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ABSTRACT
The brightness constancy assumption is the base of esti-
mating the flow fields in most differential optical flow ap-
proaches. However, the brightness constancy constraint eas-
ily violates with any variation in the lighting conditions in
the scene. Thus, this work proposes a robust data term
against illumination changes based on a rich descriptor. This
descriptor extracts the textures features for each image in
the two consecutive images using local edge responses. In
addition, a weighted non-local term depending on the inten-
sity similarity, the spatial distance and the occlusion state
of pixels is integrated within the adapted duality total varia-
tional optical flow algorithm in order to obtain accurate flow
fields. The proposed model yields state-of-the-art results on
the the KITTI optical flow database and benchmark.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing, motion; I.4.8 [Image Processing]: Scene Analy-
sis time uarying imagery; I.4.9 [Computing Methodolo-
gies]: Image Processing and Computer Vision

General Terms
Algorithms, Measurement, Theory

Keywords
Motion Estimation, optical flow, illumination changes, large
displacement, total variational
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1. INTRODUCTION
Optical flow allows the estimation of the apparent motion

of the scene. Motion estimation is a key task of a variety of
applications, such as surveillance, robot-vision and driver-
assistance. These applications require robust optical flow
methods that are able to cope with different dramatically
changing scenarios. The robustness of optical flow is badly
affected by several surrounding environment factors such as
fog, sunshine, clouds, shadow, shading, and lighting changes
that yield brightness changes between two consecutive im-
ages.

Recently, most of the optical flow methods are concerned
with estimating accurate flow fields under ideal conditions1

rather than increasing the robustness in realistic scenes un-
der various conditions. In addition, the brightness constancy
assumption and the high-order constancy assumptions, such
as gradient constancy were used by most variational opti-
cal flow approaches. Unfortunately, these assumptions are
strongly become contaminated when applied to image se-
quences including illumination changes.

In the literature, many methods have presented differ-
ent optical flow models that are robust against illumination
changes. A robust energy function for solving the optical
flow problem taking into account multiplicative and additive
illumination factors was proposed by [5]. However, the si-
multaneously dealing of motion estimation and illumination
variations in one energy function yields a more complex op-
timization problem. In addition, the accuracy of the optical
flow estimation has adversely been affected, if the assump-
tion of illumination factors is not accurate. Moreover, [6]
proposed a photometric invariants of the dichromatic reflec-
tion model. However, this model is only applicable to color
images with brightness variations

Furthermore, [8] proposed an illumination-invariant total
variation with L1 norm (TV-L1) optical flow model by re-
placing the data term proposed by [14] by the Hamming dis-
tance of two Census Transform signatures. However, census
signatures encode the local neighborhood intensity that is
very sensitive to non-monotonic illumination variation and

1http://vision.middlebury.edu/flow/data/
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random noise. In addition, the census transform discards
most of the information casting from neighbors, and they
cannot distinguish between dark and bright regions in a
neighborhood.

In addition, the normalized cross correlation was proposed
by [7] as a data term and leads to increasing the robustness
against multiplicative illumination changes. In turn, [13]
tackles the problems of poorly textured regions, occlusions
and small scale image structure by incorporating a low level
image segmentation process that has been used in a non-
local total variation regularization term in a unified varia-
tional framework. In addition, [13] proposed the truncated
normalized cross correlation that is robust against illumina-
tion changes in order to implement the data term.

Moreover, [15] presented a robust data term under out-
liers and varying illumination conditions based on constraint
normalization, and an HSV color space with higher order
constancy assumptions (gradient constancy assumption) as
well as an anisotropic smoothness term is designed to work
complementary to the data term. In addition, a weighted
non-local term that depends on both the color similarity and
the occlusion state of pixels and robustly integrates flow es-
timates over large spatial neighborhoods was proposed by
[12]. However, the data term proposed by [12] still depends
on the well-known brightness constraint.

The main contribution of this work is to replace the bright-
ness constancy with a local texture feature which is more
robust against illumination changes. Therefore, this work
proposes the usage of the modified local directional pattern
(MLDP) as a texture descriptor in order to extract texture
features from two consecutive images. The extracted fea-
tures are then utilized as a texture constancy assumption
for the data term of the TV-L1 optical flow model proposed
by [14]. In addition, this paper aims at compensating the
loss of accuracy of the estimated flow field due to using an
isotropic regularization term with an additional weighted
non-local term that is similar to the one proposed by [12].

The rest of this paper is organized as follows: Section 2
discusses the local directional pattern and its modification
version. In turn, the variational optical flow model con-
taining a data term, a regularization term and a weighted
non-local is summarized in section 3. Experimental results
are shown and discussed in section 4, including a compari-
son with the state-of-the-art optical flow methods. Finally,
conclusions and future work are given in section 5.

2. LOCAL DIRECTIONAL PATTERN
Census transform (CT) or local binary pattern is a widely

used texture descriptor used as a facial descriptor. It can
handle monotonic illumination changes; however, it depends
on the intensity values that are more sensitive to noise and
non-monotonic illumination changes. Furthermore, it can-
not solve the problem of affine motion (rotatory motion),
nor it can handle the problem of blocks with saturated cen-
ter pixels, which appears when all neighbors are greater or
smaller than the center pixel value, as shown figure 2.

In turn, the edge responses are more insensitive with il-
lumination change and noise than intensity values that are
used in the other descriptors. Thus, the LDP proposed by [4]
is a gray-scale texture pattern and a robust descriptor that
is recently used in a face recognition. Furthermore, The
LDP feature describes the local primitives, including differ-
ent types of curves, corners, and junctions, more stably and

retains more information. An LDP operator computes the
edges responses values (ER) in all eight directions ( starting
from east) at each pixel position by using compass Kirsch
masks centered on its position as illustrated in [4] (see fig-
ure 1). LDP then generates an 8-bit binary code from the
relative strength edge magnitude that is computed.

Figure 1: Kirsch masks used for extracting eight
edge responses of a 3× 3 neighborhood.

The presence of a corner or edge causes only high response
values in some directions. Therefore, the LDP proposed by
[4] is interested in the k (k = 3) most predominant directions
to generate its code, also the top k directional bit responses
are set to 1, as shown in figure 2.
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Figure 2: LDP vs. CT for a 3×3 neighborhood. (Up)
A LDP descriptor, by applying the eight Kirsch
masks to extract edge responses, and set then the
corresponding bits to the three maximum responses
to 1. (Down) A census descriptor, by calculating the
difference between the center pixel and its neigh-
bors, when the difference more than zero, the cor-
responding bit set to 0.

Another compass mask based on a Gaussian filter as for-
mulated in (1) was proposed by [10]. This mask used for
computing the edge responses is based on the derivative of
a skewed Gaussian to create an asymmetric compass mask
that is more robust to random noise. This mask can be
formulated as:

M(x, y) = G
′
σ(x+ k, y) ∗Gσ(x, y), (1)

where G
′
σ is the derivative of Gσ with respect to (x, y), ∗ is

the convolution operation, and k is the offset of the Gaussian
with respect to its center.

However, only relying on the k most prominent directions
yields loosing a lot of structure information about a neigh-
borhood. Thus, a new modification for the LDP descriptor
called MLDP was proposed in this work. Likewise, eight
edge responses are generated relating to eight masks opera-
tions. The 8-bit string is then generated by setting the cor-
responding bit of the positive edge responses to 1; in turn,
the negative responses are set to 0.
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s =

{
1 ER > 0
0 otherwise.

(2)

where s is one bit in the MLDP signature.
Figure 3 shows that every pixel intensity is replaced by

an 8-bit code. With MLDP, the extracted features (8-bit
codes) only depend on the edge direction regardless of edge
magnitude yielding a very robust descriptor against illumi-
nation. Therefore, in this paper, an 8-bit binary channels
image is generated for each gray image with each channel
corresponding to a directional mask operation.

11000001
m0m7 ..............

Apply eight masks 803

-141
-1085

-1077

-1069

-69
859

1779

MLDP
228

113112110

114

113 230235

240 E

NE
N

NW

W

SW SE

S

+Response = 1

-Response = 0

Figure 3: MLDP descriptor with setting the positive
response to 1 and the negative response to 0.

In addition, if the features are extracted with a multi-
scale approach that relies on rescaling the input image in
a Gaussian pyramid, the features can be more insensitive
to noise and illumination changes. On the one hand, the
Kirsch masks [4] can be used for computing the eight edge
responses for every pixel in every scale level. On the other

hand, the shifted derivative of the Gaussian filter G
′
σ shown

in (1) can be utilized to generate edge responses without a
convolution with the Gaussian filter Gσ, which is already
applied on every scale level.

3. OPTICAL FLOW BASED ON MLDP
Given two consecutive frames I1(x, y) at time t and a

frame I2(x+u, y+v) at time t+1, the duality of the TV-L1
optical flow model proposed by [14] is used to compute the
vector flow field w = (u, v) at a point p = (x, y) in an image
domain Ω.

min
u,v

EI(u, v) =
∑
Ω

(
λρ(x, y, u, v)2+ ‖ ∇u ‖ + ‖ ∇v ‖

)
,

(3)
where ρ is the similarity function between two images; in
turn, u and v are the horizontal and vertical optical flow
components, and λ is the weight of the data term. Using a
quadratic coupling term, the energy functional (3) is divided
into two parts, which are then solved iteratively. The first
part contains the data term:

min
u,v

EId(w) =
∑
Ω

(
λρ(x, y, w)2 +

1

2θ
(w − ŵ)2

)
, (4)

where w = (u, v) and ŵ = (û, v̂) is the auxiliary optical
flow vector and θ is a threshold. The second part contains
the regularization term:

min
û,v̂

EIs(ŵ) =
∑
Ω

(
1

2θ
(w − ŵ)2+ ‖ ∇û ‖ + ‖ ∇v̂ ‖

)
, (5)

Assume S1(x, y) and S2(x+u, y+v) are the two descriptors
extracted from the two images I1(x, y) and I2(x+ u, y+ v),

respectively. Thus, the similarity function ρ used in between
the two images can be rewritten as:

ρ(x, y, u, v) = S2(x+ u, y + v)− S1(x, y), (6)

Thus, S2(x+u, y+v) can be linearized around the starting
value of w using a first order Taylor expansion:

S2(x+ u, y + v) = S2(x, y) +∇TS2(x, y, ŵ)(w − ŵ). (7)

In turn, the derivative∇TS2(x, y, ŵ) =
[
∂S
∂x

= Sx,
∂S
∂y

= Sy
]T

can be computed by applying a derivative mask to the bi-
nary image (i.e. Sobel) in the x and y directions. Thus, the
similarity function will be:

ρ(x, y, w) ≈ ρ̃(x, y, w)

= S2(x, y)− S1(x, y) +∇TS2(x, y, ŵ)(w − ŵ).
(8)

Now, (4) can be solved for (u, v) by doing:

∂

∂u
(λρ̃(x, y, w)2 +

1

2θ
(u− û)2) = 0,

∂

∂v
(λρ̃(x, y, w)2 +

1

2θ
(v − v̂)2) = 0. (9)

Both equations can be expressed in vector form as:

2λρ̃(x, y, w)∇S2(x, y, ŵ) +
1

θ
(w − ŵ) = 0. (10)

Equation (10) is linear in (u, v) and can be solved as a linear
system Aw = b.

In the proposed technique, the data term uses the similar-
ity measure between two 8-bit channels descriptor extracted
through MLDP descriptors. For every pixel, the similarity
is calculated by counting the number of differences between
the two descriptors. Assume S1(x, y) and S2(x + u, y + v)
are the n binary channels descriptors extracted from the two
images I1(x, y) and I2(x+u, y+v), respectively. In practice,
the residual function between the two n-channels descriptors
can be represented as:

ρ(x, y, u, v)2 =

n∑
i=1

(S2,i(x+ u, y + v)− S1,i(x, y))2

=

n∑
i=1

ρi(x, y, u, v)2, (11)

where n is the number of channels. Each ρ2
i will give 0 if

both bits are the same and 1 if otherwise, ρi = {1, 0 or −
1}. In practice, the summation over all ρi will measure the
dissimilarity distance between the two descriptors.

Thus, the final data can be extended in order to be appli-
cable to a multi channel descriptor as:

min
u,v

EId(w) =
∑
Ω

(
λ

n∑
i=1

ρ(x, y, w)2 +
1

2θ
(w − ŵ)2

)
,

(12)
Hence, A and b matrices of the linear system described in

(10)can be written as:

A =

[ 1
θ
+ 2λ

∑n
i=1 S

2
x 2λ

∑n
i=1 SxSy

2λ
∑n
i=1 SxSy

1
θ
+ 2λ

∑n
i=1 S

2
y

]
. (13)
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and

b =
1

θ

(
û
v̂

)
− 2λ

( ∑n
i=1 Sx∑n
i=1 Sy

)
(

n∑
i=1

St − (

n∑
i=1

Sxû+

n∑
i=1

Sy v̂)).

(14)

Similarly, the smoothness term represents the isotropic total
variation [9]. As a result, (5) can be decomposed into two
equations and rewritten as:

Eu =
∑
Ω

[
1

2θ
(u− û)2+ ‖ ∇û ‖

]
, (15)

Ev =
∑
Ω

[
1

2θ
(v − v̂)2+ ‖ ∇v̂ ‖

]
. (16)

Eu and Ev have two unknowns, û and v̂, while u, v are con-
stants obtained after solving the data term.

For Eu, thus the Euler-Lagrange equation is:

−div[
∇u
‖ ∇u ‖ ] +

1

θ
(u− û) = 0 (17)

Let Pu = ∇u/ ‖ ∇u ‖. Thus:

u = λdiv(Pu) + û, (18)

By using (17) and (18), Pu can be rewritten as:

Ph+1
u =

Phu + τ∇(div(Phu ) + û
θ

)

1 + τ ‖ ∇(div(Phu ) + û
θ

) ‖
, (19)

where h is the iteration number, and τ ≤ 1/8 is the time
step. The same can be applied to get Pv. That equation can
be solved through a fixed-point iteration scheme as described
in [9].

Furthermore, a coarse-to-fine scheme [1] is used for solv-
ing the energy function (3) in order to support both small
and large displacements and improve the accuracy of flow
fields. In each pyramid level, the scaled images are warped
representations of the images based on the flow estimated
at every preceding scale.

However, the only reliance on the isotropic L1 total vari-
ational in the regularization term causes the loss of some
accuracy of the obtained flow fields for properly preserving
edges and object boundaries as well as small details. In or-
der to handle the motion discontinuity that is usually prob-
lematic due to occlusion and over-smoothing, the resulting
flow field requires, with every pyramid level, a filtering stage
to preserving edges and boundaries. Therefore, the motion
boundary and edges are detected, and then dilated using a
5 × 5 mask in order to obtain flow boundary regions. For
each pixel p = (x, y) in the region, a weighted particular
median filter proposed in [12] is performed:

Ew =
∑
x,y

∑
(x́,ý)∈Nx,y

$p,ṕ(|ux,y − ux́,ý|+|vx,y − vx́,ý|). (20)

where (x́, ý) is the spatial position of any pixel ṕ belonging
to a neighborhood of pixel p in a possibly large region Nx,y,
and $p,ṕ is the weighting function taking into account the
occlusion state of pixels, O(p) proposed in [11], in addition
to color similarity and spatial distance. Thus $p,ṕ can be
formulated as shown in [12]:

$p,ṕ ∝ exp
(
− (p− ṕ)2

2σ2
s

− (I(p)− I(ṕ))2

2σ2
r

)
O(ṕ)

O(p)
, (21)

where I(p) and I(ṕ) are the intensity values of points p and
ṕ, respectively, and σs and σr are standard deviations with
values 7.0 and 0.1, respectively. In motion boundary regions,
the weighting in (21) is used in a 15× 15 neighborhood. In
the non-boundary regions, equal weights are used in a 5× 5
neighborhood to compute the median as illustrated in [12].

4. EXPERIMENTS AND EVALUATION
In order to evaluate the robustness of the optical flow al-

gorithm, synthetic illumination changes have been added to
the GROVE2 sequence from the Middlebury datasets which
has ground truth by changing the illumination of the second
frame depending on:

Io = uint8

(
255

(
mIi + a

255

)γ)
, (22)

where Ii and Io are the input and output frames, respec-
tively. m > 0 is a multiplicative factor, a is an additive
change factor and γ > 0 is the gamma correction. The
function uint8 is used for quantizing the values to an 8-bit
unsigned integer format. Qualitative comparisons among
MLDP and different feature descriptors have been done.
Figure 4 shows the average end-point error (AEE) and the
average angular error (AAE) between the flow fields ob-
tained with MLDP, the census transform (CT) determined
in a 3 × 3 neighborhood and the gradient constancy (GC).
The effects of different values of m, a and γ have individu-
ally been assessed. As shown in figure 4, the gradient con-
stancy is robust against small changes of m a and γ. In turn,
MLDP increases the robustness against both small and large
changes of m a and γ. In addition, the census transform
yields adequate values for both AEE and AAE.

At the time of submission (July 2013), the results of the
proposed model with (MLDP-OF) were evaluated with the
KITTI2 Vision Benchmark, which contains 195 testing se-
quences with ground truths, and it was ranked in the 9th

position against current state-of-the-art optical flow algo-
rithms with an average of 8.90% incorrect pixels (percent-
age of pixels with AEE above 3 pixels) as shown in table 1.
In turn, the baseline method [14] has 30.75% and [12] has
24.64%. Furthermore, the proposed methods were evaluated
with different real image sequences that include illumina-
tion changes and large displacements of the training KITTI
datasets. Table 2 shows the percentages of the incorrect pix-
els of four sequences that include illumination changes, as
well as four sequences include large displacements calculated
for the methods proposed in [15], [12], [2], [3] and [13], and
the proposed method with MLDP and CT.

In addition, figures 5 and 6 show a visual example of the
estimated flow field for sequence 44 and 181 of the KITTI
datasets, which includes illumination changes and large dis-
placement, respectively, as well as the error images and the
error histograms. Among the evaluated approaches, the
optical flow model based on MLDP yields the most accu-
rate flow fields with respect to the state-of-the-art methods
shown in table 2 for real images that include both illumina-
tion changes and large displacements.

5. CONCLUSION
This paper proposed an illumination robust texture con-

stancy assumption to be used as a data term for variational

2http://www.cvlibs.net/datasets/kitti/
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Figure 4: (Column 1) AEE and (column 2) AAE for MLDP, CT and GC for changing of γ, m and a respectively.

Table 1: The evaluation of the state-of-the-art method on the KITTI website July 2013.
Rank Method Out-Noc Out-All Avg-Noc Avg-All

1 PR-Sf+E 4.08 % 7.79 % 0.9 px 1.7 px
2 PCBP-Flow 4.08 % 8.70 % 0.9 px 2.2 px
3 MotionSLIC 4.36 % 10.91 % 1.0 px 2.7 px
4 PR-Sceneflow 4.48 % 8.98 % 1.3 px 3.3 px
5 TGV2ADCSIFT 6.55 % 15.35 % 1.6 px 4.5 px
6 Data-Flow 8.22 % 15.78 % 2.3 px 5.7 px
7 TVL1-HOG 8.31 % 19.21 % 2.0 px 6.1 px
9 MLDP-OF 8.91 % 18.95 % 2.5 px 6.7 px
12 fSGM 11.03 % 22.90 % 3.2 px 12.2 px
13 TGV2CENSUS 11.14 % 18.42 % 2.9 px 6.6 px
14 C+NL-fast 12.42 % 22.27 % 3.2 px 7.8 px
25 DB-TV-L1 30.75 % 39.13 % 7.8 px 14.6 px

Table 2: Percentage of wrong pixels of state-of-the-art methods and the proposed method with eight sequences
of the KITTI datasets: sequences 11, 15, 44 and 74, which include illumination changes ordered by difficulty
, and sequences 117, 144, 147 and 181, which include large displacements ordered by difficulty.

Method Seq44 Seq11 Seq15 Seq74 Seq147 Seq117 Seq144 Seq181
MLDP 20.42% 29.67% 23.85% 56.01% 11.79% 18.67% 41.05% 59.40%
CT (5 × 5) 35.23% 33.93% 29.04% 57.57% 13.98% 27.33% 47.68% 73.85%
CT (3 × 3) 29.55% 37.54% 33.74% 57.43% 14.76% 28.80% 48.97% 73.63%
GC 29.25% 35.72% 26.41% 59.20% 12.28% 17.70% 44.51% 67.63%
OFH 2011 [15] 23.22% 37.26% 32.20% 62.90% 15.04% 16.26% 42.04% 63.86%
SRB 2010 [12] 26.58% 40.61% 32.85% 62.94% 14.59% 24.71% 50.67% 67.11%
SRBF 2010[12] 31.83% 40.34% 35.13% 64.89% 14.79% 24.41% 50.66% 68.41%
BW 2005 [2] 32.44% 33.95% 47.70% 71.44% 16.98% 28.80% 46.98% 69.04%
HS 1981 [3] 42.96% 38.84% 58.08% 82.14% 24.84% 43.24% 51.89% 74.11%
WPB 2010 [13] 49.09% 49.99% 67.28% 88.67% 32.72% 46.80% 52.25% 76.00%
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Figure 5: Row 1: Two original images for sequence 44 of the KITTI datasets. Resulting flow field, error
image and error histogram for the proposed optical flow model with: Row 2: brightness constancy, Row 3:
3× 3 census transform, Row 4: 5× 5 census transform, Row 5: MLDP.
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Figure 6: Row 1: Two original images for sequence 181 of the KITTI datasets. Resulting flow field, error
image and error histogram for the proposed optical flow model with: Row 2: brightness constancy, Row 3:
3× 3 census transform, Row 4: 5× 5 census transform, Row 5: MLDP.
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optical flow methods. The proposed method depends on
local edge response in order to extract an 8-bit binary de-
scriptor. In particular, the modified local directional pat-
tern for each pixel within 3× 3 local window was proposed
in this paper as a texture descriptor in order to extract tex-
ture features from two consecutive images. In addition, the
proposed method uses a duality of the TV-L1 optical flow
model with a weighted non-local term in order to estimate
accurate flow fields. The proposed algorithm assessed to
different sequences of the KITTI datasets and it provided
the more correct flow fields comparing to the sate-of-the-art
methods. Ongoing work aims at including the epipolar ge-
ometry information for computing optical flow using stereo
camera. In the future, the robust dense motion estimation
will be applied in robot vision systems for outdoor tasks.
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