairwise similarity-preserving
loss and independent and balance constraint into the deep asym-
metric hashing framework, we achieve the DPAH optimization
problem:

min
B,H

L =
∑
si j ∈S

(
log

(
1 + eΘi j

)
− si jΘi j

)
+
λ

2

(
1
N
BBT − I


2
+


1
N
HHT − I


2)

+
β

2
(
‖B1N×1‖2 + ‖H1N×1‖2

)
(5)

s.t. B,H ∈ {−1, 1}k×N (6)
where I is the k × k identity matrix and 1k×1 is a vector which has
k rows and all the elements equal to 1.

Since discrete optimization of (5) with binary constraint (6) is
very challenging to solve, most existing methods apply continuous
relaxation to the binary constraints. However, this continuous
relaxation will give rise to the uncontrollable quantization error
by binarizing continuous embedding to hash codes. To overcome
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such limitation, in this work we utilize a novel strategy which can
solve (5) in discrete way. To be speci�c, we replace the binary
constraint bi , hj in (5) by the real-valued network outputs ui and
zj respectively. To control the quantization error and close the
gap between desired binary code and its relaxation, we impose
two additional penalty terms on the ui and zj to approach the
desired discrete binary codes bi and hj respectively. �en, we
reformulate (5) as the following one:

min
B,H,U ,Z

L =
∑
si j ∈S

(
log

(
1 + eΘi j

)
− si jΘi j

)

+
α

2
*.
,

n∑
i=1
‖ui − bi ‖

2 +
n∑
j=1

zj − hj

2+/

-

+
λ

2

(
1
N
UUT − I


2
+


1
N
ZZT − I


2)

+
β

2
(
‖U 1N×1‖2 + ‖Z1N×1‖2

)
(7)

s .t . B,H ∈ {−1, 1}k×N . (8)

where U = {ui }Ni=1, Z =
{
zj

}N
j=1 and Θi j =

1
2ui

T zj .
In our model, the binary code matrix for the training data X

generated by the two asymmetric hash functions should be as
close as possible. Hence, we add the regularization ‖B − H ‖2 in
problem (7) as follows:

min
B,H,U ,Z

L =
∑
si j ∈S

(
log

(
1 + eΘi j

)
− si jΘi j

)
+
α

2
(
‖U − B‖2 + ‖Z − H ‖2

)
+
γ

2
(
‖B − H ‖2

)
+
λ

2

(
1
N
UUT − I


2
+


1
N
ZZT − I


2)

+
β

2
(
‖U 1N×1‖2 + ‖Z1N×1‖2

)
(9)

s.t. B,H ∈ {−1, 1}k×N . (10)

3.4 Optimization
It is clear that the problem (9) is non-convex and non-smooth, which
is in general an NP-hard problem due to the binary constraints
B,H ∈ {−1, 1}k×N . To �nd a feasible solution, we propose an alter-
nating optimization manner which is widely used in the hashing
literature [25, 27]: updating one variables with others �xed. By
taking advantage of the �exibility of the asymmetric hash function,
we sequentially update the parameters of two deep neural networks
and binary codes matrix B and H in the following alternating steps:
(i) Fix Z ,B and updateU . When �xing B and the second network
д (X ;θ2) , the problem becomes to learn parameters of the �rst
deep neural network ϕ (X ;θ1) by using stochastic gradient descent
(SGD). In particular, in each iteration we sample a minibatch of
images from the whole training dataset and use back-propagation
algorithm to update the whole network. �e derivatives of the loss

function are given by:
∂L

∂U
=
1
2

∑
si j ∈S

(
σ

(
Θi j

)
− si j

)
Z + α (U − B)

+ λ
( 1
N
UUT − I

)
U + βU 1N×1. (11)

we use the chain rule to compute ∂L
∂θ1

with ∂L
∂U to update the pa-

rameters of neural network θ1.
(i) Fix U ,H and update Z . In the same way, with B and U �xed,
we can obtain the learned deep model by using SGD with a BP
algorithm. In special, we compute the following gradient:

∂L

∂Z
=
1
2

∑
si j ∈S

(
σ

(
Θi j

)
− si j

)
U + α (Z − H ) (12)

+ λ
( 1
N
ZZT − I

)
Z + βZ1N×1. (13)

(i) Fix U ,Z and update B,H . When �xing U and R, we can
rewrite (9) as

min
B,H

L1 = α
(
‖U − B‖2 + ‖Z − H ‖2

)
+ γ

(
‖B − H ‖2

)
s.t. B,H ∈ {−1, 1}k×N (14)

which is equal to

max
B,H

Tr
(
BTQ

)
+Tr

(
HT P

)
(15)

s.t. B,H ∈ {−1, 1}k×N (16)

whereQ = αU +γH and P = αZ +γB. Finally we have the solution:

B = sign (Q ) (17)
H = sign (P ) . (18)

We iteratively solve the above three sub-problems and the algo-
rithm converges until it achieves the minimum value. Finally, two
deep neural networks are produced for asymmetric hash functions.
�e proposed Deep Asymmetric Hashing algorithm is summarized
in Algorithm 1.

4 EXPERIMENTS
In this section, we carry out extensive experiments to verify the
e�ciency of our method against several state-of-the-art hashing
methods on three benchmark datasets.

4.1 Datasets
In the experiments, we choose to evaluate the e�ectiveness of the
proposed methods on three datasets.

CIFAR-10. �e CIFAR-10 [11] is a labeled subset of 80-million
tiny images collection which consists of 60,000 32×32 color images
in 10 classes with each of class 6,000 samples. �e entire dataset is
partitioned into two parts: a training set with 59,000 samples and a
test set with 1000 samples.

NUS-WIDE.�is dataset [2] contains nearly 270K images col-
lected from Flickr. It is a multi-label dataset in which each image is
annotated with one or multiple class labels from 81 concept tags.
Following [33], we only use the images associated with the 21 most
frequent concepts, where each of these concepts associates with at
least 5,000 images.
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Table 1: Comparative results in MAP and mean precision of the top 500 retrieved neighbors (Precision@500) on CIFAR-10
with 12, 24, 32 and 48 bits.

Method MAP Precision@500
12-bit 24-bit 32-bit 48-bit 12-bit 24-bit 32-bit 64-bit

LSH 15.42 18.11 18.23 21.06 20.37 27.73 29.35 35.07
SH 21.59 20.46 20.04 18.78 33.99 36.26 37.04 38.01

PCA-ITQ 29.12 31.47 33.42 33.72 39.95 47.01 50.52 51.41
KSH 66.49 73.24 74.21 75.32 68.19 74.15 76.53 77.42

CCA-ITQ 30.27 32.33 33.40 33.73 40.48 45.99 49.73 51.45
SDH 63.64 72.85 73.32 74.07 58.86 67.71 69.32 71.40

DAPH 94.65 95.73 96.00 96.08 93.86 94.51 95.21 95.20
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Figure 2: Precision-recall curves on CIFAR-10 with 12, 24, 32 and 48 bits, respectively.

Table 2: Comparison to deep hashing methods in MAP on
CIFAR-10.

Method 12-bit 24-bit 32-bit 48-bit
CNNH 48.4 47.6 47.2 48.9
DNNH 55.2 56.6 55.8 58.1
DHN 55.5 59.4 60.3 62.1

DAPH-S 50.12 57.03 71.69 81.42

DAPH 75.69 82.13 83.07 84.48

MNIST.�e MNIST dataset consists of 70,000 images of hand-
wri�en digits from ‘0’ to ‘9’. �e training set contains 60,000 images,
the query set contains 10,000 images.

In CIFAR-10, we randomly select 1K query images (100 images
per object class) as the test query set. For conventional hand-cra�ed
hashing methods, we use the rest images as training dataset; for
deep hashing methods, we randomly select 500 images per class as
the training set following the experimental protocols [16] for fair
comparison. �e pairwise similarity matrix S is constructed based
on the class labels (i.e., the value corresponding the image pair
from the same class is set to one and zero otherwise). In MNIST,
we randomly select 10K as the query set and the other 60K as the
training samples. �e similarity matrix is constructed based on
the category labels as well. In NUSWIDE, we randomly select 500
images per classes as the training set and 100 images per class
to form the test query set. �e similarity pairs for training are

randomly constructed using image labels: each pair is considered
similar (dissimilar) if they share at least one(none) semantic label.
For each dataset, we use the training set to learn the network
parameters and use the query set to test its e�ectiveness.

4.2 Evaluation Protocol and Baselines
We use the following evaluation metric to measure the performance:
hashing ranking performance means average precision (MAP),
mean precision of the top 500 retrieval samples(Precision@500).
We also show the precision-recall curves of three datasets. For
fair comparison, all of the methods use identical training and test
datasets.

We compare our method with several state-of-the-art hashing
algorithms. �ese methods can be categorized into three classes:
three unsupervised methods including Locality-sensitive Hashing
(LSH) [6], SH [32], PCA-ITQ [8], supervised hashing methods in-
cluding KSH [19], SDH [27], CCA-ITQ [8] and deep hashing meth-
ods CNNH [33], DNNH [14], DHN [16]. We use the available codes
and suggested parameters in the original papers of these approaches.
For fair comparison, we evaluate these hand-cra�ed hashing meth-
ods LSH, SH, ITQ, KSH and SDH on the feature extracted from the
last hidden layer of the ResNet50 model pre-trained on the Ima-
geNet dataset [3]. Speci�cally, we re-arrange the neuron responses
on the layer right below the hash layer into vector formats and feed
them into baselines. We �nd that using ResNet50 features greatly
improves the performance of these hashing methods compared
with hand-cra�ed features which will be shown in the following ex-
periments. For deep hashing methods, we �rst resize all the images
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Algorithm 1 Deep Asymmetric Pairwise Hashing (DAPH)
Input: Training data X ; similarity matrix S ; binary code length k ;

parameters α , γ , λ and β ; iteration number T.
Output: Parameters of θ1 and θ2 of the deep network and binary

code matrix B, H of training set;
1: Initialize B,H ∈ {−1, 1}k×N ; Initialize neural network parame-

ters of θ1 and θ2;
2: repeat
3: update θ1 and θ2 by minimizing the image classi�cation

error;
4: until converge
5: repeat
6: for i = 1→ T do
7: Forward computation to compute ui = ϕ (xi ;θ1) from

the raw images in mini-batch;
8: Compute derivation according to (11);
9: Update the neural network θ1 by utilizing back propa-

gation.
10: end for
11: for i = 1→ T do
12: Forward computation to compute zj = ϕ

(
x j ;θ2

)
from

the raw images in mini-batch;
13: Compute derivation according to (12);
14: Update the neural network θ2 by utilizing back propa-

gation.
15: end for
16: Update B according to (17);
17: Update H according to (18);
18: until converge or reach maximum iterations;

to be 224×224 pixels and then directly use the raw image pixels as
inputs.

Our model is implemented with open-source Keras framework
[1]. Training is done on a standard desktop with a GeForce GTX
TITANXwith 12GBmemory. We employ the deep residual network
(ResNet50) architecture, and initialize our ResNet50 using the pre-
trained model and �ne-tune the convolutional layers and fully-
connected layers on the corresponding training set. During training,
we use stochastic gradient descent with momentum to 0.9 and
weight decay to 0.0001. �e initial learning rate is 0.0001. We �x
the batch as 64. A�er the algorithm converged, we �nd that the two
deep ResNet50 can achieve almost similar retrieval performance
in CIFAR10 dataset. So in all the experiments, we choose the �rst
ResNet50 as the �nal hash function uniformly. �e parameters α ,
γ , β and γ are empirically set as 10, 10, 0.01 and 0.01 respectively
in all the experiments.

4.3 Results and Discussion

Result on CIFAR-10. We �rst report the performance of our
model on CIFAR-10. Table 1 and 2 illustrates the score of MAP,
precision@500 of compared methods using various numbers of
bits. Figure 2 displays the precision-recall curves for all algorithms
with 12, 24, 32 and 48 hash bits. We can see that the proposed
method outperforms all of the other methods in all cases from Ta-
ble 1. In terms of MAP, the proposed method achieves substantially

be�er performance at all code lengths. �e MAP of our method
consistently outperforms SDH, which is the current state-of-the-art
supervised hashing method. In particular, compared to SDH, the
MAP results of DAPH indicate a relative increase of 20.46%, 18.73%,
20.9%, 17.29% respectively. �e substantial superior performance of
DAPH veri�es the bene�t of joint learning feature representations
and hash codes rather than the traditional cascaded scheme (i.e.
feature extraction followed by hashing).

�e Precision@500 of our method consistently outperforms com-
pared methods at all code lengths as we can see from Table 1. Fig-
ure 2 shows the precision-recall curves for di�erent lengths of hash
bits. �e results with 12, 24, 32 and 48 bits con�rm the performance
gains of DAPH in Table 1.

Among the deep hashingmethods, please note theMAP results of
CNNH, DNNH and DHN are from [33], [14], [43]. �e MAP results
with di�erent code lengths are listed in Table 2. It’s observed that
our DAPH yields the highest MAP score in all cases. For example,
our method obtains 75.69%, 82.13%, 83.07%, 84.48% which are higher
than DHN by 20.19%, 22.73%, 22.77%, 22.38% respectively. �e
underlying reason why our method exceeds DHN method by a
large margin may be that by using two deep networks to construct
distinct asymmetric hash functions, our methods can capture more
information and has higher learning capability and is able to exploit
more semantic information than symmetric hashing se�ing. We
also investigate that one variant of DAPH: DAPH-s, which is the
DAPH variant without asymmetric deep hash functions. We can
observe that without using asymmetric hash functions, DAPH-S
su�ers from large MAP decreases. �ese results validate that the
proposed deep asymmetric pairwise hashing method can e�ectively
exploit the pairwise a�nity and lead to remarkable hash code.

Result on NUSWIDE. �e MAP results for our method and
other traditional baselines with ResNet50 features on NUSWIDE
are reported in Table 3 and Table 4. We can �nd that our method can
outperform all the other baselines and all the deep hashing methods
in term of MAP. For conventional hashing algorithm, SDH achieves
the best accuracies both of MAP and Precision@500. In general,
those deep hashing methods outperform the conventional hash
learning methods in most cases. Among the deep hashing methods,
we can observe that out DAPH yields the highest MAP in all cases.
�is may be explained that CNNH is a two stage deep methods
which trains a deep network to �t the binary codes computed form
the pairwise similarity matrix; DNNH uses a �xed-margin loss
and piecewise-linear activation function to train deep networks
which may cause information loss and objective oscillations in back
propagation.

Compared to the state-of-the-art deep hashing method DHN, we
achieve absolute superiority 0.87%, 3.56%, 3.9%, 5.84% of in average
MAP for di�erent bits on the NUSWIDE. �e improvement is more
clear at high code length, which demonstrates the advantage of the
asymmetric hashing model for image retrieval again.

With respect to Precision@500, the proposed methods show
superior performance gains against all the conventional hashing
methods. For example, compared to the corresponding second best
method SDH, the proposed method shows a relative increase of
3.75%, 4.64%, 5.71%, 6.93% respectively. Figure 3 represents the
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Table 3: Comparative results in MAP and mean precision of the top 500 retrieved neighbors (Precision@500) on NUSWIDE
with 12, 24, 32 and 48 bits.

Method MAP Precision@500
12-bit 24-bit 32-bit 48-bit 12-bit 24-bit 32-bit 64-bit

LSH 53.03 53.07 55.58 54.27 43.56 44.22 45.74 45.62
SH 53.25 52.41 54.29 53.56 55.48 56.14 58.39 57.74

PCA-ITQ 59.60 60.13 60.22 60.58 64.92 69.03 69.64 70.35
KSH 53.00 52.78 53.07 53.13 52.07 53.02 52.55 49.25

CCA-ITQ 61.88 61.60 62.68 62.28 71.46 72.20 73.24 73.14
SDH 64.59 63.94 60.33 62.71 77.36 79.86 80.20 80.07

DAPH 71.67 77.06 78.70 81.64 81.16 84.50 85.91 87.00
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Figure 3: Precision-recall curves on NUSWIDE with 12, 24, 32 and 48 bits, respectively.
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Figure 4: Precision-recall curves on MNIST with 12, 24, 32 and 48 bits, respectively.

Table 4: Comparison to deep hashing methods in MAP on
NUSWIDE.

Method 12-bit 24-bit 32-bit 48-bit
CNNH 62.3 63.0 62.9 62.5
DNNH 67.4 69.7 71.3 71.5
DHN 70.8 73.5 74.8 75.8

DAPH 71.67 77.06 78.70 81.64

precision-recall curves for our method and compared conventional
methods, which corresponds to the trend in Table 3.

Result on MNIST. Table 6 shows comparative MAP and Preci-
sion@500 respectively. In term of MAP, our method achieves nearly

Table 5: Evaluation of our method with/without the con-
straint of balance and independence on the image retrieval
task. -: �is operation is not applied;

√
: Applied. �e results

are reported in MAP and Precision@500 on CIFAR-10.

Balance Independence MAP Precision@500
24-bit 32-bit 24-bit 32-bit

- - 78.38 76.56 80.08 82.04
-

√
78.74 80.03 80.18 82.08

√
- 78.63 79.70 80.08 81.88

√ √
82.13 83.07 81.37 84.33
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Table 6: Results in MAP and Precision@500 of the compared methods on MNIST .

Method MAP Precision@500
12-bit 24-bit 32-bit 48-bit 12-bit 24-bit 32-bit 64-bit

LSH 24.51 30.80 30.71 37.20 36.45 49.23 52.60 57.31
SH 30.32 32.81 31.25 29.93 51.37 59.68 60.41 61.46

PCA-ITQ 43.31 46.02 47.91 49.29 59.76 66.45 68.94 71.12
KSH 91.48 92.48 93.93 93.78 92.98 93.69 94.74 94.82

CCA-ITQ 40.31 44.13 44.02 46.55 55.48 63.21 63.45 67.12
SDH 96.48 97.71 97.21 97.90 97.04 97.92 97.80 98.13

DAPH 99.26 99.61 99.71 99.64 99.07 99.52 99.67 99.55

perfect scores of 99.26%, 99.61%, 99.71%, 99.64%, thus signi�cantly
outperforms other hashing methods at all code lengths. Among
the compared methods, the data-independence LSH improves the
performance as the code size increases, and it even surpasses the
SH at code length is 48 bits. �is behavior may due to the theoretic
convergence guarantee of LSH with long hash codes.

Table 6 also gives the Precision@500 results with di�erent code
lengths and our DAPH still works the best. Among other methods,
SDH achieves best results, which implies the directly learning the
binary codes without relaxation is preferable than the continuous
solution. However, our method DAPH has a consistent advantage
over the SDH which demonstrates the power of the asymmetric
deep hashing method again. Figure 4 displays the precision-recall
curves for all code lengths (from 12-bit to 48-bit) on the dataset
MNIST, which con�rms the performance gains of our method in
Table 6.

The Impact of Bits Independence and Balance. In this part,
we validate the e�ectiveness of the two well-known properties of
binary codes: bits independence and balance. �e performance
of our method with or without each of the properties is shown in
Table 5. �e database of CIFAR-10 is used for evaluation. As we
can see, the properties play important roles in binary code learning.
In particular, our method obtains be�er results by incorporating
both these properties in binary code than discarding them or keep
only one in all cases in both MAP, Precision@500.

5 CONCLUSION
In this paper, we proposed a novel supervised deep hashing ap-
proach called deep asymmetric pairwise hashing (DAPH), which
integrated feature learning and asymmetric hash function learning
into the end-to-end deep learning framework. DAPH was designed
to jointly learn pairwise similarity-preserving binary codes and se-
mantic information rich hash functions. By taking advantage of the
asymmetric hashing scheme, an e�cient alternating optimization
algorithm was proposed to solve the discrete code optimization
problem. Our comprehensive evaluations on three image bench-
marks showed that DAPH outperformed many recent supervised
hashing algorithms, which validated the e�ectiveness of the deep
asymmetric hashing method.

As well as image search, binary hashing has recently been ap-
plied to boost many other tasks, such as classi�cation [26], cluster-
ing [34, 38], recommendation systems [41] and action recognition
[23]. �e proposed DAPHmethod is also supposed to improve these
problems due to its advantages. Besides, applying the asymmetric
method of this work into the recent vision-language tasks (e.g.,
video captioning [40, 42]) would be an interesting problem.
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