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ABSTRACT
Continuous dimensional emotion prediction is a challenging
task where the fusion of various modalities usually achieves
state-of-the-art performance such as early fusion or late fu-
sion. In this paper, we propose a novel multi-modal fusion
strategy named conditional attention fusion, which can dy-
namically pay attention to different modalities at each time
step. Long-short term memory recurrent neural networks
(LSTM-RNN) is applied as the basic uni-modality model to
capture long time dependencies. The weights assigned to d-
ifferent modalities are automatically decided by the current
input features and recent history information rather than be-
ing fixed at any kinds of situation. Our experimental results
on a benchmark dataset AVEC2015 show the effectiveness
of our method which outperforms several common fusion
strategies for valence prediction.
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1. INTRODUCTION
Understanding human emotions is a key component to

improve human-computer interactions [1]. A wide range of
applications can benefit from emotion recognition such as
customer call center, computer tutoring systems and mental
health diagnoses.

Dimensional emotion is one of the most popular comput-
ing models for emotion recognition [2]. It maps an emotion
state into a point in a continuous space. Typically the space
consists of three dimensions: arousal (a measure of affective
activation), valence (a measure of pleasure) and dominance
(a measure of power or control). This representation can ex-
press natural, subtle and complicated emotions. There have
been many research works on dimensional emotion analysis
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for better understanding human emotions in recent years [3,
4, 5].

Since emotions are conveyed through various human be-
haviours, past works have utilized a broad range of modal-
ities for emotion recognition including speech [6], text [7],
facial expression [8], gesture [9], physiological signals [10],
etc. Among them, facial expression and speech are the most
common channels to transmit human emotions. It is bene-
ficial to use multiple modalities for emotion recognition.

Fusion strategies for different modalities in previous works
can be divided into 3 categories, namely feature-level (ear-
ly) fusion, decision-level (late) fusion and model-level fusion
[11]. Early fusion uses the concatenated features from d-
ifferent modalities as input features for classifiers. It has
been widely used in the literature to successfully improve
performance [12]. However, it suffers from the curse of di-
mensionality. Also it’s not very useful when features are
not synchronized in time. Late fusion eliminates some dis-
advantages of early fusion. It combines the predictions of
different modalities and trains a second level model such as
RVM [13], BLSTM [14]. But it ignores interactions and cor-
relations between different modality features. Model-level
fusion is a compromise between the two extremes. The im-
plementation of model-level fusion depends on the specific
classifiers. For example, for neural networks, model-level fu-
sion could be concatenation of different hidden layers from
different modalities [15]. For kernel classifiers, model-level
fusion could be kernel fusion [16]. As for Hidden Markov
Model (HMM) classifiers, novel forms of feature interaction-
s have been proposed [17].

In this paper, we propose a novel architecture for the fu-
sion of different modalities called conditional attention fu-
sion. We use Long-short term memory recurrent neural net-
works (LSTMs) as the basic model for each uni-modality
since LSTMs are able to capture long time dependencies.
For each time step, the fusion model learns how much of at-
tentions it should put on each modality conditioning on its
current input multi-modal features and recent history infor-
mation. This approach is similar to human perceptions since
humans can dynamically focus on more obvious and trust-
ful modalities to understand emotions. Unlike early fusion,
we dynamically combine predictions of different modalities,
which avoids the curse of dimensionality and synchroniza-
tion between different features. And unlike late fusion, the
input features are interacted in a higher level to learn the
current attention instead of being isolated without any inter-
actions among different modalities. The main architecture
is shown in Figure 2. We use the AVEC2015 dimensional
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Figure 1: Three typical multi-modality fusion strategies. (a) Early fusion: concatenation of features from
different modalities. (b) Model-level fusion: concatenation of high level feature representations from different
modalities. (c) Late fusion: fusion of predictions from different modalities.

Figure 2: Conditional attention fusion model. The
units in the dashed red line is concatenated together
as the input of the triangle to learn the attention
weights. ⊗ and ⊕ denote the element multiplication
and addition respectively.

emotion dataset [5] to evaluate our methods. The results
shows the effectiveness of our new fusion architecture.

2. MULTI-MODAL FEATURES

2.1 Audio Features
We utilize the OpenSMILE toolkit [18] to extract low-level

features including MFCCs, loudness, F0, jitter and shimmer.
All the features are extracted using 40ms frame window size
without overlap to match with the groundtruth labels since
it is demonstrated in [19] that short-time features can reveal
more details and thus boost performance for affective pre-
diction using LSTMs. The low-level acoustic features are in
76 dimensions.

2.2 Visual Features
Two sets of visual features are extracted from facial ex-

pression: appearance-based features and geometric-based
features [5]. The appearance-based features are computed
by using Local Gabor Binary Patterns from Three Orthog-
onal Planes (LGBP-TOP) and are compressed to 84 dimen-
sions via PCA. The geometric-based features in 316 dimen-
sions are computed from 49 facial landmarks. Frames where
no face is detected are filled with zeros. We concatenate
appearance-based features and geometric-based features as
our visual feature representations.

3. EMOTION PREDICTION MODEL

3.1 Uni-Modality Prediction Model
Long short term memory (LSTM) architecture [20] is the

state-of-the-art model for sequence analysis and can exploit
long range dependencies in the data. In this paper, we use
the peephole LSTM version proposed by Graves [21]. The
function of hidden cells and gates are defined as follows.

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ft · ct−1 + it · tanh(Wxcxt +Whcht−1 + bc) (1)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo)

ht = ot · tanh(ct)

where i, f, o and c refers to the input gate, forget gate,
output gate, and cell state respectively. σ(·) is the sigmoid
function and tanh(·) is the tangent function.

3.2 Conditional Attention Fusion Model
Let xat and xvt refer to the audio features and visual fea-

tures respectively at the tth frame. hat and hvt refer to the
outputs of the last hidden layer from uni-modality model
with audio or visual features respectively. fθa and fθv refer
to the uni-modality model which maps the audio or visual
features into predictions. We define the conditional atten-
tion fusion of the predictions from the two modalities at
timestep t as:

ŷt = λt · fθa(xat , h
a
t−1) + (1− λt) · fθv (xvt , h

v
t−1) (2)

λt = σ(Wg[h
a
t |hvt |xat |xvt ]) (3)

where [hat |hvt |xat |xvt ] is the concatenation of the representa-
tions inside the bracket.

The λt is calculated based on the current audio and visu-
al features and their high-level history information for two
reasons. Firstly, the current input features are the most
direct indicators to show whether the modality is reliable.
For example, for facial features, inputs filled with 0s sug-
gest that the current face detection fails and thus should
be assigned with less confidence. Secondly, the weights as-
signed to each modality would be smoothed by considering
high-level history features hvt and hat in addition to current
input features. In this way, the model can dynamically pay
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attention to different modalities, which could improve the
stability in different situations.

3.3 Model Learning
Intuitively, the acoustic features are more reliable when

the acoustic energy is higher, because the headset micro-
phone can record speech from both the subject speaker and
other speakers in conversations. Higher energy may refers to
higher confidence that the speech is from the target subject.
Similarly the facial features are reliable only when faces are
correctly detected. So adding such side information might
be beneficial to learn the attention weights.

We transform the acoustic energy into scale [0, 1], and we
use gat to denote its value at the tth timestep. For visual
features, we use gvt ∈ {0, 1} to indicate whether the subjec-
t’s face is detected since the face detection provided in the
dataset has no detection confidence. We therefore define the
final loss function for one sequence as follows:

Lgt =
1

2
(α(gat − λt)2 + β(gvt − (1− λt))2) (4)

L =
∑
t

1

2
(ŷt − yt)2 + Lgt (5)

where α and β are hyper-parameters and are optimized on
the development set. In practice, α and β are usually set to
small values around 10−2 to avoid Lgt over-affecting on λt.

The derivative of Lgt with respect to λt is as follows:

∂Lgt
∂λt

= βgvt − αgat − β + (α+ β)λt (6)

When gat is high and gvt is low, (6) is close to (α+β)(λt−1)
(the extreme case when gat = 1 and gvt = 0). The derivative
is less than 0, which will push λt to increase to give acoustic
features more confidence. But when gat → 0 and gvt → 1, (6)
is close to (α+β)λt, which is larger than 0 and will push λt
to decrease to focus on visual features. When gat ≈ gvt , the
absolute value of the derivative would be small and thus Lgt
has less influence on λt.

4. EXPERIMENTS

4.1 Dataset
The AVEC2015 dimensional emotion dataset is a subset

of the RECOLA dataset [22], a multimodal corpus of remote
and collaborative affective interactions. There are 27 sub-
jects in the dataset and are equally divided into training,
development and testing sets. Audio, video and physiolog-
ical data are collected for each participant for the first 5
minutes of interactions. Arousal and valence are annotat-
ed in scale [-1, 1] for every 40ms [5]. Since the submission
times on testing set are limited, we carry out cross validation
on the development set. We randomly select 5 subjects as
the development set to optimize hyper parameters and the
remained 4 speakers are used as the test set. We do the ex-
periments 8 times. The concordance correlation coefficient
(CCC) [5] works as the evaluation metric.

4.2 Experimental Setup
Annotation delay compensation [13] is applied because

there exists a delay between signal content and groundtruth
labels due to annotators’ perceptual processing. We drop
first N groundtruth labels and last N input feature frames.

Table 1: CCC performance of uni-modal features
audio feature visual feature

arousal 0.787 0.432
valence 0.595 0.620

Table 2: CCC performance of different loss functions
on valence prediction

mean std
without Lgt , α = β = 0 0.672 0.046

with Lgt , α = 0.04, β = 0.02 0.684 0.041

N is optimized by non-temporal regression model SVR on
training set. In this paper, N is optimized to be 20 frames
for both audio and visual features. When predicting the re-
sult, the outputs of the model are shifted back by N frames.
The missing predictions in the first N frames are filled with
zeros. Finally, a binomial filter is applied to smooth the pre-
dictions. Annotation delay compensation and smoothing is
applied in all the following experiments.

The input features are normalized into the range [-1,1].
For acoustic features, the LSTM has 2 layers and 100 cells
for each layer. For visual features, the LSTM has 2 layers
and 120 cells for each layer. The size of mini-batch is 256
and truncated backpropagation through time (BPTT) [23]
is applied. The initial learning rate is set to be 0.01 with
learning rate decay. Dropout is used as regularization. The
training epochs are 100 and the model that achieves the best
performance in development set is used as the final model.

We compare the conditional attention fusion model with
early fusion, late fusion and model-level fusion. For early
fusion, the LSTM has 150 units each layer, which has the
similar size of parameters to other fusion methods. For late,
model-level and conditional attention fusion, the parameters
in LSTM are initialized with the trained uni-modal LSTMs.
In order to avoid overfitting, we only fine-tune the network
for 10 epochs with smaller initial learning rate 0.001. The
hyper-parameters α and β are set to zeros for arousal pre-
diction and 0.04, 0.02 respectively for valence prediction.

4.3 Experimental Results
Table 1 shows the prediction performance using uni-modality

features. Acoustic features achieve the best performance on

Figure 3: The relationship between arousal labels
and acoustic energy on an example from dev set
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Figure 4: Performance of different fusion strategies

the arousal prediction and visual features are slightly better
than acoustic features on valence prediction.

The performance of different fusion methods on arousal
prediction is shown in Figure 4(a). Early fusion achieves the
average best performance and our proposed fusion method
performs the second best among all the fusion strategies.
However, there is no significant difference between early fu-
sion prediction and acoustic uni-modality prediction com-
paring Figure 4(a) with Table 1 (Student t-test with p-value
= 0.07). We find that there exists a strong correlation be-
tween arousal and the acoustic energy, as shown in Figure 3
where we smooth the acoustic energy with window 100 and
shift and scale it according to the mean and standard devi-
ation between energy and arousal labels. And their Pearson
Correlation Coefficient on development set is high to 0.558
and CCC is 0.4. This suggests that humans’ perception of
arousal may mainly base on acoustic features so fusing other
modalities may bring less benefit.

But for valence prediction, all the fusion strategies outper-
form the original uni-modality models (as shown in Table 1).
An interesting finding is that the higher level the fusion s-
trategy applies, the better performance is achieved as shown
in Figure 4(b). Among them, our proposed conditional at-
tention fusion model achieves the best performance and sig-
nificantly surpasses other fusion strategies by t-test (p<0.02
compared with the second best fusion strategy late fusion,
and p<0.007 compared with others). This indicates that
dynamically adapting fusion weights for different modalities
is beneficial.

Table 2 shows the CCC performance with and without Lgt
in loss function. We can see that considering Lgt in loss func-
tion can further improve performance since it helps to guide
the importance of different modalities. It is might because
of the insufficiency of data that the model is unable to learn
the attention weights effectively without any supervised in-

Figure 5: Examples of valence prediction on dev set.
The red line is the groundtruth label and the blue
line is the prediction.

Table 3: Valence prediction performance on test set
rmse pcc ccc

Chen et al. [19] 0.111 0.59 0.567
Chao et al. [24] 0.103 0.627 0.618

CA-fusion 0.090 0.716 0.664

formation. We also observe in our experiments that when
α and β are around 10−2, there is no significant change in
prediction performance.

Figure 5 shows some examples of the emotion predictions
from the conditional attention fusion method. The upper
row shows the case where most of the visual features are
missing and the bottom row is another case where the vi-
sual features can be extracted in most frames. We can see
that the fusion method can make use of the complementary
information automatically from audio and visual features in
these two situations.

The valence prediction performance of the conditional at-
tention fusion method on testing set is shown in Table 3.
Chen et al. [19] use the same feature set as ours and Chao et
al. [24] use more features including CNNs for valence predic-
tion. The comparison further demonstrates the effectiveness
of the conditional attention fusion method.

5. CONCLUSIONS
In this paper we propose a multi-modal fusion strategy

named conditional attention fusion for continuous dimen-
sional emotion prediction based on LSTM-RNN. It can dy-
namically pay attention to different modalities according to
the current modality features and history information, which
increases the model’s stability. Experiments on benchmark
dataset AVEC 2015 show that our proposed fusion approach
significantly outperform the other common fusion approach-
es including early fusion, model-level fusion and late fusion
for valence prediction. In the future, we will use more fea-
tures from different modalities and apply strategies to ex-
press the correlation and independence of different modality
features better.
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