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ABSTRACT
Vocal emotion recognition aims to identify the emotional
states of speakers by analyzing their speech signal. This
paper builds on the work of Ezzat, Bouvrie and Poggio
[5] by performing a spectro-temporal analysis of affective
vocalizations by decomposing the associated spectrogram
with 2D Gabor filters. Based on the previous studies of
the emotion expression in voices and the turn out display
in spectrogram, we assumed that each vocal emotion has
a unique spectro-temporal signature in terms of orientated
energy bands which can be detected by properly tuned Ga-
bor filters. We compared the emotion-recognition perfor-
mances of tuned log-Gabor filters with standard acoustic
features. The experimental results show that applying pairs
of log-Gabor filters to extract features from the spectrogram
yields a performance that matches the performance of an
approach based on traditional acoustic features. Their com-
bined emotion recognition performance outperforms state-
of-the-art vocal emotion recognition algorithms. This leads
us to conclude that tuned log-Gabor filters support the au-
tomatic recognition of emotions from speech and may be
beneficial to other speech-related tasks.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Affective Computing, Speech, Emotion Recognition, Log-
Gabor Filter

1. INTRODUCTION
Emotion recognition from speech plays a significant role in

human-machine interaction, which is becoming increasingly
important given the immersion of computational devices in
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daily life [13]. Apart from verbal signals, human speech
contains non-verbal signals that provide (amongst others)
information on the affective state of the speaker, such as,
intensity, pitch and other spectral features. Automatic emo-
tion recognition from speech contributes to the interaction
of humans and machines, because it allows algorithms to de-
tect nonverbal cues of users about, for instance, their level
of frustration or stress.

1.1 Features for Automatic Emotion Recogni-
tion

Current automatic emotion recognition systems rely on
machine learning. In these systems, features that are as-
sumed to be of relevance to the classification task at hand,
are extracted from the speech signal. Classifiers are trained
on the feature representations of the speech signal to es-
timate the appropriate classes for recognition. The con-
struction of the appropriate features, so-called feature con-
struction is crucial to the recognition performance. Tradi-
tional speech processing and recognition methods often rely
on temporal and spectral features that have proven rele-
vant for speech-related tasks [3]. Well-known examples of
such established features are Linear Predictive Cepstral Co-
efficients (LPCC) and Mel Frequency Cepstral Coefficients
(MFCC) which consist of a wide variety of measurements of
the speech signal.

Inclusion of all potentially relevant features ensures that
all relevant measurements are present, but a large number
of features gives rise to the curse of dimensionality which
deteriorates generalization performance [8]. A viable alter-
native to feature construction is called feature learning, in
which the relevant features are obtained automatically from
the raw speech signals [11], but this approach demands con-
siderable computational resources and requires extensive ex-
perimentation to find the appropriate parameters. If domain
knowledge is available to guide the selection of features, fea-
ture construction may be feasible.

This paper employs feature construction to recognize emo-
tions from speech. To avoid the curse of dimensionality, the
number of features is kept small by using domain knowledge
to guide the feature construction.

1.2 Treating the Spectrogram as an Image
Many speech analysis approaches rely on spectral infor-

mation. The spectrogram is a widely used representation of
spectral information for auditory signal analysis in a wide
range of application domains, such as speech discrimina-
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tion [4], environmental sound classification [16], automatic
speech recognition [12], and investigation of the personality
and likeability [2].

We treat the spectrogram as an image by performing anal-
yses of its local spectro-temporal structure. The analyses
are performed using standard image processing, i.e., two-
dimensional Gabor filters which are locally tuned to the ori-
entations of energy bands in the spectrogram. The idea of
using 2D Gabor filters for analysing the spectrogram is due
to Ezzat, Bouvrie and Poggio [5]. Their focus was on the
detection of general speech-related patterns in the spectro-
gram. Our focus is on the extraction of affective speech. To
determine the contribution of the visual features extracted
by means of 2D Gabor filters, we will perform a compara-
tive evaluation of the following four types of features in a
recognition task: acoustic features (e.g. MFCC and LPCC
features), (2) untuned Gabor filters, (3) tuned Gabor filters,
(4) combination of (1) and (3).

1.3 Outline
The remainder of this paper is structured as follows. Sec-

tion 2 outlines the 2D Gabor analysis of affective speech
and specifies the different approaches used in our empiri-
cal study. In Section 3, the experimental set-up is detailed.
The experiment results are presented in section 4. Finally,
Section 5 discusses the results and draws conclusions.

2. VISUAL ANALYSIS OF THE SPECTRO-
GRAM

The idea to treat the spectrogram as an image that can
be analyzed using image-processing methods follows from
an examination of an example of a spectrogram. Figure 1
illustrates a part of a speech spectrogram [19]. The horizon-
tal axis represents the time and the vertical axis represents
the frequency. Red color means a high energy value and
blue means low energy value. For periodic vocal signals, the
spectrogram contains parallel bands that correspond to the
partials of the complex tone generated by the vocal chords.
The inset shows an example of a periodic fragment with
horizontal bands. The horizontal orientation of the energy
bands reflects the constant frequency over the selected pe-
riod of time. Properly-tuned 2D Gabor filters respond to
the width (spatial frequency) and orientation of bands in
the spectrogram.

Therefore, by convolving the spectrogram with a Gabor
filter of a given spatial frequency and orientation, the con-
volved spectrogram represents spectro-temporal patterns with
the associated spatial frequency (width) and orientation, re-
spectively. In this paper, we only tune the orientation of the
Gabor filters and average over a range of spatial frequencies
encompassing the widths of the energy bands of interest.

2.1 Log-Gabor Filters
The original (1-dimensional) Gabor filter was proposed by

Dennis Gabor [7] to deal with the inherent uncertainty in
determining the temporal localization and frequency. Mea-
suring the frequency of a signal requires a certain temporal
extent over which to make the measurement. In one dimen-
sion, the Gabor filter corresponds to a sine wave weighted
by a Gaussian envelope which combines localization (the
mean of the Gaussian) with frequency determination (the
frequency of the sinusoid). A limitation of the Gabor filter

Figure 1: Spectrogram of the utterance ”He is a
good person” in Chinese expressed with a neutral
emotion. The part enclosed by the blue rectangle
corresponds to the fragment ”a good person”.

is that it can have a non-zero DC value (which the mean
value of a wavevorm) for certain bandwidths. An improve-
ment of the original Gabor filter proposed by Field [6], the
log-Gabor filter ensures a zero DC value by defining the Ga-
bor filter on a logarithmic frequency scale. In our approach,
we adopt log-Gabor filters.

2.2 Visual Feature Extraction
To illustrate the application of log-Gabor filters to affec-

tive vocal expressions, Figure 2 shows four spectrograms of
the utterance ”He is a good person” in Chinese. The ut-
terances differ in their emotion. Figure 2 shows the spec-
trograms for the four emotional expressions: (a) angry, (b)
happy, (c) panic and (d) sad. By comparing the four spec-
trograms with the neutral spectrogram shown in Figure 1,
their differences become apparent. Whereas for the neu-
tral emotion the energy bands are mainly horizontal, for the
four emotions shown in Figure 2, different orientation pat-
terns are present. The differences in orientations reflect the
spectro-temporal dynamics of vocal pitch which could rise
over time (upward orientation), remain stable (horizontal),
or fall over time (downward orientation). Log-Gabor filters
tuned to the appropriate orientations may help to extract
these subtle differences from the spectrograms.

2.3 Tuned Gabor Filters
Previous studies contributed to the understanding of how

different types of emotions are vocally expressed. [10] [1].
Hammerschmidt and Jurgens found the spectro-temporal
energy bands useful for describing acoustic characteristics
of emotional vocal expressions. [9]. They observed that dif-
ferent vocal emotions were associated with different energy
bands. They evaluated five types of vocal emotions: anger,
happy, panic, sadness and the neutral.

Figure 3 displays an example of an angry utterance ”So
bad” in Chinese. The spectro-temporal representation con-
sists of two segments. The left segment consists of parallel
energy bands that move upwards. The right segment con-
tains parallel energy bands that move downwards. Hammer-
schmidt and Jürgens [9] measured for the bands within each
segment the minimum and maximum frequency values. In
the figure, these extreme values are represented by squares
(minimum values) and circles (maximum values). The slope
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(a) angry (b) happy

(c) panic (d) sad

Figure 2: Four spectrograms of the utterance ”He
is a good person” in Chinese each spoken with a
different emotion.

Figure 3: Spectrogram of the phrase ”So bad” in
Chinese expressed with an angry vocal emotion.
The energy bands have an with a upward and sharp
downward contour orientation. The minimum and
maximum values of an energy band are indicated by
a square and circle, respectively.

of the line connecting the minimum and maximum value
quantifies the orientation of the energy bands..

We translated the quantitative orientation measurements
of Hammerschmidt and Jürgens into five qualitative descrip-
tions: horizontal, fast upward, slow upward, fast downward,
slow downward. Table 1 specifies the descriptions for each
of the five types of emotions.

To detect the vocal emotions from their spectro-temporal
signature, we defined two sets of tuned Gabor filters. As dis-
cussed above, the angle could be positive or negative. The
orientation of the filter was set as follows: the horizontal
is 0 degree, fast upward is 45 degree, slow upward is 30.
The downward slopes were defined by negative angles. No
attempt was made to optimize the orientation through ma-
chine learning. We experimented with single filters (covering
one segment) and double filters (covering two neighboring
segments). This first set consisted of single filters tuned
to the dominant orientation in the associated spectrogram.

Table 1: Qualitative descriptions of the slopes of the
first and second segment of five vocal emotions.

Emotion First Segment Second Segment

Neutral Horizontal Horizontal
Angry Fast upward Slow downward
Happy Fast upward Fast downward
Panic Slow upward Fast downward
Sad Slow downward Slow downward

Table 2 lists the orientations of the single log-Gabor filters
designed to detect the five emotions (including neutral).

Table 2: Specification of the single log-Gabor filters
tuned to the five emotions.

Vocal emotion Gabor filter orientation

Neutral G1
neutral 0◦

Angry G1
angry 45◦

Happy G1
happy 45◦

Panic G1
panic 30◦

Sad G1
sad −30◦

The second set of tuned Gabor filters consisted of horizon-
tally contiguous pairs of filters that are tuned to the domi-
nant combinations of orientations in the spectrograms. Also
in this case, the combinations were estimated from a repre-
sentative sample of emotional expressions. Table 3 lists the
orientations of the log-Gabor filter pairs designed to detect
the emotions. The orientations of the left and right filters
of each contiguous pair are specified in the columns labelled
left and right, respectively. Neutral and Sad only have one
dominant orientation direction. Anger, Happy, and Panic
have two different orientations. Figure 4 displays the Gabor
filter pair tuned to detect the characteristic orientations of
the spectrogram associated with panic.

Table 3: Specification of the log-Gabor filter pairs
tuned to the five emotions.

Vocal emotion Gabor filter left right

Neutral G2
neutral 0◦ 0◦

Angry G2
angry 45◦ −30◦

Happy G2
happy 45◦ −45◦

Panic G2
panic 30◦ −45◦

Sad G2
sad −30◦ −30◦

Figure 5 illustrates the result of convolving the four emo-
tional expressions happy, angry, panic, and sad with the fil-
ter pairs G2

angry, G2
happy, G2

panic and G2
sad, respectively. By

comparing the four convolved images, the specific orienta-
tion patterns of the Gabor pairs are clearly visible. Provided
that the tuned filters respond selectively to the emotion-
specific orientations in the spectrograms, they support the
automatic recognition of emotions from speech.
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Figure 4: Illustration of G2
panic.

(a) angry (b) happy

(c) panic (d) sad

Figure 5: Convolution images obtained by convolv-
ing the spectrograms in Figure 2 with with the as-
sociated Gabor filter pairs listed in Table 3.

To determine the contribution of tuned Gabor filters to
the automatic recognition of affective speech, a compara-
tive evaluation was performed on acoustic features, untuned
Gabor filters (all orientations), tuned Gabor filters (single
orientations and pairs of orientations), and the combination
of acoustic features with tuned Gabor filters.

3.1 Affective Speech Corpus
The performances of the automatic emotion recognition

with different features was evaluated on the Mandarin Af-
fective Speech (MAS) corpus (MAS, 2007) [18]. The MAS
corpus contains utterance of 68 speakers (23 females), which
comprise recordings of them uttering sentences with differ-
ent emotions. In order to avoid exaggerated expressions of
emotion, the developers of the corpus asked listeners to judge
the naturalness of the utterances. Those records jugded to
be unnatural were discarded from the corpus. All utterances
were recorded with a sampling rate of 8 kHz at 16 bits. The
corpus includes five types of emotion: angry, happy, neu-
tral, panic and sad. For each emotion, speakers read 15 dif-
ferent sentences and every sentence is repeated four times.
The total number of utterance is equal to 20.400 (number
of emotions × number of sentences × number of repetitions
× number of speakers). The corpus was obtained through

the Linguistic Data consortium1. Table 1 summarizes the
records in the corpus.

Table 4: Summary of the Mandarin Affective Speech
corpus.

Mandarin Affective Speech corpus

Number of emotions 5
Number of sentences 15
Number of repetitions 4
Number of speakers 68
Total number of utterances 20.400

3.2 Feature evaluation
The evaluation of the Gabor filters was based on the fol-

lowing four steps applied to each utterance in the corpus:
(i) spectrogram calculation, (ii) convolution with Gabor fil-
ters, (iii) dimensionality reduction, and (iv) classification.
In what follows, each of the four steps is specified in detail.

Spectrogram Calculation
Each auditory signal (utterance) was transformed into a
spectrogram using Matlab’s spectral analysis function em-
ploying the short-time Fourier transform with a 20 ms Ham-
ming window and an overlap of half window length. The
dimensions of the spectrograms were 512∗512 pixels.

Convolution with Gabor filters
Kovesi’s log-Gabor functions 2 were used to perform the
convolutions on the four quadrants of each spectrogram.
The parameters used are as follows. Number of orientations
= 12 in equal steps covering 360 degrees for “untuned”. For
“tuned” the 8 orientations and orientation pairs specified in
Tables 2 and 3 were used. Number of scales = 12; Mini-
mum wavelength = 3 and sigmaOnf = 0.8. For each of the
four spectrogram region, each scale and orientation yields
a single convolution image. The convolution values within
each image is averaged yielding a total number of Gabor en-
ergy values equal to 4× number of orientations × number
of scales.

Dimensionality Reduction
To reduce the redundancy of the Gabor energy values, Prin-
cipal Component Analysis is applied. We used the PCA
function incorporated in the dimensionality reduction tool-
box[17] and optimized the number of retained components
from 10 to 80 in steps of 10.

Classification
The dimensionality-reduced Gabor energy values were used
for training an SVM classifier. We used the WEKA3 im-
plementation, with an RBF kernel. The parameter values
gamma and C were optimized by means of grid search.

Acoustic Features
All the acoustic features used in our experiment correspond
to the baseline features of the Interspeech challenge [15].

1http://catalog.ldc.upenn.edu/LDC2007S09/
2http://www.csse.uwa.edu.au/ pk/research/matlabfns/
3http://www.cs.waikato.ac.nz/ml/weka/
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This is the current sate-of-the-art emotion recognition fea-
tures that make the acoustic features convinced. The acous-
tic feature set for each utterance consisted of the following
features: Linear Predictive Cepstral Coefficients (LPCC)
and Mel Frequency Cepstral Coefficients (MFCC), zero-crossing
rate, speech rate, pitch, formants (1 − 3), magnitude. Each
feature was represented by four statistical descriptors: mean,
maximum, minimum and standard deviation. We used the
Voicebox4 software for extracting the acoustic features.

In the comparative evaluation, these features are treated
similarly as the Gabor features, i.e., application of PCA and
classification by means of SVM. In the experiment involving
acoustic features and Gabor features, all features are com-
bined into a single feature vector and submitted to PCA and
SVM.

3.3 Evaluation Procedure
The evaluation of the emotion recognition performance

was determined for each set of features using cross-validation
procedures. To avoid overfitting due to the PCA and the
SVM parameter optimization, the evaluation was performed
using both leaving-one-speaker and leaving-one-sentence out
validations, in which optimization was performed in the outer
each-fold leave-out cycle and the evaluation in the inner cy-
cle.

4. RESULTS
Figure 6 shows box plots of the recognition performances

obtained for the five sets of features: (a) acoustic features,
(b) untuned Gabor filters, (c) tuned Gabor filters, 9d) tuned
Gabor filter pairs, and (e) acoustic + tuned Gabor filter
pairs. Traditional acoustic features outperform the untuned
and tuned (single) Gabor filters. Apparently, encoding ori-
ented energy bands in the spectrogram does not lead to
a better performance than obtained with the traditional
acoustic features. The improved performance of the tuned
Gabor filters as compared to the untuned ones (which of
course include the tuned orientations), indicates that reduc-
tion of the features is beneficial to the performance. Inter-
estingly, the tuned Gabor filter pairs perform at a par with
the acoustic features. Their combination yields the best per-
formance overall, suggesting that they capture partly non-
overlapping vocal characteristics.

Tables 5-9 show the confusion tables for the five features
sets. Each confusion table shows in terms of percentage cor-
rect how often each emotion is recognized correctly (diago-
nal entries) or incorrectly (off-diagonal entries). These ta-
bles show that for all sets of features examined the emotion-
specific performances agree quite well.

Table 5: Confusion table acoustic features.

Performance (%)

Emotion Angry Happy Neutral Panic Sad

Angry 90.7% 3.8% 2.4% 2.0% 1.1%
Happy 4.2% 91.1% 1.5% 2.3% 0.9%
Neutral 2.3% 1.9% 92.6% 1.5% 1.7%
Panic 2.6% 1.9% 0.8% 92.2% 2.5%
Sad 1.5% 1.4% 3.2% 1.9% 91.9%

4www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html/

Figure 6: Recognition performances obtained for
the five sets of features.

Table 6: Confusion table untuned Gabor.

Performance (%)

Emotion Angry Happy Neutral Panic Sadness

Angry 80.9% 6.7% 3.5% 5.1% 3.8%
Happy 7.2% 79.1% 3.8% 5.7% 4.3%
Neutral 4.7% 3.9% 83.9% 3.5% 4.0%
Panic 4.8% 6.4% 2.9% 81.7% 4.2%
Sadness 4.4% 5.1% 3.7% 4.6% 82.2%

5. CONCLUSIONS
Our assessment of the use of Gabor filters to extract “vi-

sual”spectro-temporal features from the speech spectrogram
revealed the feasibility of the idea put forward originally
by Ezzat, Bouvrie and Poggio [5]. Especially the use of
tuned Gabor filter pairs to perform a second-order analy-
sis of the spectrogram led to good results. We believe that
the reason for the good performance obtained is due to two
reasons. The first reason is that we performed manual fea-
ture selection by inspecting many spectrograms of emotional
speech. This leads to a limited set of features which avoids
the curse of dimensionality that capture task-relevant infor-
mation from the spectrogram. The second reason is the fact
that Gabor filters detect relevant characteristics in the spec-
trogram for the task at hand. The patterns of orientations in
the spectrogram reflect the time-varying frequency compo-
sitions of the emotional utterances. The orientation tuning
of Gabor filters is highly suitable to encode these patterns.

We have ignored the role of spatial frequency (the width
of the energy bands) by including a wide range of spatial
frequencies in our tuned Gabor filters. Possibly, an improved
tuning in terms of spatial frequency may further enhance the
results obtained. This is left to future study.

Our findings lead us to conclude that tuned log-Gabor
filters support the automatic recognition of emotions from
speech and may be beneficial to other speech-related tasks.The
experiments are carried out on a database with acted data,
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Table 7: Confusion table tuned Gabor filters.

Performance (%)

Emotion Angry Happy Neutral Panic Sadness

Angry 87.1% 4.5% 2.7% 3.4% 2.3%
Happy 4.0% 86.6% 2.4% 3.8% 3.1%
Neutral 3.3% 2.9% 89.4% 2.5% 1.9%
Panic 3.7% 4.6% 2.8% 85.7% 3.2%
Sad 3.2% 3.0% 2.9% 2.4% 88.5%

Table 8: Confusion table tuned Gabor filter pairs.

Performance (%)

Emotion Angry Happy Neutral Panic Sadness

Angry 91.6% 2.7% 2.2% 1.9% 1.6%
Happy 2.9% 92.1% 1.1% 2.1% 1.8%
Neutral 1.9% 2.3% 93.2% 1.4% 1.2%
Panic 1.8% 2.9% 1.4% 91.9% 1.9%
Sadness 2.6% 2.2% 2.7% 1.8% 90.7%

it will be interesting to test the presented method on other
speech databases in future work [14].
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