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ABSTRACT 
In this paper, we focus on tacking the problem of weakly 
supervised semantic segmentation. The aim is to predict the 
class label of image regions under weakly supervised settings, 
where training images are only provided with image-level labels 
indicating the classes they contain. The main difficulty of 
weakly supervised semantic segmentation arises from the 
complex diversity of visual classes and the lack of supervision 
information for learning a multi-classes classifier. To conquer 
the challenge, we propose a novel discriminative deep feature 
learning framework based on stacked autoencoders (SAE) by 
integrating pairwise constraints to serve as a discriminative term. 
Furthermore, to mine effective supervision information, global 
context about co-occurrence of visual classes as well as local 
context around each image region is exploited as constraints for 
training a multi-class classifier. Finally, the classifier training is 
formulated as an ultimate optimization problem, which can be 
solved efficiently by an alternate iterative optimization method. 
Comprehensive experiments on the MSRC 21 dataset 
demonstrate the superior performance compared with several 
state-of-the-art weakly supervised image segmentation methods.  

Categories and Subject Descriptors 
I.4.6 [Image Processing and Computer Vision]: Segmentation 
–pixel classification; I.4.6 [Image Processing and Computer 
Vision]: Feature Measurement–feature representation; 

General Terms 
Algorithms,  Experimentation,  Performance. 

Keywords 
Semantic segmentation; Stacked autoencoders; Discriminative 
feature learning; Weakly supervised learning. 

1. INTRODUCTION 
Weakly supervised semantic segmentation is a fundamental yet 
challenging task to segment an image into several regions of 
homogeneous texture or color and simultaneously recognize 
their associated semantic categories under weakly supervised 
settings, in which only image-level labels are provided for each 
training image, specifying the classes present in the image. 
Recently, many efforts have been contributed to this study [1-6].  

How to describe the intrinsic representation of regions is the key 
to the success of semantic segmentation. HoG and SIFT features 
are exploited in [4, 6, 7]. However, such low-level features often 
fail to offer sufficient discriminative power. We argue that the 
usage of more semantically abstract features, such as high-level 
features learned by recent developed deep learning methods, 
may offer a promising venue to empower the model to handle 
intrinsically diverse and complex visual classes in natural 
images [8] and also remote sensing images [9], and hence to 
improve segmentation performance. In this paper, we propose a 
novel discriminative deep feature learning framework based on 
stacked autoencoders by integrating pairwise constraints to 
serve as a discriminative term. The pairwise constraints, 
including must-link constraints (indicating the semantic 
similarity between superpixels) and cannot-link constraints 
(indicating the semantic dissimilarity between superpixels), 
guarantee the ability of discriminative representation by keeping 
the superpixels connected by the must-link be close to each 
other in the learned feature space while ensuring the superpixels 
of cannot-link to be kept far away. 

In contrast to full-supervised methods [10, 11], it is more 
challenging for weakly supervised segmentation methods to 
train region-level classifier with only image-level labels in the 
training set. Since there are no ground truth labels of superpixels 
in the training set, it is necessary to mine effective constraint 
information to supervise the classifier training. In [4, 12, 13], 
image-superpixel label inclusion information is exploited to 
directly infer the superpixel labels. However, only the label 
inclusion information does not effectively deal with regions that 
of similar appearances corresponding to distinct semantic 
concepts. For example, a smooth region in blue may be a part of 
sky or a part of water. It is even difficult for human observers to 
individually classify such regions without context. Contextual 
information plays a very important role to reduce semantic 
ambiguity. In this paper, we propose to incorporate both global 
and local semantic contextual constraint information, together 
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with label inclusion information in a unified framework to 
provide supervision for training the multi-class classifier. The 
global semantic context describes the co-occurrence 
relationships of different concepts while the local context 
encourages neighboring superpixels with similar appearances 
within the same image to share the same concept label.  

We evaluate the proposed approach on MSRC-21 dataset [14]. 
Experimental results show that the proposed algorithm 
outperforms state-of-the-art weakly supervised image 
segmentation methods, and its performance is even comparable 
to those of the fully supervised segmentation models. 

2. THE PROPOSED METHOD 
We start by setting up the problem and notations. Let 

1{ ,... ,... }X m MX X X  be the training set with corresponding 

image-level labels 1[ ,... ,... ] m MG G G G , 

where 1 T[ ,... ,... ] c C
m m m mG g g g  is the label indicator vector with 

1c
mg  if the image containing class c  and 0c

mg  otherwise. 

We oversegment an image mX  into mn    superpixels by an over-

segmentation algorithm [15] and obtain the low-level feature 
data matrix 1[ ,... ,... ]

mm m, m,i m,nX x x x , where m,ix  is the feature of 

thi  superpixel and the associated label is denoted as 
1[ ,... ,... ] c C

m,i m,i m,i m,iy y y y  with 1c
m,iy  if m,ix  is assigned label c and 

0c
m,iy  otherwise. For brevity, we denote 1[ ,... ,... ] n NX x x x  as 

the training set and 1[ ,... ,... ] n NY y y y  as the corresponding label 

matrix, where 
1

 M

mm
N n  is the total number of superpixels in 

the training set. The task of weakly supervised semantic 
segmentation is to recover the latent label Y  and 
simultaneously learn a classifier, which later help to predict 
superpixel labels in the new test images. 

2.1 Stacked Discriminative Autoencoders 
At the encoding part of autoencoder [16], an input vector x  is 
mapped to the hidden representation h  by a linear deterministic 
mapping and a nonlinear activation function 1 1( ) h f W x b , 

where 1W  is an encoding weight matrix, 1b  is encoding bias 

vector and ( )f z  is the logistic sigmoid function. At the 
decoding part, hidden feature representation h is mapped back 
to a reconstruction x̂  through 2 2ˆ ( ) x f W h b , where 2W  is an 

decoding weight matrix, 2b  is decoding bias vector. Weight 

matrices 1W  and 2W  and bias vectors 1b  and 2b  are learned by 

minimizing the cost function: 

 2 2 2
2 1 2 2 2

1

1
ˆ|| || (|| || || || )

2 2




   
N

i i
i

J x x W W   (1) 

We constructed must-link constraints P  by selecting two 
superpixels with similarity larger than   from different images 
sharing common labels in condition that they are the most 
similar to each other in their respective images. We constructed 
cannot-link constraints D  by simply selecting two superpixels 
with similarity larger than  from different images sharing no 
common labels. 

To introduce pairwise constraints into autoencoders as a 
discriminative term, the learned latent features ( ),i jh h  of P  are 

encouraged to be close in the learned latent feature space and of 
D  are ensured to be kept far away, which can be formulated as 
minimizing the cost function:  

 2
2
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(|| || )
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N

DAE i j ij
i j

J J h h F   (2) 

Parameter   controls the contribution of pairwise constraints, 
which are encoded in matrix F  defined as: 
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1, if ( )

0, otherwise
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The gradient of the objective function DAEJ  with respect to 

1 21 2{ , , , }bW bW  can be computed as follows: 

(1) T
1

11

' (1) T ' (1) T

1

1

((( ) ( )) (( ) ( )) )


  



   





N

i i
i=

N

i j i i i j j j ij
i, j

DAE

=

x W
W N

h h f z x h h f z x F

J

  (4) 

(2) T
2

12

1 
  

 D
N

i
A

i=

E
ih W

W N

J
                                                            (5) 

(1) ' (1) ' (1)

1 11

1
(( ) ( ( ) - ( )))

   
  

N N
DAE

i i j i j ij
i= i, j=

h h f z f z F
J

b N
  (6) 

(2)

12

1
 

 
N

i
DAE

i=b N

J
                                                                         (7) 

where the operation  denotes the element-wise multiplication, 

and (1)i  and (2)i  are defined as: 

(1) T (2) ' (1) (2) ' (2)
2 ( ), ( ) ( )ˆ     i iii ii iW f zxz fx    (8) 

Then the parameters 1 21 2{ , , , }bW bW  can be learned by using the 

gradient descent method with learning rate  . 

However, due to the simple shallow structural characteristic, the 
representational power of a single layer discriminative 
autoencoder is limited. In this paper, we propose a stacked 
discriminative autoencoders (SDAE), in which DAE is used as a 
building block to learn discriminative high-level features from 
low-level ones as described in Section 3.1. The training of 
SDAE is performed in a greedy layer-wise learning manner 
introduced by Hinton et al.[17]. 

2.2 Context-constrained Weakly Supervised 
Learning 

2.2.1 Constraint information 
To perform segmentation, a neural network classifier is 
constructed by adding an additional classification layer on the 
top layer of SDAE described in the above subsection. Since 
there are not pixel-level labels, the following constraints 
information is taken into consideration to train the classifier.  

2.2.1.1 Label inclusion constraint 
The label inclusion constraint guarantees that there are no 
superpixels supporting an invalid label. That is, given an image 

mX  with image-level label 1 T[ ,... ,... ] c C
m m m mG g g g and its thi  
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superpixel label 1[ ,... ,... ] c C
m,i m,i m,i m,iy y y y , c

m,imax y  should be close 

to zero, which is equal to minimize the objective 
function: 1 (1 )


 

m,i m

c c
m m,i

x X
m c

C g max y . We further give its matrix 

form T T
1 (1 )  c

m c m
m c

C g h Y q , where  C
ch R  is an indicator 

vector with its all elements expect for the thc  element are zeros. 

 N
mq R  is a vector with its all elements except for those 

elements corresponding to the thm image are zeros.  

2.2.1.2 Context constraints 
We use the pairwise co-occurrence of concepts to capture the 
global context constraint. The element of reference co-
occurrence matrix 

1 2
= { }  C C

c cA a R  is defined as the conditional 

probability of coincidence of concepts. To integrate the global 
contextual information into formulation, we introduce the 
following objective function: 

 
1 2 1 2

1 2

T T 2 T
2

1
( || || ) ( )

2
  

C

gc c c c c gc
c ,c

C A y y Tr YL Y   (9) 

where Laplacian matrix  gc gcL D A  and gcD  is a diagonal 

matrix whose diagonal elements are the sums of the row 
elements of co-occurrence matrix A . 

The local context can yield more semantically consistent 
segmentation results by imposing neighboring superpixels with 
similar appearances within the same image to share the same 
concept label. To model the local semantic context, we have the 
following equation to be minimized: 

2

i, j 1

| ( )|| |


  
N

lc ij i lcj
TTr Yy LV y YC    (10) 

where V  encodes the interactions of superpixels in the adjacent 
set A , which is defined as: 

2 2exp( || / ), if ( , )

0, otherwise

    


i j i j
ij

- || h h h h
V

A
  (11) 

Laplacian matrix  lc lcL D V  and lcD  is a diagonal matrix 

whose diagonal elements are the sums of the row elements of 
matrix V . 

2.2.2 Weakly supervised learning 
Jointly considering the above constraints, the classifier training 
is formulated as optimizing the following objective function: 

1 2( ,, ) ( )  
nn

NN nn
W ,Y

Y smin J Y W .t.Ye e YC 0   (12) 

where 2 2
F 2( , ) || ( ) || || ||

2


 

nnNN nn W nnJ Y W = h X Y W  is the loss function 

of neural network classifier with output ( )
nnWh X .  

c T T
m c

T T

c

( ) (( + 1( ) ))    gc lcg
m

c lcY Tr YL Y Tr Y gY hLC = Y q is the 

constraint information. Constraint 1 2Ye e  is introduced to 

ensure the sum of each row in Y  is equal to 1 with 1 C 1 1e  and 

2 N 1 1e .  

The minimization problem of (12) can be solved in the 
following two alternate optimization steps: 

*
F 2

* 2 2( , ) || ( ) || || ||
2




 
nn nn

nnnn
W W

NN nn W nnJ Y WW argmin  h Xm Wi Yarg n   (13) 

*
n

* 2
F 1

2
F2|| ( ) || ( ) |+ | ||


   

nY 0
W

Y h X Y Cargmin Ye - e s.t.YY 0   (14) 

The first subproblem is a standard neural network classifier 
training problem given *Y , which can be solved by using back-
propagation algorithm [18]. The second subproblem can be 
effectively solved by a nonnegative multiplicative updating 
procedure [19]. 

Therefore, considering the two alternate optimization steps 
together, after convergence, we can obtain superpixel labels Y  
and neural network classifier nnW . 

3. EXPERIMENT RESULTS 
3.1 Experiment Setup 
We evaluated our approach on the MSRC-21 dataset. This 
dataset contains 591 images of 21 visual classes with manually 
labeled object segmentation ground-truth [14].  Pixels on the 
boundaries of objects are usually labeled as background and are 
ignored during training and evaluation. For both datasets, we 
adopted the over-segmentation algorithm in [15] to obtain 
superpixels and described superpixel appearances with 980-
dimimension low-level features including shape, location, 
histogram of texture, SIFT, and color. The proposed SDAE 
consists of 3 layers of discriminative autoencoders, which take 
the 980-dimimension low-level features as input and set the 
number of the first and hidden layer as 1960 and 1960, 
respectively and the number of the output layer is set to be 720. 
The performance was evaluated by average per-class accuracy, 
which measures the percentage of correctly classified pixels for 
an object class. 

3.2 Parameters Analysis 
In the implementation of SDAE, there are four parameters to be 
set: threshold  for pairwise constraints construction, weight 
decay cost parameter  , discriminative parameter  and 
learning rate  . For parameters   and  , we empirically set 

0.001  , 0.2   based on the practical tricks introduced in 
book [20]. For parameters  and  , we varied the value of 
parameter   from 0.71 to 0.80 with a stride of 0.01 and set 
 with {0.001,  0.01,  0.1} . As shown in Fig.1 (a), we set 0.72   
and 0.001   with the average accuracy reaching the peak point. 

In the classifier learning, parameters  ,  ,  gc  and  lc  need to 

be set. Parameters   and   are both set to be 1000 which is 
large enough to guarantee the label consistent constraint 
satisfied and to ensure the sum of each row in   is equal to 1. 
Fig.1 (b) presents the accuracy with different values of  gc  and 

 lc . Finally, we set 10 gc  and 100 lc .  

 

Fig.1 Average accuracy with different parameters. 
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3.3 Comparison with State-of-the-arts 
Fig.2 shows some example results produced by our method in 
comparison with the ground-truth. Table 1 reports the average 
accuracy over all 21 object classes in comparison with state-of-
the-art semantic segmentation methods, including both fully 
supervised (FS) [10, 11] and weakly supervised (WS) [4, 5]. As 
shown in Table 1, our method outperforms all other weakly 
supervised approaches and meanwhile is comparable to those of 
the fully supervised segmentation methods. Fig. 3 presents the 
per-class accuracy results on MSRC dataset. The class labels 
from 1 to 21 are assigned with building, grass, tree, cow, sheep, 
sky, aeroplane, water, face, car, bicycle, flower, sign, bird, book, 
chair, road, cat, dog, body and boat, respectively. Our method 
gets the best results on 10 out of 21 classes and especially works 
well on several confusing categories, such as aeroplane and boat, 
sky and water. 

Table 1. Average accuracy (%) of our method and four 
comparison methods on MSRC-21 dataset. 

 FS WS 

Methods [10] [11] [5] [4] Ours 

Accuracy 75 76 69 71 76 

 

 

Fig. 2 Some results of our method on MSRC-21 dataset. 

 

Fig.3 Per-class accuracy of our method and four comparison 
methods on MSRC-21 dataset. 

4. CONCLUSIONS 

In this paper, we proposed a coherent framework to perform 
semantic segmentation under weakly supervised settings. The 
framework includes two parts: a novel discriminative deep 
feature learning method based on stacked autoencoders with 

pairwise constraints and a context-constrained weakly 
supervised multi-class classifier learning method by employing 
both global and local semantic contextual information.  
Experiments on MSRC-21 dataset demonstrated the 
effectiveness of our proposed method, compared with several 
state-of-the-art full supervised and weakly supervised methods.  
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