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ABSTRACT
Content-based visual landmark search (CBVLS) enjoys great im-
portance in many practical applications. In this paper, we propose
a novel discrete hashing with pair-exemplar (DHPE) to support
scalable and e�cient large-scale CBVLS. Our approach mainly
solves two essential problems in scalable landmark hashing: 1) Intra-
landmark visual diversity, and 2) Discrete optimization of hashing
codes. Motivated by the characteristic of landmark, we explore the
consistent preferences of tourists on landmark as pair-exemplars
for scalable discrete hashing learning. In this paper, a pair-exemplar
is comprised of a canonical view and the corresponding represen-
tative tags. Canonical view captures the key visual component of
landmarks, and representative tags potentially involve landmark-
speci�c semantics that can cope with the visual variations of intra-
landmark. Based on pair-exemplars, a uni�ed hashing learning
framework is formulated to combine visual preserving with ex-
emplar graph and the semantic guidance from representative tags.
Further, to guarantee direct semantic transfer for hashing codes
and remove information redundancy, we design a novel optimiza-
tion method based on augmented Lagrange multiplier to explicitly
deal with the discrete constraint, the bit-uncorrelated constraint
and balance constraint. The whole learning process has linear com-
putation complexity and enjoys desirable scalability. Experiments
demonstrate the superior performance of DHPE compared with
state-of-the-art methods.
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Figure 1: Example of pair-exemplars of two landmarks Ro-
tunda of Mosta and St. Peter’s Square.

1 INTRODUCTION
With the prevalence of social multimedia and mobile devices, large
quantities of user-generated landmark images are recorded and
archived on social websites. Developing e�ective indexing meth-
ods to facilitate large-scale content-based visual landmark search
(CBVLS) [44] enjoys great importance in real practice.

However, most existing techniques on indexing landmark im-
ages are specially designed for compressing particular visual-words
based features [3, 7, 10, 41]. They cannot be directly applied to gen-
eral landmark representations. Hashing [19, 20, 24, 29, 34, 36, 37, 42]
is a more general indexing approach which can be promisingly ap-
plied to support large-scale CBVLS. With binary transformation by
hashing, storage cost of high dimensional image representations
can be signi�cantly reduced. Moreover, the online search process
on large-amounts of images can be greatly accelerated with e�cient
Hamming distance computations. Due to these desirable advan-
tages, binary hashing has been receiving considerable attentions
from researchers. Various supervised and unsupervised hashing
approaches are proposed. Among them, supervised hashing learns
binary codes by exploiting explicit semantic labels [24]. These ap-
proaches can achieve promising performance with strong semantic
supervision. But they require high-quality labels that are usually
hard and expensive to obtain in practical CBVLS. It inevitably re-
sults in a scalability issue for real-world applications.

Unsupervised hashing is designed without any dependence on
semantic labels, mainly relying on visual contents to learn binary
codes [35, 45, 46]. It can well support scalable CBVLS. However, di-
rectly applying existing unsupervised hashing methods for CBVLS
su�ers from two major limitations: 1) Intra-landmark Visual Diver-
sity. Many landmarks are comprised of multiple attractive regions.
It may lead to huge visual variations among their recoded images.
Even for the landmark with single historical building or construc-
tion, it can be photographed by tourists from various viewpoints,
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Figure 2: Overall framework of the proposed DHPE-based CBVLS system. O�line learning part learns hashing codes of data-
base images and hashing functions for online query. This part mainly consists of three steps: pair-exemplar extraction, hash-
ing code and function learning. The online searching part generates hashing codes for queries and performs e�cient online
similarity search in Hamming space.
lighting, and weather conditions, which will generate images with
great visual diversity. Due to the intrinsic nature of image represen-
tation, unsupervised hashing codes learned on it could su�er from
limited semantic representation capability. 2) Discrete Optimization.
Hashing codes are binary (0 or 1). Hence, hashing learning is es-
sentially a mixed-integer combinatorial optimization problem. To
simplify the optimization, most existing approaches apply “relax-
ing+rounding" optimization framework [8, 11, 12, 18, 33, 39, 48].
This learning scheme may cause signi�cant information loss and
thus deteriorate the search performance. Recent literature develops
several discrete hashing approaches [13, 19, 21, 24, 26]. Neverthe-
less, they are specially designed for particular hashing types and
formulations. Moreover, many of them [13, 21, 23, 24] only deal
with discrete constraint without considering bit-uncorrelated and
balance constraint, which are essential for hashing learning.

Landmark images enjoy an important characteristic that general
images do not possess: consistent preferences of users/tourists on
both visual contents and descriptive semantic terms, which can be
observed from the images captured by di�erent tourists and the
semantic tags assigned to these images. For a particular landmark,
only the most famous and attractive views of the landmark will
be photographed by various tourists spontaneously. When tourists
share the captured images on social websites (e.g., Flickr), many of
them would like to share those attractive views and label them with
semantic tags. Besides, the semantic tags they are used to describe
the images of a landmark usually concentrate on a small vocabulary,
such as landmark names, locations, objects in the landmarks, etc.
Hence, we can observe interesting phenomena on the accumulated
landmark images shared on social websites: 1) Diverse landmark
images of both query and database images visually concentrate on
canonical views. 2) User assigned tags on the same landmark will
focus on particular terms. These canonical views and user assigned
tags reveal the consistent preferences of tourists on landmarks. On
the perspective of technique, canonical views intrinsically char-
acterize the view components of landmarks, and the accumulated
user tags involve discriminative landmark-speci�c semantics that
can correlate diverse images. They can be exploited to potentially
assist landmark hashing learning and cope with visual variations.

Motivated by the aforementioned considerations, in this paper,
we propose a novel hashing learning framework, discrete hashing
with pair-exemplar (DHPE), to facilitate scalable CBVLS. DHPE
extracts the aforementioned consistent preferences of di�erent

tourists on landmarks as pair-exemplars, and exploits them fur-
ther to semantically assist visual hashing process and cope with
visual variations of diverse landmark images. In this paper, a pair-
exemplar is comprised of a canonical view and the corresponding
representative tags. Examples are shown in Figure 1. In particular,
canonical view captures the key visual characteristics of landmark,
and representative tags are comprised of the accumulated landmark-
speci�c textual tags posted by di�erent tourists. Speci�cally, DHPE
works with two stages: First, pair-exemplars are discovered from
loosely organized landmark images with an e�cient two-layer
clustering. Then, hashing code learning is performed in a uni�ed
framework. An exemplar graph is constructed to e�ciently pre-
serve view structures of database images by determining canonical
views in pair-exemplars as anchors [18]. Simultaneously, represen-
tative tags in pair-exemplars are exploited to semantically guide the
visual hashing code learning process. Moreover, to guarantee direct
semantic transfer to hashing codes and remove information redun-
dancy, we propose an e�ective discrete optimization method based
on augmented Lagrange multiplier (ALM) [1] that directly solves
the discrete hashing codes. The basic framework of DHPE-based
CBVLS system is illustrated in Figure 2. The main contributions of
this paper are:
1. We extract consistent preferences of di�erent tourists on land-

marks as pair-exemplars for scalable hashing. Pair-exemplars
pack canonical views and the representative tags. Canonical
views characterize the key view characteristics of a landmark
and reduce computation complexity of visual preserving, the rep-
resentative tags involve discriminative terms that semantically
correlate diverse views.

2. Based on the pair-exemplars, we develop a uni�ed hashing frame-
work to combine a visual preserving part with visual exemplar
graph and a semantic guidance part from representative tags.
These two parts interact with each other, so that the learned
hashing codes are embedded with proper landmark-speci�c se-
mantics and thus can cope with the visual variations

3. To guarantee direct semantic transfer for hashing codes and
avoid information quantization loss, DHPE not only explicitly
deals with the discrete constraint, but also considers the bit-
uncorrelated constraint and balance constraint. A discrete op-
timization approach based on ALM is developed to e�ectively
learn hashing codes. The whole learning process enjoys linear
computation complexity and desirable scalability.
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4. Comparative experimental results demonstrate the superiority
of DHPE. The e�ects of pair-exemplar and discrete optimiza-
tion of hashing methods are also validated to demonstrate the
advantages of the proposed approach.

2 RELATEDWORK
E�cient Landmark Search. Many approaches are developed to
speedup the landmark search process. Most of them focus on com-
pressing speci�c visual-words based representations into compact
descriptor. Ji et al. [10] present a location discriminative vocabulary
coding to compress bag-of-visual-words with location awareness.
Duan et al. [7] explore multiple information sources to extract com-
pact landmark image descriptor. Chen et al. [3] develop a soft bag-
of-visual phrase to learn category-dependent visual phrases, by cap-
turing co-occurrence features of neighbouring visual-words. Zhou
et al. [41] propose scalable cascaded hashing to achieve codebook-
free large-scale landmark search. These aforementioned methods
are specially designed for compressing visual-words based features.
Hence, they cannot be directly applied to general image features.
Moreover, they are designed on low-level features with limited
semantic discriminative capability. This disadvantage further limits
its performance.

Hashing. Locality sensitive hashing (LSH) [22] is a data inde-
pendent hashing approach. It generates hashing codes via random
projection. As its learning process is performed without consider-
ing any image information, it requires more hashing bits to achieve
a satisfactory performance, resulting in signi�cant storage cost.

To enrich the hashing codes with semantics, various supervised
hashing approaches are proposed for image indexing. Supervised
hashing learns hashing codes by exploiting explicit semantic la-
bels. These approaches can achieve better performance than unsu-
pervised hashing methods. However, supervised hashing requires
semantic labels that are hard and expensive to obtain in practi-
cal CBVLS. Unsupervised hashing generates binary codes without
any semantic labels. Anchor graph hashing (AGH) [18], iterative
quantization (ITQ) [9], bilinear projections (BP) [8], circulant bi-
nary embedding (CBE) [39], density sensitive hashing (DSH) [12],
sparse embedding and least variance encoding (SELVE) [48], sparse
projection (SP) [33], and scalable graph hashing (SGH) [11] are
typical examples. AGH extends spectral hashing [30] by approxi-
mating the image relations with a low-rank matrix. ITQ reduces
the quantization loss brought by dimension reduction based bi-
nary embedding. BP, CBE, and SP speedup the hashing projections
for high-dimensional data. DSH extends LSH and learns projec-
tive hashing functions that best match the distribution of the data.
SELVE embeds samples into sparse vector and learns least variance
encoding model to generate binary hashing codes. SGH applies
feature transformation to solve large-scale graph hashing. Due to
the semantic gap between image features and high-level seman-
tics, hashing codes learned by these approaches still su�er from
signi�cant semantic shortage.

Discrete Optimization. To cope with the discrete optimization
challenges in binary hashing, a few approaches have been pro-
posed. Discrete graph hashing (DGH) [19] reformulates the graph
hashing with a discrete optimization framework and solves the
problem within a tractable alternating maximization. Supervised
discrete hashing (SDH) [24] learns discrete hashing codes with

a supervised learning. A cyclic coordinate descent algorithm is
applied to calculate discrete hashing codes in a closed form. Co-
ordinate discrete hashing (CDH) [21] is designed for cross-modal
hashing, and the discrete optimization proceeds in a block coordi-
nate descent manner. Column sampling based discrete supervised
hashing (COSDISH) is proposed in [13] to learn discrete hashing
codes from semantic information by column sampling. Discrete
proximal linearized minimization (DPLM) is presented in [25] to re-
formulate the hashing learning as minimizing the sum of a smooth
loss term with a nonsmooth indicator function. Kernel-based super-
vised discrete hashing (KSDH) [26] solves discrete hashing codes
via asymmetric relaxation strategy. These approaches can achieve
good performance for particular hashing types and formulations,
however, they cannot be easily and directly generalized to our prob-
lem. In addition, many discrete hashing approaches [13, 21, 24] only
deal with discrete constraint without considering bit-uncorrelated
and balance constraint, which are important for hashing learning.

3 THE PROPOSED APPROACH
3.1 Problem De�nition
The main objective of DHPE is to learn Z = [z1, z2, ..., zN ] ∈ Rl×N ,
where zn = [z1n , z2n , ..., zln ]T ∈ Rl×1 are the hashing codes of the
nth image, l is hashing code length, N is the number of database
images. To generate hashing codes for query images that are out
of the database, DHPE learns a group of hashing functions H =
{h1,h2, ..,hl }. Each of them de�nes a mapping: Rdx 7→ {0, 1}, dx
denotes the feature dimension of visual representation.

3.2 Pair-Exemplar Extraction
As illustrated in Section 1, due to the characteristics of landmarks,
the recorded diverse landmark images visually concentrate on
canonical views. Simultaneously, the tags associated with images
of the same landmark are usually constraint to a small set of terms.
These canonical views and tags promisingly re�ect the consistent
preferences of di�erent tourists on landmarks. In this paper, we pack
a canonical view and its representative tags into a pair-exemplar,
which is leveraged to characterize the key semantic components of
landmarks. In particular, we propose an e�cient two-layer cluster-
ing method by jointly analysing visual and textual distributions of
landmarks. As indicated in [4, 5], textual features extracted from the
associated tags enjoy better discriminative capability for landmarks.
Therefore, in the �rst layer, images are semantically partitioned
into Cy coarse groups with clustering on textual features. These
Cy coarse groups are semantically similar, but may vary on vi-
sual contents. In the second layer, for each semantic group, images
are further grouped into Cx visually consistent view groups with
clustering analysis on their visual representations. In this paper,
clustering in two layers are e�ciently implemented with k-means.
Note that this part is �exible and can be substituted with other
e�ective clustering methods [38].

Ideally, with the two-layer clustering, we obtain K semantic
consistent view groups. For each view group, we compute the
visual and textual distances between images. The image that has
the smallest combined distance1 to all the remaining images in the
same view group are selected as the canonical view. Formally, we
1Average sum of visual and textual distances.
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denote the canonical view selected from the kth view group as
CV k . Meanwhile, we compute the occurrence frequency of each
tag associated with images in this view group. In particular, the
tags with the occurrence frequencies that are more than half of
group size are determined as representative tags. They are selected
to comprise the kth representative tag set RTk . Both the selected
CV k and RT k jointly comprise the pair-exemplar PEk of the kth
view group PEk = {CV k ,RT k }. Then, the pair-exemplars for all
landmarks are {PEk }Kk=1. Typical examples of them are presented
in Figure 1.

Landmark database contains redundant images concentrating on
canonical views, which brings additional computation burden on
subsequent hashing learning. In this paper, we restructure the data-
base with the discovered pair-exemplars. For the kth view group,
we selectM images that are most semantically similar toCVk . These
images comprise a new database images that can be visually charac-
terized as X = [x1, ...,xKM ] ∈ Rdx×KM and textually represented
as Y = [y1, ...,yKM ] ∈ Rdy×KM , dx and dy denote correspond-
ing feature dimensions. Representative tags of pair-exemplars are
leveraged to adjust the textual representation of images that are
concentrated on their corresponding canonical view. It is to avoid
tag incompleteness and noise of landmark image that usually oc-
cur in social media [4]. Formally, the data dimension in yi is set
to 1 if the corresponding tag belongs to RTi/M , and 0 vice versa.
The visual representation of canonical views in pair-exemplars are
PE = [pe1, ...,peK ] ∈ Rdx×K . In the following, we still use N to
denote KM for presentation convenience.

3.3 Hashing Code Learning
Hashing codes are learned based on the extracted pair-exemplars.
Its formulation is comprised of two main parts: 1) Visual preserving,
which ensures the similarities of hashing codes to be consistent
with the original view structures. 2) Representative tag guidance,
which aims at enriching the semantics of visual hashing codes with
the assistance of representative tags in pair-exemplars.

Visual Preserving. CBVLS retrieves similar images for query
[44]. Hence, one of the essential design principles of hashing for CB-
VLS is visual preserving, i.e., similar landmark images are mapped
to binary codes with short Hamming distances. In this paper, we
construct an exemplar graph to preserve image relations by consid-
ering canonical views in pair-exemplars as anchors [18] and images
as graph vertices. We seek to minimize the weighted Hamming
distance of hashing codes. Visual preserving is formulated as

min
{zi }Ni=1∈[−1,1]l×1

N∑
i, j=1

Si j | |zi − zj | |2 ⇒ min
Z ∈[−1,1]l×N

T r (ZΩZ T)

where Ω = D − S is the Laplacian matrix of exemplar graph, S
characterizes the a�nity similarities of images, D = S1, 1 is column
vector with all ones, andTr (·) is the trace operator. The design prin-
ciple of the above formula is to impose a heavy penalty if two similar
images are projected far apart. Note that, explicitly computing S
leads to O(N 2) time complexity [15], which is unacceptable in real
world application. With pair-exemplars, the a�nity matrix S can
be e�ciently computed as S = VΛV T [17], where Λ = diag(V T1).

V = [v(x1), ..,v(xN )]T, v(x) is data-to-exemplar mapping

v(x ) = [δ1exp(
−||x−pe1 | |22 )

σ ), ..., δK exp( −||x−peK | |
2
2

σ )]T∑K
k=1 δkexp(

−||x−pek | |22
σ )

δk is set to 1 ifpek belongs to the s2 closest exemplars ofx , and 0 vice
versa, σ > 0 is the bandwidth parameter, which is calculated as the
average distances between images and exemplars. As S is a doubly
stochastic matrix that has unit row and column sums, so we obtain
the resulting graph Laplacian as Ω = I−VΛV T. As shown in hashing
learning, keeping this low-rank form decomposition will avoid
explicit O(N 2) matrix computation and enjoy O(N ) computational
complexity.

Representative Tag Guidance. Hashing codes relying on pure
visual contents su�er from limited semantics, which will dete-
riorate the search performance. Cross-modal hashing methods
[14, 28, 40, 47] can exploit contextual tags to enrich the semantics of
visual hashing codes. However, the main objective of cross-modal
hashing is to discover the shared space for heterogenous search
across di�erent types of media. In this case, visual and textual repre-
sentations are generally treated equally. The valuable information
originally owned by visual features may not be comprehensively
preserved as result of mandatory correlation. Motivated by the
strong supervision capability of using assigned tags on landmark
images [4, 5], we exploit textual representation Y obtained based
on representative tags in pair-exemplars to guide the hashing learn-
ing. Speci�cally, we minimize the noisy linear classi�cation errors
based on hashing codes. We argue that the learned binary codes are
expected to be optimal for weak classi�cation. Since representative
tags involve noise, we use l2,1 norm [16] to measure the errors.
In our design, it will adaptively and automatically select the most
informative tags for semantic guidance. Formally, the semantic
guidance is formulated as

min
Z ∈[−1,1]l×N ,U

| |Y −UZ | |2,1

where U is linear classi�cation mapping matrix.
Overall Formulation. After comprehensively considering vi-

sual preserving, representative tag guidance, and hashing con-
straints [19], we obtain the overall formulation of DHPE.

min
Z ,U
| |Y −UZ | |2,1 + αT r (Z (I −VΛV T)Z T)

s .t . Z ∈ [−1, 1]l×N , ZZ T = N I, Z1 = 0
(1)

where α > 0 balances the regularization terms. Z ∈ [−1, 1]l×N is
discrete constraint on hashing codes, ZZT = NI is bit-uncorrelated
constraint which guarantees that the learned hashing bits to be un-
correlated and removes information redundancy, Z1 = 0 is balance
constraint which forces each bit to have equal chance to occur.

Note that solving Eq.(1) is essentially a challenging combinatorial
optimization problem due to the three constraints. Most existing
hashing approaches apply “relaxing+rounding" optimization frame-
work [29]. Basically, they �rst relax discrete constraint to calculate
continues values, and then binarize them to hashing codes via
rounding. This two-step learning method can simplify the solving
process, but it may cause signi�cant information loss [19, 24]. In
recent literature, several discrete hashing solutions are proposed.

2The optimal s is 5 in this paper.
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However, they are developed for particular hashing types and for-
mulations. For example, graph hashing [19], supervised hashing
[13, 24], cross-modal hashing [21]. Hence, their designed learning
strategies cannot be directly applied to solve our problem.

3.4 Discrete Optimization
In this paper, we propose an e�ective optimization algorithm based
on augmented Lagrange multiplier (ALM) [1] to calculate the dis-
crete solution within one step. Our idea is adding auxiliary variables
A, B to separate constraints, and transforming the objective func-
tion to an equivalent one that can be solved more easily. Formally,
we set A = Y −UZ ,B = Z . Eq.(1) is reformulated as

min
Z ,U ,A,B

| |A | |2,1 +
β
2 | |Y −UZ − A + Ey

β
| |2F )+

αT r (Z (I −VΛV T)BT) + µ
2 | |Z − B +

Ez
µ
| |2F

s .t . B ∈ [−1, 1]l×N , ZZ T = N I, Z1 = 0

(2)

where Ey ,Ez measure the di�erence between the target and aux-
iliary variables, α , β , µ > 0 adjust the balance between terms. We
adopt alternate optimization to iteratively solve the above equation.
Speci�cally, we optimize the objective function with respective to
one variable while �xing other variables.

Update A. The optimization formula is

min
A
| |A | |2,1 +

β
2 | |Y −UZ − A + Ey

β
| |2F (3)

Let us de�neA = [A1;Ai ;Ady ],T = Y−UZ+
Ey
β ,T = [T1;Ti ;Tdy ].

The above equation can be rewritten as a sum formminA
∑dy
i=1

1
β | |Ai | |2+

1
2 | |Ai −Ti | |2F . By taking the derivative of | |Ai | |2 with respect to Ai ,
we have

∂ | |Ai | |2
Ai

=


r Ai = 0

Ai√
AiAT

i

Ai , 0 (4)

where r is sub-gradient and | |r | |2 ≤ 1.
Therefore, by taking the derivative of 1

β | |Ai | |2 + 1
2 | |Ai −Ti | |2F

with respect to Ai and setting it to 0, we can obtain that 1) If
Ai = 0, we get −Ti + 1

β r = 0 ⇒ 1
β ≥ ||Ti | |2. 2) If Ai , 0, we get

Ai − Ti + 1
β

Ai√
AiAT

i

= 0 ⇒ Ai =
| |Ai | |2
| |Ai | |2+ 1

β
Ti ,Ai = (1 −

1
β
| |Ti | |2 )Ti .

As | |Ai | |2
| |Ai | |2+ 1

β
> 0, Ai and Ti have the same sign. Thus, 1 −

1
β
| |Ti | |2 >

0⇒ 1
β < | |Ti | |2.

The ith row of the optimal solution A is calculated as

A(i, :) =

| |Ti | |2− 1

β
| |Ti | |2 Ti | |Ti | |2 > 1

β
0 otherwise

(5)

UpdateU . Similarly, the optimization formula for U is

min
U
| |Y −UZ − A + Ey

β
| |2F (6)

By calculating the derivative of the objective function with respec-
tive to U , and setting it to 0, we can obtain that

UZ = Y − A + Ey
β

(7)

Since ZZT = NI , we can further derive that

U =
1
N
(Y − A + Ey

β
)Z T (8)

Update B. The optimization formula for B is

min
B∈[−1,1]l×N

αT r (Z (I −VΛV T)BT) + µ
2 | |Z − B +

Ez
µ
| |2F (9)

The objective function in Eq.(9) can be simpli�ed as

min
B∈[−1,1]l×N

| |B − (Z + Ez
µ
− α
µ
Z (I −VΛV T)) | |2F (10)

The discrete solution of B can be directly represented as

B = Sgn(Z + Ez
µ
− α
µ
Z +

α
µ
ZVΛV T) (11)

where Sgn(·) is signum function.
Update Z . The optimization formula for Z is

min
Z

β
2 | |Y −UZ − A + Ey

β
| |2F + αT r (Z (I −VΛV T)BT)

+
µ
2 | |Z − B +

Ez
µ
| |2F

s .t . ZZ T = N I, Z1 = 0

(12)

The objective function in Eq.(12) can be transformed as
= min
ZZ T=N I ,Z1=0

−T r (Z TC) (13)

where C = B − Ez
µ − α

µ B +
α
µ BVΛV T +

β
µU

T(Y −A + Ey
β ). Eq.(12)

is equivalent to the following maximization problem
max

ZZ T=N I ,Z1=0
T r (Z TC) (14)

Mathematically, with singular value decomposition (SVD),C can be
decomposed as C = P∆QT, where the columns of P and Q are left-
singular vectors and right-singular vectors of C respectively, ∆ is
rectangular diagonal matrix and its diagonal entries are singular val-
ues ofC . Then, the optimizing forZ becomesmaxZ Tr (ZTP∆QT) ⇔
maxZ Tr (∆QTZTP). ∆ ≥ 0 as ∆ is calculated by SVD. On other
hand, we can easily derive that QTZTPPTZQ = NI . Therefore, ac-
cording to the Theorem 3.1, the optimal Z can only be obtained
when QTZTP = diag(√N ). Hence, the solution of Z is

Z =
√
NPQT (15)

Theorem 3.1. Given any matrix G which meets GGT = NI and
diagonal matrix ∆ ≥ 0, the solution of maxG Tr (∆G) is diag(√N ).

Proof. Let us assume λii and дii are the ith diagonal entry
of ∆ and G respectively, Tr (∆G) = ∑

i λiiдii . Since GGT = NI ,
дii ≤

√
N . Tr (∆G) = ∑

i λiiдii ≤
√
N

∑
i λii . The equality holds

only when дii =
√
N ,дi j = 0,∀i, j. Tr (∆G) achieves its maximum

when G = diag(√N ). �

Moreover, in order to satisfy the balance constraint Z1 = 0, we
apply Gram-Schmidt process as [19] and construct matrices P̂ and
Q̂ , so that P̂TP̂ = IL−R , [P , 1]TP̂ = 0, Q̂TQ̂ = IL−R ,QQ̂T = 0, R is the
rank of C . The close form solution for Z is

Z =
√
N [P, P̂ ][Q, Q̂ ]T (16)

Update Ey , Ez , µ. The update rules are (ρ > 1 is learning rate that
controls the convergence.)

Ey = Ey + µ(Y −UZAy ), Ez = Ez + µ(Z − B), µ = ρµ (17)
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Table 1: mAP of all approaches on two datasets. The best result in each column is marked with bold.

Methods MMParis Landmark-101
16 32 64 128 256 16 32 64 128 256

AGH 0.2420 0.3880 0.4491 0.4890 0.4815 0.2535 0.4008 0.4592 0.4903 0.5049
ITQ 0.2656 0.4201 0.5415 0.6097 0.6681 0.3165 0.4586 0.5479 0.6146 0.6553
BP 0.1275 0.2658 0.3682 0.4901 0.5786 0.1495 0.2780 0.3931 0.4955 0.5718

CBE 0.1697 0.3077 0.4463 0.5534 0.6133 0.1741 0.3033 0.4307 0.5410 0.6067
DSH 0.1617 0.2691 0.3784 0.4670 0.5120 0.1905 0.3121 0.3871 0.4641 0.5062

SELVE 0.2760 0.3595 0.4355 0.4536 0.4450 0.2738 0. 3942 0.4629 0.4769 0.4853
SP 0.2534 0.4026 0.5113 0.5862 0.6467 0.2969 0.4175 0.5198 0.5882 0.6294

SGH 0.2488 0.4056 0.5231 0.6158 0.6600 0.2703 0.4068 0.5162 0.5925 0.6341
DPLM 0.2689 0.3638 0.4146 0.4480 0.4718 0.2734 0.3718 0.4233 0.4439 0.4669
DHPE 0.3450 0.4731 0.5628 0.6362 0.6837 0.4063 0.5409 0.6438 0.7033 0.7309
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Figure 3: Objective function value variationswith iterations.

3.5 Hashing Function Learning
In this paper, we leverage linear projection to learn hashing func-
tions for its high online e�ciency. The formulation is minW | |Z −
W TV T | |2F + η | |W | |F , where V is feature transformation of X based
on pair-exemplars,W ∈ RK×l denotes the projection matrix. The
optimalW can be calculated asW =

(
VV T + ηI

)−1
V TZT. The �nal

hashing functions can be constructed as H (x) = sgn(W Tv(x ))+1
2 .

3.6 Algorithm Analysis
Convergency Analysis. The updating of variables will decrease
the objective function value. As indicated by ALM optimization
theory [1, 2], the iterations will make the optimization process
converged. We also conducted empirical experiment on the con-
vergence property using MMParis [31, 32] and Landmark-101 [43].
Figure 3 presents the results. We observe that the objective func-
tion value �rst decreases with the number of iterations and then
becomes steady after around 10 iterations. This result demonstrates
that the convergence of the proposed method and indicates the
e�ciency of our algorithm.

Computational Complexity Analysis. In the generation of
pair-exemplars, k-means is applied for semantic partition and vi-
sual grouping, which takesO(NCxdx ) andO(NCydy ), respectively.
Hence, the time complexity of the two-layer clustering is O(N ).
Pair-exemplars are discovered from CxCy clusters and this process
cost O(CxCy ). The main cost in exemplar graph construction is the
distance computation between canonical views in pair-exemplars
and training images, which costs O(K2M). The computational com-
plexity of discrete optimization is O(#iter (dxKM + dyKM + dx l +
dyl + lKM)), where #iter denotes the number of iterations. Given
KM � dx (dy ) > L, this process scales linearly with KM . The
computation of hashing functions solves a linear system, whose

time complexity is O(KM). Calculating hashing codes of database
images costsO(KM). The overall computation complexity of o�ine
learning is O(N ). In online retrieval, generating hashing codes for
a query can be completed in O((dx + 1)l).

4 EXPERIMENTAL CONFIGURATION
Experimental Datasets and Setting. We conduct experiments on
two real-world image datasets, MMParis [31, 32] and Landmark-101
[43]. MMParis consists of 501,356 geo-tagged images of landmarks
in Paris. They are collected from Flickr and Panoramio with ge-
ographic bounding box. In this paper, we use ground truth of 79
touristic landmarks covering 94,303 images. Landmark-101 contains
101 worldwide landmarks involving 57,386 images crawled from
Flickr with relevant keyword search. It includes the images pho-
tographed for various beauty spots, from various viewpoints, and
under various weather conditions. For both datasets, as only visual
images are provided, we re-crawled user tags with the Photo ID pro-
vided in datasets. Images with no tags are removed. Finally, 40,584
and 38,460 images are remained in MMParis and Landmark-101,
respectively. For image representation, we extract 4096 dimensional
feature vector from VGG-19 convolutional networks [27] for each
image that contains the activations of the hidden layer immedi-
ately before the object classi�er. For textual description, we use a
500-dimensional vector space model on tags that have the high-
est occurrence frequency. In this case, each dimension of feature
vector for a photo is a value indicating occurrence frequency of
each text tag. For both datasets, 20 query images for each landmark
are randomly sampled to comprise testing images. The remaining
samples are determined as training images and database images to
be retrieved.

Evaluation Metric. In our experimental paper, mean average
precision (mAP) [25, 33] is adopted as the evaluation metric. The
top 50 images are returned and collected in retrieval. Furthermore,
Precision-Scope curve is also reported to re�ect the retrieval perfor-
mance variations with respect to the number of retrieved images.
For both datasets, as images are labelled into independent cate-
gories, they are considered to be relevant only if they belong to the
same category.

Evaluation Baselines. The learning of DHPE is independent
with explicit semantic labels. Therefore, we compare its perfor-
mance with several state-of-the-art unsupervised hashing approaches.
They include: anchor graph hashing (AGH) [18], iterative quan-
tization (ITQ) [9], bilinear projections (BP) [8], circulant binary
embedding (CBE) [39], density sensitive hashing (DSH) [12], sparse
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Figure 4: Precision-Scope curves on MMParis and Landmark-101.

Table 2: E�ects of pair-exemplar and discrete optimization.
DHPE-I denotes the competitor which only considers visual
preserving with exemplar graph. DHPE-II denotes the vari-
ant of DHPE that removes discrete constraint. It �rst solves
the relaxed codes and then generates hashing codes bymean
thresholding. DHPE-III denotes the variant of DHPE that re-
moves bit balance constraint.

Methods Landmark-101
16 32 64 128 256

DHPE-I 0.3136 0.4342 0.5368 0.6097 0.6595
DHPE-II 0.2047 0.3952 0.5839 0.6929 0.7306
DHPE-III 0.3923 0.5341 0.6408 0.6977 0.7308

DHPE 0.4063 0.5409 0.6438 0.7033 0.7309

embedding and least variance encoding (SELVE) [48], sparse projec-
tion (SP) [33], scalable graph hashing (SGH) [11], discrete proximal
linearized minimization (DPLM) [25]3. All parameters in compared
approaches are adjusted according to the relevant literatures and
the best performance is reported in this paper.

Implementation Details. Cx and Cy on both datasets are set
to 9 and 1000 respectively. In Eq.(2), there are three parameters: β ,
α , and µ, which adjust the balance between regularization terms. η
in hashing function learning is designed with the same objective.
5-fold cross-validation is adopted to choose these parameters from
{10−4, 10−2, 1, 102, 104}. The best performance is achieved when
{β = 10, µ = 104,α = 10−4,η = 10−4}, {β = 104, µ = 1,α =
10−4,η = 10−4} on MMParis and Landmark-101 respectively. In
experiments, hashing code length L on all datasets is varied in the
range of {16, 32, 64, 128, 256} to observe the performance.

5 RESULTS AND DISCUSSIONS
Performance Comparison Results. Table 1 presents the main
mAP comparison results. Figure 4 reports Precision-Scope curves of
all approaches on Landmark-101 and MMParis respectively. These
results clearly demonstrate that DHPE consistently outperforms
the compared approaches on all datasets and hashing bits. On
Landmark-101, DHPE outperforms the second best method by 11%.
In addition, we �nd that, even with 64 bits, DHPE can obtain more

3We choose the unsupervised graph hashing of DPLM for comparison.

Table 3: E�ects of representative tag guidance. Retrieval per-
formance comparison with cross-modal hashing methods.

Methods Landmark-101
16 32 64 128 256

CVH 0.3281 0.4792 0.5762 0.6090 0.6194
IMH 0.2855 0.4191 0.5508 0.5913 0.5634

LCMH 0.2744 0.4760 0.5689 0.5818 0.5744
LSSH 0.2866 0.4653 0.5271 0.5459 0.5787
CMFH 0.2740 0.3879 0.4876 0.5665 0.6162
DHPE 0.4063 0.5409 0.6438 0.7033 0.7309

Table 4: E�ects of l2,1 norm in Eq.(1).

Methods Landmark-101
16 32 64 128 256

No l2,1 norm 0.3450 0.4742 0.6108 0.6932 0.7305
DHPE 0.4063 0.5409 0.6438 0.7033 0.7309

accurate results than that of competitors on Landmark-101 with
256. This desirable advantage shows that DHPE can signi�cantly
improve the discriminative capability of hashing for CBVLS. In ad-
dition, we �nd that performance gap on small code length is more
obvious than that on larger code length. This is because: short hash-
ing codes involve less semantics in compared approaches, while for
DHPE, more semantics of hashing codes can be compensated from
auxiliary pair-exemplars.

E�ects of Pair-Exemplar. In this subsection, we investigate
the e�ects of pair-exemplar. Speci�cally, we compare the perfor-
mance of DHPE with the competitor which only considers visual
preserving with exemplar graph. We denote it as DHPE-I for presen-
tation convenience. Table 2 presents the main comparison results
on Landmark-101. It can be clearly observed that DHPE consistently
achieves better retrieval performance on all hashing code lengths.
The largest absolute performance increase is more than 10%. The
reason is that: with pair-exemplar assistance, the view structures
of landmarks can be modelled more accurately. And discriminative
semantics from representative tags can be e�ectively transferred
to visual hashing codes. Hence, the generated hashing codes have
better discriminative capability and search performance.
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Figure 5: Precision-Scope curves of compared cross-modal hashing methods on Landmark-101.
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Figure 6: Performance variations of DHPE with parameters
on Landmark-101. The �gure is best viewed with PDF mag-
ni�cation

E�ects of Representative Tag Guidance. To validate the ef-
fects of representative tag guidance in hashing learning, we com-
pare DHPE with recent cross-modal hashing methods. These com-
pared approaches exploit contextual tags as textual representations
for semantic enrichment. They include: cross-view hashing (CVH)
[14], inter-media hashing (IMH) [28], linear cross-modal hashing
(LCMH) [47], latent semantic sparse hashing (LSSH) [40], and col-
lective matrix factorization hashing (CMFH) [6]. Table 3 presents
the main experimental results. Figure 5 demonstrates precision-
scope curves. We can �nd that DHPE outperforms the compared
cross-modal hashing methods. The potential reason is that: the
main objective of cross-modal hashing is to discover the shared
space and thus support heterogenous search across di�erent media.
In this case, visual and textual representations are treated equally.
The valuable information originally owned by visual features has
not been comprehensively preserved due to the mandatory correla-
tion. This may also explain that the performance of cross-modal
methods on CBVLS is di�erent from that on cross-modal retrieval
task.

E�ects of Discrete Optimization. To evaluate the e�ects of
discrete optimization, we compare the performance on Landmark-
101 between DHPE and the solutions which adopt conventional
“relaxing+rounding" optimization in many existing hashing ap-
proaches. Speci�cally, we relax the discrete constraint and remove
balance constraint in the Eq.(1). For comparison, we denote DHPE-
II as the approach that relaxes discrete constraint. In this variant,
the relaxed hashing values are solved with ALM, but the �nal bi-
nary hashing codes are generated by mean thresholding. We also
compare the performance with the variant approach DHPE-III that
removes balance constraint. Table 2 summarizes the performance
comparison results. We can clearly observe that DHPE can consis-
tently achieve better performance in all cases. These results validate
the e�ects of direct discrete optimization on avoiding quantization
errors that may be brought in non-discrete hashing approaches.

E�ects of l2,1 Norm on Hashing Performance. l2,1 norm is
used in Eq.(1) to eliminate noise. In this subsection, we compare the
hashing performance of DHPE with the one which is formulated
with Frobenius norm. Table 4 demonstrates the main results. It
clearly shows that DHPE outperforms the competitor on all code
lengths. In addition, we �nd that the performance gap is larger on
smaller hashing code length. This is because: the involved noise
in representative tags have more impact on semantic embedding
when generating hashing codes with shorter length. In this case,
the advantages of employed l2,1 norm can be better performed on
removing adverse noise and generating hashing codes.

Parameter Experiments. In this subsection, we evaluate the
performance variations of DHPE with parameters. Cx , Cy , M are
used in Section 3.2 to extract discriminative pair-exemplars for
hashing learning. β , α , µ, and η are used in Eq.(2) and hashing
function learning to play trade-o� between regularization terms and
empirical loss. We report the results on Landmark-101when hashing
code length is 16. Figure 6 illustrates the main experimental results.
From this �gure, we can clearly �nd that the best performance
can be achieved on certain point of Cx (9), α(10−4), β(104), µ(1), a
certain range of Cy (500∼1000) and M (10∼ 40), η(10−6 ∼ 10−4).

6 CONCLUSION
Existing hashing techniques su�er from great intra-landmark vi-
sual diversity and discrete optimization in CBVLS. In this paper,
we explore the consistent preferences of tourists on landmark as
pair-exemplars for scalable landmark hashing. The exemplar graph
built on canonical views in pair-exemplars can e�ciently capture
the view topology of landmark and improve the e�ciency of subse-
quent hashing learning. And representative tags in pair-exemplars
involve landmark-speci�c semantics that can well cope with the
visual variations of landmarks. Based on pair-exemplars, a uni�ed
hashing learning framework is formulated to combine view preserv-
ing and semantic guidance of representative tags. Further, we design
a augmented Lagrange multiplier based optimization method to
explicitly deal with the discrete constraint, the bit-uncorrelated con-
straint and balance constraint. It ensures direct semantic transfer
for hashing codes and removes information redundancy. Experi-
ments show the superior performance of the proposed approach
and validate the advantages of our approach.
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