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ABSTRACT
Recently, neuron activations extracted from a pre-trained
convolutional neural network (CNN) show promising per-
formance in various visual tasks. However, due to the do-
main and task bias, using the features generated from the
model pre-trained for image classification as image represen-
tations for instance retrieval is problematic. In this paper,
we propose quartet-net learning to improve the discrimi-
native power of CNN features for instance retrieval. The
general idea is to map the features into a space where the
image similarity can be better evaluated. Our network dif-
fers from the traditional Siamese-net in two ways. First,
we adopt a double-margin contrastive loss with a dynamic
margin tuning strategy to train the network which leads
to more robust performance. Second, we introduce in the
mimic learning regularization to improve the generalization
ability of the network by preventing it from overfitting to
the training data. Catering for the network learning, we col-
lect a large-scale dataset, namely GeoPair1 , which consists
of 68k matching image pairs and 63k non-matching pairs.
Experiments on several standard instance retrieval datasets
demonstrate the effectiveness of our method.
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1. INTRODUCTION
The neuron activations of a convolutional neural network

(CNN), serving as image features, are used in various vi-
sual tasks [5, 18]. For visual instance retrieval, i.e., finding
images containing the same object or scene as in a query im-
age, mounting evidences [3, 19] demonstrate that the CNN
features show superior performance compared to the tradi-
tional handcrafted features (e.g., SIFT), especially in the
case of low dimensionality. However, due to the domain and
task bias (e.g., most CNNs are trained on ImageNet [20] for
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classification), directly using the features generated from the
pre-trained model as image representations for instance re-
trieval is not an ideal option. One treatment to this problem
is to fine-tune the deep model in a target domain.

In this paper, we propose a novel feature learning strategy
called quartet-net learning. The general idea is to map the
image features into an embedding space where the similarity
can be better evaluated. Siamese-net [4] can be regarded as a
special case of our method and our framework differs from it
in two ways: 1) Instead of using single-margin loss as in the
standard Siamese-net, we adopt double-margin loss [14, 21]
with the margins being dynamically tuned during training.
Comparing to single-margin loss, double-margin loss pushes
the feature distances between images of the same object un-
der a threshold rather than to be zero. This idea is similar
to the triplet loss [25, 22] which allows the learned features
of the same object to live on a manifold instead of being
projected onto a single point in the embedding space. The
rationality behind is that we empirically find it difficult to
map the features of positive pairs onto the same point espe-
cially in complex scenes and the double-margin relaxation
turns out to be crucial in the feature learning. Different
from [14, 21], we propose to tune the margins progressively
which enhances the discriminative power of network during
training; 2) Another advantage of our network is that we
introduce in the mimic learning regularization [2, 7]. Specif-
ically, we use two CNNs (i.e., teacher CNN) with fixed pa-
rameters to regularize the networks (i.e., student CNN) in
order to prevent them from overfitting to the training data
and consequently improve the generalization ability of the
learned features.

Catering for the network training, we collect a large-scale
geo-related dataset, namely GeoPair, which consists of 68k
visually matching image pairs and 63k non-matching pairs.
Extensive experiments conducted on several standard in-
stance retrieval benchmarks demonstrate the effectiveness
of our feature learning method.

2. QUARTET-NET LEARNING
The instance retrieval framework is illustrated in Fig. 1.

During training, both matching and non-matching image
pairs are fed into the network. After training, the activa-
tions of a specific layer are used as image representations to
perform instance retrieval.

2.1 Network Structure
Given a pre-trained CNN, we duplicate its network struc-

ture four times within a quartet-net (see Fig. 1). The middle
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Figure 1: The framework of the proposed retrieval system.

two CNNs, similar to Siamese-net, share the same learned
parameters W . We name these two CNNs “student CNNs”
(S-CNNs) because during training they gradually learn the
image similarities from the input image pairs. Different
from [4] where single-margin contrastive loss is employed,
we adopt double-margin contrastive loss [14] on the S-CNNs’
top layers (e.g., the first fully connected layer). Inspired by
the mimic learning in [2], the other two outside CNNs with
fixed parameters act as “teacher CNNs” (T-CNNs) where
their outputs are used as synthetic labels for “guiding” the
S-CNNs. The advantages of these settings will be explained
later. The inputs of a quartet-net are image pairs. The
parameters are updated using standard back propagation
algorithm and stochastic gradient descent.

2.2 Double-margin Contrastive Loss
Given a pair of images (x0

α,x
0
β), the single-margin con-

trastive loss Sl for layer l is defined as:

Sl(x
0
α,x

0
β) = y||xlα − xlβ ||22

+ (1− y) max(m− ||xlα − xlβ ||22, 0), (1)

where y = 1 if (x0
α,x

0
β) is a matching pair or y = 0 otherwise,

xlα and xlβ are image x0
α’s and x0

β ’s feature representations
in layer l respectively, and m > 0 is a margin parameter
affecting non-matching pairs. This loss function can be in-
terpreted as applying a contractive force between elements
of any matching image pairs and a repulsive force between
elements of non-matching pairs whose feature distances are
smaller than margin

√
m. In contrast, the double-margin

contrastive loss Dl adds another margin parameter to affect
matching pairs:

Dl(x
0
α,x

0
β) = y max(||xlα − xlβ ||22 −m1, 0)

+ (1− y) max(m2 − ||xlα − xlβ ||22, 0), (2)

where m1 > 0 and m2 > 0 are margins affecting match-
ing and non-matching pairs respectively. Therefore, double-
margin contrastive loss only applies a contractive force be-
tween elements of matching pairs whose feature distances
are larger than

√
m1. The reason why double-margin con-

trastive loss is preferred rather than the single-margin one
in instance retrieval is as follow: Given two matching im-
ages, they are probably far apart in the high-dimensional
feature space [14]. Hence, we modify the loss to only penal-

ize matching pairs whose distances are larger than a certain
threshold. Similar mechanisms are involved in large margin
nearest neighbor classification [26] and triplet loss [25, 22],
but here we use two different margins to control how image
pairs should be separated.

Instead of fixed margins, we use a dynamic margin tuning
strategy, namely multistage margins control (MMC), dur-
ing training. The process is to decrease the margin m1 for
matching pairs and increase m2 for non-matching pairs in
Eq.2 after certain learning epochs. This adjustment can be
performed multiple times during training. Each time we
change the margins in this manner, it will impose a contrac-
tive force between elements of any matching pairs whose
feature distances are larger than the new

√
m1, and a re-

pulsive force between elements of non-matching pairs whose
feature distances are smaller than the new

√
m2. Double-

margin loss with MMC can better separate the distribution
of matching and non-matching image pairs in the feature
space by progressively adjusting the margins, and as a re-
sult the retrieval accuracy is improved (see Sec. 4.3).

2.3 Mimic Learning Regularization
In [2], the authors show that it is possible to train a shal-

low net with high accuracy via mimic learning by training
the shallow net (student net) to mimic a deep net (teacher
net) with high fidelity. The process is first to train a state-
of-the-art deep net using the original training data, and then
pass the unlabeled data through this net to collect the pro-
duced outputs as labels. These synthetically labeled data is
then used to train the shallow net. Experiments in [2] show
that the student net can achieve comparable accuracy while
it requires fewer parameters and shorter training time. A
more general version of this kind of learning, called “knowl-
edge distillation”, is proposed in [7].

In this paper, we show that mimic learning can also be
used as an effective regularization for quartet-net learning to
avoid overfitting. Specifically, given an image x, we denote
its probability predictions produced by a CNN as p ∈ RK ,
where K is the number of output units in the last layer.
Normally, p are the outputs of the last softmax layer, i.e.
pk = ezk/

∑K
j ezj . Here the log probability values z, also

called logits, are the probability values before the softmax
layer. The teacher CNNs consume the same input image
pairs as student CNNs do and conduct high-level “guidance”
via regressing logits with the Euclidean loss. For example,
given the same input image x, the mimic learning loss be-
tween a teacher and student CNNs pair is:

E(x) =
1

2
||zS − zT ||22, (3)

where zS and zT are the logits generated by S-CNN and
T-CNN respectively. In [2], regressing logits are preferred,
rather than the output probability predictions, in order to
avoid the information loss that occurs after passing through
the logits to probability space.

Finally, given a pair of images (x0
α,x

0
β), the loss function

L for quartet-net learning is defined as:

L(x0
α,x

0
β) =

∑
l∈L

Dl(x
0
α,x

0
β) + E(x0

α) + E(x0
β), (4)

where L is the set of layers that double-margin contrastive
loss is applied on. With this loss function, we impose con-
strains that both S-CNNs would mimic the behaviors of their
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Figure 2: GeoPair dataset samples. Images in each row are
taken at the same spot within 100 meters by different users
and share high visual similarities.

T-CNNs while learning discriminative features for matching
and non-matching image pairs. This behavior is similar to
the idea of “learning without forgetting” recently proposed
in [13]. Experiments in section 4.3 verify that the extended
mimic learning regularization can help prevent overfitting.

3. GEOPAIR DATASET
Images of the same object/scene with various visual varia-

tions are desired for our network training. Driven by the pro-
liferation of GPS-enabled devices and media-sharing plat-
forms, people have been creating large collections of images
with geo-coordinates [24]. We use the images crawled from
Flickr to construct our image pair dataset, namely GeoPair.
Note that the geo-locations and user information allow us to
apply an automatic method (described below) to construct
a large collection of image dataset where images of the same
object/scene are captured at different viewpoints and share
high visual similarities.

We first use k-means to cluster all the images into 500
clusters according to their geo-coordinates. For every image
in a cluster, we find a set of visually similar images from
the same cluster 2, which is considered as a finer spot in this
coarse cluster. To refine the result, only the images uploaded
by different users and geographically within 100 meters are
selected. In this way, we filter out most redundant images
uploaded by the same user and collect diverse viewpoints
of the same object/scene from different users. We obtain
28,418 spots with 109,725 images in total. Each spot has
two similar images at minimum, and five images on average.
Fig. 2 gives some examples of the collected dataset.

We create the matching image pairs by selecting images
from the same spot and non-matching pairs by randomly
pickup images from different spots. As a result, we generate
68,248 matching pairs and 63,432 non-matching pairs from
the whole corpus. We randomly shuffle all image pairs and
select 80% (105,344 pairs) for training and the rest 20%
(26,336 pairs) for validation. In the following experiments,
GeoPair dataset is used for quartet-net learning.

2SIFT and RANSAC verification [16] are used in our work.

4. EXPERIMENTS
In this section, we evaluate the retrieval performance of

CNN features before and after quartet-net learning.

4.1 Datasets & CNNs
We report results on four instance retrieval datasets: Ox-

ford5k [16], Paris6k [17], INRIA Holidays [8], and UKBench
[15]. The retrieval performance is evaluated by mean aver-
age precision (mAP).

To demonstrate our methods are applicable to different
CNNs, we used two publicly available pre-trained networks
implemented by Caffe [11]. The first one is the BVLC ref-
erence CaffeNet which is similar the one proposed in [12].
The second one is the OxfordNet [23] which has 16 layers in
total and is much deeper than CaffeNet. Both of them are
pre-trained on the ILSVRC2012 dataset [20].

4.2 Quartet-net Learning Settings
In quartet-net learning, we apply the double-margin con-

trastive loss on the first and second fully connected layers
of the two S-CNNs, namely FC6 and FC7 layers. We set
the two margin parameters m1 and m2 in Eq.2 equal and
their values are the average median distance of matching
and non-matching pairs calculated from the GeoPair valida-
tion set. For example, the margin for CaffeNet’s FC6 layer
is the average of matching pairs’ median distance and non-
matching pairs’ median distance in the FC6 layer’s feature
space (i.e., m1 = m2 = 72105.6 in this case). Note that we
do not apply dropout [12] on FC6 and FC7 layers since we
need to calculate the squared `2 norm of their outputs (i.e.,
||xlα−xlβ ||22 in Eq.2). For mimic learning regularization, the
Euclidean loss is applied on each teacher and student CNNs
pair’s last fully connected layers, namely FC8 layers, via
regressing logits before the softmax activation.

During training, one can decide to tune all the layers
within a S-CNN or only a partial of them, such as FC6,
FC7 and FC8 on which the loss functions are applied and
keep other layers’ parameters fixed. In the following exper-
iments, we compare the performance of different combina-
tions of network settings. Specifically, we denote the baseline
Siamese-net learning for all layers in CaffeNet as CaffeNet×2.
Similarly, we denote CaffeNet×4 as quartet-net learning for
all the layers in CaffeNet. Due to the size and time con-
sumption of OxfordNet, we only perform fine-tuning for its
fully connected layers (i.e., FC6, FC7, FC8 layers), which
is denoted as OxfordNet×4.

We set the initial learning rate to 1e−8. This value is cho-
sen through trial and error by keep reducing the learning
rate by a factor of 10 from its initial value 0.01 until we
observe a steady decrease in the validation error rate at the
beginning of learning steps. Follow the parameters settings
as in [12, 6] for training, we set momentum to 0.9, weight
decay to 5e−4, and train on the GeoPair dataset for a max-
imum 200 epochs3. After every 20 epochs, we decrease the
learning rate by a factor of 10. And after every 50 epochs,
we decrease m1 (margin for matching pairs) and increase
m2 (margin for non-matching pairs) in Eq.2 by a factor of
10. Finally, we use the activations of FC6 (or FC7) layer
in the S-CNN as global image descriptors. Given a query
image, we extract the query feature for the whole image and

3 The training time depends on the network size and com-
puting hardware. For CaffeNet, it takes about 14 hours for
50 learning epochs on the GTX Titan Black.
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Table 1: The retrieval performance of CaffeNet’s features
with different learning settings. “Org.” are the mAPs before

fine-tuning. “CaffeNet
(S)
×2 (CaffeNet

(D)
×2 )” are the mAPs after

Siamese-net learning with single(double)-margin loss, and
CaffeNet×4 are the mAPs after quartet-net learning using
the GeoPair dataset.

Org. CaffeNet
(S)
×2 CaffeNet

(D)
×2 CaffeNet×4

FC6

Ox5k 0.407 0.233 0.415 0.426
Pa6k 0.584 0.372 0.586 0.619
Hol. 0.681 0.393 0.687 0.679
UKB. 0.849 0.549 0.837 0.866

FC7

Ox5k 0.387 0.220 0.407 0.412
Pa6k 0.587 0.343 0.593 0.604
Hol. 0.681 0.338 0.685 0.701
UKB. 0.856 0.493 0.830 0.867

return a list of images ranked by the dot product of the
`2-normalized feature in descending order.

4.3 The Performance of Quartet-net Learning
We evaluate the effects of different components of quartet-

net learning and compare it with Siamese-net learning as
shown in Tab. 1. 1) Effects of double-margin contrastive loss:

The results of CaffeNet
(S)
×2 show that Siamese-net learning

with single-margin contrastive loss significantly decreases
retrieval accuracies, which means that the distribution of
matching and non-matching image pairs is not distinguish-
able after fine-tuning. This result is consistent with the pre-
vious findings in [14]. In contrast, the mAPs are slightly
improved when Siamese-net is equipped with double-margin

contrastive loss (CaffeNet
(D)
×2 ), which confirms the effective-

ness of this loss function. 2) Effects of mimic learning reg-

ularization: CaffeNet×4 outperforms CaffeNet
(D)
×2 on all the

datasets except for the case of FC6 on Holiday dataset.
With the help of mimic learning regularization between stu-
dent and teacher CNNs, quartet-net learning can maximize
the learning capacity and representational power of the tuned
CNN. These results demonstrate the effectiveness of our pro-
posed network structure.

Next, we evaluate the effect of dynamic margin turning.
We decrease m1 (margin for matching pairs) and increase m2

(margin for non-matching pairs) in Eq. 2 by a factor of 10 af-
ter 50 epochs before continuing training. Fig. 3 shows the re-
trieval accuracy of CaffeNet’s FC6 features on Oxford5k af-
ter quartet-net learning with MMC. We observe that MMC
provides consistent improvements for both Siamese-net and
quartet-net learning. But it downgrades the discriminative
power of the CNN features after certain epoch (e.g., the
200-th epoch). Therefore, our total training epochs is set
to 200. “CaffeNet×4(nommc)” uses fixed margins and trains
the same amount of learning epochs but there is no signif-
icant improvement, which means the performance gains of
S-CNN are not due to the longer training time. In addition,
if we use the best margin values for fixed margins training,
as demonstrated by “CaffeNet×4(#200)”, the mAP steadily
increases. Therefore, MMC can also be used to determine
the best margins for training.

4.4 Comparisons with Existing Work
According to the previous experiments, we use the FC6

layer’s features as image descriptors. We report the results
of CaffeNet×4 and OxfordNet×4. Tab. 2 shows the com-
parisons between our method with existing work. Note that
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Figure 3: The performance of CaffeNet’s FC6 features
on Oxford5k dataset during different learning stages.
CaffeNet×4(nommc) stands for quartet-net learning without
MMC, and CaffeNet×4(#200) uses the fixed margin values
of m1 and m2 at the 200-th epoch.

Table 2: Comparisons with existing work.

Dim. Oxford5k Paris6k Holidays UKBench
KTH [18] 4096 32.2 49.5 64.2 76.0
VLAD [9] 4096 37.8 - 55.6 -
FV [9] 4096 41.8 - 59.9 -
CaffeNet×4 4096 45.7 69.2 70.2 86.6
OxfordNet×4 4096 48.3 71.5 71.5 88.2
Inria [10] 256 47.2 - 65.7 86.3
CaffeNet×4 256 47.3 47.4 71.6 86.3
OxfordNet×4 256 49.7 48.8 72.5 88.3
VLAD-intra [1] 128 44.8 - 62.5 -
CaffeNet×4 128 46.9 47.7 71.6 85.6
OxfordNet×4 128 48.5 48.8 71.2 87.5

for a fair comparison, we only report results on features with
the same dimension. We also use PCA to reduce the original
feature dimensionality to much lower ones to further com-
pare the performance in different dimensional feature spaces.
Note that KTH [18] also uses the FC6 features as image de-
scriptors, but their results are not directly comparable since
their CNN is different from us. When comparing with other
optimized handcraft features [9, 10, 1], our method outper-
forms them under different dimensionalities on all datasets.

5. CONCLUSION
In this paper, we present quartet-net learning to improve

the discriminative power of CNN features for visual instance
retrieval. By incorporating the double-margin contrastive
loss and mimic learning regularization, quartet-net learn-
ing can help avoid overfitting when training on large im-
age pairs dataset. Our proposed method can be applied to
different CNNs and outperforms existing methods on var-
ious datasets. Besides, we release the GeoPair dataset, a
large-scale dataset consisting of matching/non-matching im-
age pairs, to facilitate future studies.

6. REFERENCES
[1] R. Arandjelovic and A. Zisserman. All about VLAD.

In CVPR, 2013.

[2] J. Ba and R. Caruana. Do deep nets really need to be
deep? In NIPS, 2014.

459



[3] A. Babenko, A. Slesarev, A. Chigorin, and
V. Lempitsky. Neural codes for image retrieval. In
ECCV. 2014.

[4] S. Chopra, R. Hadsell, and Y. LeCun. Learning a
similarity metric discriminatively, with application to
face verification. In CVPR, 2005.

[5] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. Decaf: A deep convolutional
activation feature for generic visual recognition. In
ICML, 2014.

[6] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik.
Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR, 2014.

[7] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the
knowledge in a neural network. CoRR,
abs/1503.02531, 2015.

[8] H. Jégou, M. Douze, and C. Schmid. Hamming
embedding and weak geometric consistency for large
scale image search. In ECCV, 2008.

[9] H. Jégou, F. Perronnin, M. Douze, J. Sánchez,
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