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Abstract
The topic diversity of open-domain videos leads to various
vocabularies and linguistic expressions in describing video
contents, and therefore, makes the video captioning task even
more challenging. In this paper, we propose an unified cap-
tion framework, M&M TGM, which mines multimodal topics
in unsupervised fashion from data and guides the caption
decoder with these topics. Compared to pre-defined topics,
the mined multimodal topics are more semantically and visu-
ally coherent and can reflect the topic distribution of videos
better. We formulate the topic-aware caption generation as a
multi-task learning problem, in which we add a parallel task,
topic prediction, in addition to the caption task. For the
topic prediction task, we use the mined topics as the teacher
to train a student topic prediction model, which learns to
predict the latent topics from multimodal contents of videos.
The topic prediction provides intermediate supervision to the
learning process. As for the caption task, we propose a novel
topic-aware decoder to generate more accurate and detailed
video descriptions with the guidance from latent topics. The
entire learning procedure is end-to-end and it optimizes both
tasks simultaneously. The results from extensive experiments
conducted on the MSR-VTT and Youtube2Text datasets
demonstrate the effectiveness of our proposed model. M&M
TGM not only outperforms prior state-of-the-art methods on
multiple evaluation metrics and on both benchmark datasets,
but also achieves better generalization ability.
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1 Introduction
Videos have become increasingly popular on the Internet,

for example, hundreds of hours of video contents are up-
loaded on YouTube every minute. It is impossible to watch
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these overwhelming amounts of videos, therefore, automatic
techniques to search and analyze video contents are highly
desired. Generating natural language descriptions for video
contents (a.k.a. video captioning) is one of such important
techniques for this challenge. It can benefit a wide range of
applications such as assisting the visually impaired people
and improving the quality of online video retrieval.

Although there have been significant breakthroughs recent-
ly in image captioning [9, 30, 41, 43, 44, 46], video captioning
remains very challenging due to the diversity and complexity
of video contents. The open-domain videos contain a broad
range of topics, such as sports, music, food and so on, which
results in very different vocabularies and expression styles to
describe video contents across topics. For example, sports
terms frequently occur in the sports topic while the typical
words in the food topic are about cooking and ingredients.
The key contents in descriptions for the sports topic are often
the action verbs, while they are object nouns for the food
topic and descriptive adjectives for the people topic. Thus,
being aware of the topic information can dramatically narrow
down general sentence distributions and enable the caption
model to focus on the discriminative video contents under
the topic, such as the detailed actions in the sports topic.

However, most of the existing caption models ignore the
topic information and mainly try to maximize the overall
likelihood for videos in all topics, which have a tendency to
seek the most common mode in training sentences as indi-
cated by Lee et al. [20]. Such models not only are prone to
generate plain descriptions without details, but also unable
to distinguish confusing concepts in a topic. Although a
few works [8, 13, 33] have exploited the topic information
for video description generation, there are still three main
challenges in employing the topic information in video cap-
tioning. First, there are no direct topic representations in
common video caption datasets, so how can we construct
and predict the latent topics of videos? Second, what is an
effective and efficient way to employ the latent topics to guide
the caption model for generating topic-oriented descriptions?
And third, how to train the topic-guided caption model to
achieve optimal captioning performance?

In this paper, we bring three innovations to deal with
the above challenges. First, we propose a multimodal topic
mining approach to discover latent video topics from video-
sentence pairs. The multimodal latent topics are more se-
mantically coherent and visually consistent than the expert-
defined or textual latent topics in previous work. We then use
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the teacher-student learning strategy to predict latent topics
with multimodal video features. Second, in order to exploit
the topic effectively, we propose a novel topic-aware language
decoder, which implicitly functions as an ensemble of topic-
specific decoders for each topic, but is computationally more
efficient and requires less training data. The predicted video
topic automatically modifies weights in the decoder, enabling
to generate topic-oriented video descriptions. Third, to op-
timize the topic-guided caption performance, we develop a
multi-task learning architecture to jointly train the caption
system with the topic prediction loss and sentence genera-
tion loss in an end-to-end manner. It can strengthen the
coupling of the two parts to generate better latent topics and
sentence descriptions simultaneously. The overall model is
called M&M TGM (Topic-Guided Model with Multimodal
latent topic guidance and Multi-task learning).

The main contributions of this paper are as follows:

• We present an unified framework M&M TGM for video
captioning, which can automatically discover and predict
the underlying video topics and exploit the topic guidance
to generate better topic-oriented video descriptions. The
topic prediction and topic-aware sentence generation can
be trained jointly with multi-task learning end-to-end.

• The proposed M&M TGM requires no additional labelling
for video topics and can exploit the limited video caption
data effectively. For the latent topic generation, we propose
unsupervised multimodal topic mining for topic discovery
and teacher-student learning for topic prediction. For the
topic-oriented sentence generation, the topic-aware decoder
shares data and parameters among different topics which
is efficient in both computation and data.

• Our proposed model is evaluated on two benchmark video
caption datasets: MSR-VTT [42] and Youtube2Text [11].
Both quantitative and qualitative analysis show superior
performances of using the multimodal latent topic guidance
and multi-task learning strategy. The M&M TGM not
only outperforms prior state-of-the-art methods, but also
has better generalization ability.

The rest of the paper is organized as follows: Section 2
introduces the related work. Section 3 presents the prob-
lem formulation. The solution for M&M TGM is described
in Section 4. Section 5 presents experimental results and
analysis. Section 6 concludes the paper.

2 Related Work
Image Captioning has attracted growing interests re-

cently. Early works are mainly based on rule systems [17, 19]
and suffer from generating flexible and accurate descriptions.
So more researches have been focusing on the encoder-decoder
framework [2, 35] for caption generation. The deep convolu-
tional neural networks (CNNs) [36] function as the encoder
to transform image contents into dense vectors. Then the
decoder, typically the Long-short Term Memory [12] (LSTM),
is utilized to generate sequential words conditioned on image
features [41]. Xu et al. [43] propose the spatial attention
mechanism based on the basic encoder-decoder. You et al.
[46] and Gan et al. [9] propose the semantic attention model

and semantic compositional networks (SCN) respectively to
exploit detected concepts from the image. Our topic-aware
language decoder is inspired by SCN but with different aims
of producing topic-oriented video descriptions, which is more
suitable for video captioning task as shown in Section 5.4.

Video Captioning is more challenging compared with
image captioning due to the temporal dynamics, multiple
modalities, and more diverse contents in videos. Yao et al.
[45] propose the temporal attention mechanism, and Pan
et al. [25] utilize the hierarchical LSTM encoder to explore
the temporal structures. Most previous works only focus on
the visual modality [26, 40], but recently Jin et al. [13, 14]
and Ramanishka et al. [29] have shown improvement of
multimodal fusion for video captioning. To promote the
video captioning research for open-domain videos, several
large-scale videos with various topic are collected such as
MSR-VTT [42] and TGIF [22]. Jin et al. [13] encode expert-
defined topics with multimodal features, which results in their
winning of the MSR-VTT challenge [31]. Dong et al. [8]
utilize the textual mined topics to learn interpretable features.
Shen et al. [33] train separate language decoders for each
expert-defined topic. Chen et al. [4] explore the guidance
from textual minded topics to generate topic-aware sentences.
In our work, we address the topic diversity challenge in open-
domain videos and propose the novel M&M TGM model to
jointly generate the latent video topics and topic-oriented
video descriptions with multimodal features in a multi-task
framework.

Latent Topic Mining has been a long-standing problem.
The latent Dirichlet allocation (LDA) proposed by Blei [3]
is one of the most classic models to automatically inference
the latent topics for textual documents. Doersch et al. [7]
utilize a discriminative clustering approach to discover the
visual topics. For multimodal data, Li et al. [21] apply the
association rule mining algorithm on image-caption pairs
to discover the multimodal topics. In our work, we take
the multimodal topic mining perspective on video-sentence
pairs by a weighted multimodal clustering method to obtain
semantically coherent and visually consistent latent topics.

3 Problem Formulation
Our goal is to leverage the underlying video topic informa-

tion to make the model more proficient in using vocabularies
and expressions within the topic when describing a video.

Suppose we have a video V along with a set of Nd textual
descriptions Y = {y1, y2, ..., yNd}. Each y ∈ Y is a sentence
with Ns words, denoted as y = {w1, w2, ..., wNs}, where w is
a word from vocabulary W. We encode the video content V
into a fixed-dimensional video representation x. Conditioned
on the multimodal video representation x, a caption decoder
aims to generate the sentence y with probability

Pr(y|x) =

Ns∏
t=1

Pr(wt|x, w<t) (1)

where w<t denotes the sequential words before the time step
t. We abbreviate this as conditional sentence probability.
We use RNN as decoder and parameterize the probability
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Pr(wt|x, w<t) by the recurrent units shared across time steps,
which can be expressed as:[

Pr(wt|x, w<t; Θd)
ht

]
= ψd(ht−1, wt−1; Θd) (2)

where ψd is the recurrent unit function, Θd are the parameters
of the recurrent unit and ht is the hidden state of the recurrent
unit at time step t. We define w0 as the start token and h0

as the initialized hidden state. For notation simplicity, we
abbreviate eq (2) to Pr(wt|x, w<t; Θd) = ψd(ht−1, wt−1; Θd).
Substituting this abbreviation to eq (1), we get:

Pr(y|x; Θd) =

Ns∏
t=1

ψd(ht−1, wt−1; Θd) (3)

As mentioned earlier, videos in different topics have quite
different vocabularies and expression styles in their video
descriptions, and different topics can coexist in one video.
Based on this observation, we introduce the latent topic vari-
ables {zi}i=1,...,K , where K is the number of topics. Then the
conditional sentence probability, Pr(y|x) is actually the mar-
ginal probability of the joint sentence and topic distribution
conditioned on video content:

Pr(y|x) =
∑

z1,...,zK

Pr(y, z1, . . . , zK |x)

=
∑

z1,...,zK

Pr(y|z1, . . . , zK , x)︸ ︷︷ ︸
topic-aware

sentence distribution

Pr(z1, . . . , zK |x)︸ ︷︷ ︸
latent topic
distribution

(4)

In the second step of eq (4), we factorize the joint distribu-
tion to latent topic distribution and topic-aware sentence
distribution.

We come to parameterize the probability in eq (4). For
latent topic distribution, we parameterize it by topic predictor
ψz as follows:

Pr(z1, . . . , zK |x) = ψz(x; Θz) (5)

where Θz are parameters in the topic predictor. To parame-
terize the topic-aware sentence distribution by RNN, we need
to introduce the topic-related parameter Θ′z in addition to
Θd in eq (3) as now the probability we are modelling is also
conditioned on topics z1, . . . , zK :

Pr(y|z1, . . . , zK , x; Θd,Θ
′
z) =

Ns∏
t=1

Pr(wt|w<t, x, z1, . . . , zK ; Θd,Θ
′
z)

=

Ns∏
t=1

ψd(ht−1, wt−1, z1, . . . , zK ; Θd,Θ
′
z) (6)

Putting all these together, we get the parameterization for
topic-aware conditional sentence probability as:

Pr(y|x) = Pr(y|x; Θd,Θ
′
z ,Θz)

=
∑

z1,...,zK

ψz(x; Θz)

Ns∏
t=1

ψd(ht−1, wt−1, z1, . . . , zK ; Θd,Θ
′
z)

(7)

Contrasting with conditional sentence probability parameter-
ization in eq (3), we see that we have additional parameters
Θz for topic prediction and Θd,Θ

′
z for topic-aware sentence

modelling in the parameterization of topic-aware conditional
sentence probability.

Figure 1: Framework of M&M TGM. The green box-
es are inputs; blue boxes are modules; gray boxes are
outputs; red boxes are loss functions. The topic min-
ing module is only used in the training stage while
other modules are used in both training and testing.

The standard loss function for caption generation task is
to maximize the log probability of the conditional sentence
probability :

Lcaption(y, ỹ) = −
Ns∑
t=1

∑
w̃t∈W

δwt,w̃t log Pr(w̃t|x, w<t; Θd) (8)

where δwt,w̃t is the indicator function. We could directly
use this loss to train our topic-aware parameterized model in
eq (4) as it is a special form of the general conditional sentence
probability. However in training, it requires large amount
of data for the model to discover latent topics from scratch
and to learn topic-aware sentence distribution simultaneously.
The training data of caption task is limited, and as the
labelling cost of such training data is very high, the amount
of the training data is not likely to grow very fast in the near
future. To solve this problem, we introduce an auxiliary task,
topic prediction, to guide the caption task. In this task, we
leverage the existing topic mining approaches to generate a
set of topics as the teacher topics z. The details of the topic
mining approach are given in Section 4.2. We use the teacher
topics to guide the latent topic learning by an additional topic
loss function Ltopic(z, z̃) on the topic predictor ψt(x; Θz),
which penalizes the latent topic predictions that are far away
from the teacher z. The details of dist function in Ltopic(z, z̃)
will be discussed in section 4.1. The two losses are combined
by the trading off hyper-parameter λ ∈ [0, 1):

L(y, z, ỹ, z̃) = (1− λ)Lcaption(y, ỹ) + λLtopic(z, z̃) (9)

Lcaption(y, ỹ) = −
Ns∑
t=1

∑
w̃t∈W

δwt,w̃t log Pr(w̃t|x, w<t; Θd,Θ
′
z ,Θz)

(10)

Ltopic(z, z̃) = dist(z, z̃) (11)

In this way, we weave the video latent topics into video
description generation as guidance.
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4 M&M Topic-Guided Model
In this section, we present our solutions for the topic-guided

video captioning. Figure 1 illustrates the overall framework.
Our proposed M&M TGM consists of three components:
topic mining, topic predictor and topic-aware decoder, which
is optimized by multi-task training. We will first present the
overall multi-task training scheme and then introduce the
three modules in details.

4.1 Multi-task Training Scheme

It is intractable to integrate the topic-aware conditional
sentence probability in eq (7) over the latent topic space.
But since the latent topic is highly dependent on the video
content, usually the latent topic distributions of the video
could be very skew with massive likelihood on the peak point.
Therefore, it is reasonable that we use the maximum latent
topic likelihood to approximate the summation over the latent
topic space to gain efficiency without losing much accuracy.
The approximation for eq (7) is as follows:

Pr(y|x) =
∑

z1,...,zK

Pr(y|z1, . . . , zK , x)Pr(z1, . . . , zK |x) (12)

≈ Pr(y|z1 = z̃1, . . . , zK = z̃K , x)Pr(z1 = z̃1, . . . , zK = z̃K |x)

where z̃1, . . . , z̃K = arg maxz1,...,zK
Pr(z1, . . . , zK |x). Our ex-

periments show such approximation leads us to good results.
The multi-task training scheme is conducted as follows:
1. We first pretrain the topic predictor using the topic

loss Ltopic, and use it to initialize Θz in the M&M TGM (as
shown in eq (7)). For the dist in topic loss, we choose two
widely used distances: l2-distance l2(z, z̃) =‖ z − z̃ ‖22 and

KL-divergence KL(z, z̃) =
∑K
k=1 z̃klog(z̃k/zk).

2. We then pretrain the topic-aware decoder using the
caption loss Lcaption (as shown in eq (10)) with the topic
guidance from the fixed topic predictor in the above step,
and use it as a good initialization for Θ′z and Θd in the M&M
TGM (as shown in eq (7)).

3. Finally, based on the parameters initialization in the
above two steps, we use the multi-task loss L(y, z, ỹ, z̃) (as
shown in eq (9)) to further train both models jointly, which
fine-tunes all the parameters Θz, Θ′z and Θd to optimize the
caption performance.

4.2 Topic Mining and Prediction

We first briefly present two topic structures adopted in
previous works, and then propose our multimodal latent topic
mining approach and the topic prediction model.

Expert-defined Topics: The online video websites of-
ten provide an expert-defined topic schema as shown in Fig-
ure 2(a). Video uploaders can select one of the topics to
better organize their videos. Such topics can reflect the topic
variety to some extent, but have the following drawbacks: 1)
The user assigned labels are noisy with labelling mistakes; 2)
The topic distributions are exclusive which ignores the topic
diversity inside the video; and 3) There might exist different
semantic meanings and visual appearances within a topic,
which is suboptimal as latent topics.

(a) (b)

Figure 2: (a) Expert-defined topic schema on the
YouTube website. (b) An example video in MSR-
VTT dataset with its top frequent caption words.

Textual Latent Topics: The annotated descriptions in
video caption datasets provide rich and accurate information
about the video content, which can also reflect more appro-
priate latent topic distributions. Thus, our previous work
[4] mined topics from the annotated video captions on the
training set. The main idea is to cluster the video captions
and each cluster can represent a latent topic. We use the
kernel K-means algorithm [6] for clustering. We group al-
l the groundtruth captions of a video as one data sample.
Stopwords are removed and the bag-of-words are used as
our text features. The cosine kernel is adopted to generate
nonlinear cluster separations. Since a video might contain
several topics, we utilize the soft assignment according to
the distance between samples and clusters to generate topic
distributions.

Multimodal Latent Topics: Although the textual la-
tent topics may better fit with the videos’ underlying topic
distributions, the mined topics purely based on textual data
still suffer from the following problems:

1) Polysemy phenomena: Words can convey several differ-
ent meanings, which might lead to improper assignment of
the video. As shown in Figure 2(b), the most frequent word
court can either mean tribunal or sports field, so the video
could mistakenly peak at some sports related topics.

2) Certain messy clusters: The unsupervised clustering
method cannot perfectly generate meaningful latent topics,
which could produce some semantically unclear topics with
dissimilar visual appearances. This brings great harm for the
topic prediction model to learn from those messy topics.

To address these issues, we further propose to combine
the description texts and visual features to learn the multi-
modal latent topic representation. The textual features are
preprocessed in the same way as in textual latent topics and
the visual features are elaborated in Section 5.2. We use the
weighted kernel K-means algorithm to fuse the textual and
visual features with weights of 1 and 0.2 respectively, because
we consider the textual features are more accurate than the
visual features to unveil an eligible latent topic structure.

Topic Predictor: We take the teacher-student perspec-
tive [1] to train the topic predictor ψz. The distributions of
the above mined latent topics serve as the teacher z to guide
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the ψz to generate latent topic predictions with the topic
prediction loss Ltopic. In this work, we adopt a two-layer per-
ception as the topic predictor based on inputs of multimodal
video features m1,m2,m3:

ψz(x; Θz) = softmax(W2(ϕ(W1[m1;m2;m3] + b1) + b2)
(13)

where Wi, bi(i = 1, 2) are parameters, [·] denotes feature
concatenation and ϕ is the RELU nonlinear function [10].

4.3 Topic-aware Decoder

In this section, we first briefly introduce the standard
LSTM, and then describe our proposed topic-aware decoder
based on the LSTM model to employ the topic guidance
during sentence generation.

The LSTM model addresses the vanishing gradients prob-
lem in traditional RNN by employing a memory cell and
three gates to control the information flow in the network.
The formulas of the LSTM cell ψd(ht, wt; Θd) at timestep t
are given below:

input gate : it = σ(Wiwwt + Uihh
hidden
t−1 + bi) (14)

forget gate : ft = σ(Wfwwt + Ufhh
hidden
t−1 + bf ) (15)

output gate : ot = σ(Wowwt + Uohh
hidden
t−1 + bo) (16)

cell input : gt = φ(Wgwwt + Ughh
hidden
t−1 + bg) (17)

cell state : hcellt = it � gt + ft � hcellt−1 (18)

cell output : hhiddent = ot � φ(hcellt ) (19)

where hhiddent is the hidden state, hcellt is the cell state, σ is
sigmoid function, φ is tanh function, � denotes element-wise
production, and Θd = {W∗w, U∗h, b∗} are parameters.

Recall that in Section 3, when we use LSTM cell to pa-
rameterize Pr(y|z1, . . . , zK , x), we need to change the LSTM
cell function to ψd(wt, ht, z1, . . . , zK ; Θd,Θ

′
z) to employ the

topic dependency. Inspired by Gan et al. [9], we extend each
weight matrix of the conventional LSTM to be an ensemble
of a set of topic-dependent weight matrices.

Let us take one of the input gate weight matrices Wiw as an
example, and transformation for other parameters in LSTM
model are alike. We define the ensemble 3D weight matrix
Wiτ ∈ Rnh×nw×K , where nh is the number of hidden units
and nw is the dimension of input vectors. Wiτ [k] denotes
the k-th slice of Wiτ , which represents the 2D weight matrix
belonging to the LSTM model for the k-th topic. Therefore,
we explicitly specify K language decoders, which is, for each
topic there is a pair of topic-specific LSTM weights. Given
the latent topic z̃, we can define the mixture topic LSTM
weight matrix Wi(z̃) ∈ Rnh×nw as

Wi(z̃) =

K∑
k=1

z̃kWiτ [k] (20)

where z̃k is the k-th topic in z̃. When z̃ is not the exclusive
one-hot topic distribution, the video data is shared among
different topics. However, the parameters still grow linearly
with the number of topics K and no parameters are shared

Figure 3: The distribution of noisy expert-defined
topics in MSR-VTT and Youtube2Text datasets.

among different video topics which can easily result in over-
fitting. So the 3-way factorization method [16, 24] is used
to share parameters. We re-represent Wiτ in terms of three
matrices Wia ∈ Rnh×nf , Wib ∈ Rnf×K and Wic ∈ Rnf×nw ,
where nf is the number of factors, such that

Wi(z) = Wia · diag(Wibz̃) ·Wic (21)

Wia and Wic are shared among all topics, while Wib can be
viewed as the latent vectors of topics.

Therefore, the transformation from input vectors to input
gates is changed from Wiw ·wt to Wia · (Wibz̃�Wicwt). The
topic distribution z̃ affects the LSTM parameters associated
to the video when decoding, which implicitly works as an
ensemble of K topic-aware language decoders.

5 Experiments

5.1 Datasets
To validate the effectiveness, robustness and generalization

of our proposed methods, we conduct extensive experiments
on two benchmark video captioning datasets: MSR-VTT [42]
and Youtube2Text [11].

MSR-VTT: The MSR-VTT corpus [42] is currently the
largest open-domain video captioning dataset with a wide
variety of video topics. It consists of 10,000 video clips with
20 human annotated captions per clip. Each clip also contains
a noisy expert-defined topic label crawled from YouTube, the
distribution of which is shown in Figure 3. Following the
standard data split in the MM2016 challenge [31], we use
6,513 videos for training, 497 videos for validation and the
remained 2,990 for testing.

Youtube2Text: The Youtube2Text corpus [11] contains
1970 Youtube video clips with around 40 human annotated
sentences per clip. For fair comparison, we crawl the expert-
defined topics from YouTube for the whole dataset as shown
in Figure 3, which are also noisy. We adopt the same data
splits as provided in Yao et al. [45], with 1,200 videos for
training, 100 videos for validation and 670 videos for testing.

Description Preprocessing: We convert all description-
s to lower case and remove all punctuations. We add begin-
of-sentence tag <BOS> and end-of-sentence tag <EOS> to
our vocabulary. We preserve words that appear more than
twice for MSR-VTT, resulting in a vocabulary size of 10,868,
and words that appear more than once for Youtube2Text,
resulting in a vocabulary size of 7,245.
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Table 1: Caption performance comparison between Vanilla (no topic guidance) and TGM (using different
latent topic guidance) on the MSR-VTT and Youtube2Text datasets. The best results are marked in bold
and the second best results with underline.

model topic guidance
MSR-VTT Youtube2Text

BLEU4 METEOR ROUGEl CIDEr BLEU4 METEOR ROUGEl CIDEr

Vanilla no topic 42.23 28.68 61.44 46.06 46.05 32.97 69.94 72.12

TGM

pred expert-defined topic 42.36 28.51 61.57 46.37 47.42 33.51 69.61 77.36

pred textual latent topic 43.38 29.08 62.11 48.38 47.45 34.11 70.59 79.45

pred multimodal latent topic 43.81 29.26 62.13 48.50 47.56 34.21 70.45 79.57

assigned expert-defined topic 42.75 29.07 61.77 48.59 46.47 32.99 69.20 74.24

5.2 Implementation Details

Multi-modality Features: We extract features from
image, motion and aural modalities. For image features,
we extract activations from the penultimate layer of the
inception-resnet [36] pre-trained on the ImageNet, the dimen-
sionality of which is 1,536. For motion features, we extract
activations from the last 3D convolution layer of the C3D
model [37] pre-trained on the Sports-1M dataset. We perform
max-pooling on the spatial dimension (width and height),
resulting in 512 dimensional features. For aural features, We
extract the Mel-Frequency Cepstral Coefficients (MFCCs)
[5] and use Bag-of-Audio-Words [27] and Fisher Vector [32]
encoding methods to generate video-level features, with di-
mensionality of 1,024 and 624 respectively. We simply pad
zeros for videos without the sound track.

Training Settings: We empirically set the hidden layer
of the topic prediction model with 512 units. The dimension
of the LSTM hidden size is set to be 512. The output weights
to predict the words are the transpose of the input word
embedding matrix. We apply dropout with rate of 0.5 on the
input and output of LSTM and use ADAM algorithm [15]
with learning rate of 10−4. Beam search with beam width of
5 is used to generate sentences during testing process.

Evaluation Metrics: We evaluate the caption results
comprehensively on all major metrics, including BLEU [28],
METEOR [18], ROUGE-L [23] and CIDEr [38].

5.3 Evaluation of M&M TGM

In this subsection, we introduce two baselines to show the
effectiveness of topic guidance and our multi-task learning for
video captioning. The first baseline, Vanilla, consists of the
multimodal encoder and the standard LSTM decoder. This
baseline doesn’t involve any topic information. The second
baseline is TGM, a trimmed version of our M&M TGM. We
discard the multi-task joint optimization step (last step) in
section 4.1.

To evaluate the effectiveness of topic guidance, we compare
the caption performance of the Vanilla and TGMs using
different latent topic guidance in Table 1. The numbers
of textual and multimodal latent topics are optimized on
the validation set (50 topics for MSR-VTT and 5 topics for
Youtube2Text). We can see that TGMs outperform Vanilla
model consistently on all four metrics across MSR-VTT and
Youtube2Text datasets, which demonstrates that exploiting
topic information is beneficial to generate video descriptions.

Table 2: Caption performance of TGM (single-task
learning) and M&M TGM (multi-task learning) on
MSR-VTT and Youtube2Text datasets.

dataset model BLEU4 METEOR CIDEr

MSR-

VTT

TGM 43.81 29.26 48.50

M&M TGM 44.33 29.37 49.26

Youtube

2Text

TGM 47.56 34.21 79.57

M&M TGM 48.76 34.36 80.45

The first three rows in the TGM block in Table 1 shows
a fair comparison of the impact from different predicted
latent topics on caption performance. We can see that the
automatically mined topics (both textual and multimodal
latent topics), outperform expert-defined topics by a large
margin on all four metrics and two datasets, such as over 2%
absolute gain on the CIDEr score. The multimodal latent
topics further achieve better performance than textual latent
topics consistently on multiple metrics across datasets. The
improvement is also proved to be significant in the Student’s
t-test such as p-value of 0.03 on the BLEU@4 score. These
results suggest that the multimodal topic mining approach
can discover better underlying topics as guidance for TGM,
and such improvement is prominent and robust for different
evaluation metrics and datasets.

Since video uploaders can manually assign expert-defined
topic labels on online websites, we also compare our auto-
matically predicted multimodal latent topics with the user
assigned expert-defined topics in the last two rows of Table 1.
However, the assigned expert-defined topics are very noisy,
because the annotations are labelled on the entire videos but
the caption generation is only applied on the short segments
and the users may also make labelling mistakes. For almost
all metrics, the performances of our predicted latent topics
are superior to the noisy assigned expert-defined topics on
both MSR-VTT and Youtube2Text datasets, which shows
that the latent topics learned in an unsupervised approach are
competitive or even better than the assigned expert-defined
topics with noise.

To validate the influence of joint training strategy, we
compare the caption performance of TGM and M&M TGM.
As shown in Table 2, M&M TGM consistently improves TGM
on all datasets and metrics, with significance p-value < 0.05
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Table 3: Caption performance of M&M TGM
and state-of-the-art methods on MSR-VTT and Y-
outube2Text datasets.

dataset model BLEU4 METEOR CIDEr

MSR-

VTT

M&M TGM 44.33 29.37 49.26

Aalto [34] 39.80 26.90 45.70

v2t navigator1 [13] 40.80 28.20 44.80

dense caption [33] 41.40 28.30 48.90

Youtube

2Text

M&M TGM 48.76 34.36 80.45

LSTM-YT [40] 33.30 29.10 -

S2VT [39] - 29.80 -

LSTM-I [8] 44.60 31.10 -

SA [45] 41.92 29.60 51.67

LSTM-E [26] 45.30 31.00 -

h-RNN decoder [47] 49.90 32.60 65.80

h-RNN encoder [25] 43.80 33.10 -

SCN-LSTM [9] 50.20 33.40 77.70

for different metrics in Student’s t-test, which proves the
benefits brought by the multi-task learning.

5.4 Comparison with the State-of-the-art
Table 3 presents our M&M TGM with several state-of-the-

art methods applied on the two video caption datasets. Our
method achieves significant better performance than prior
works on MSR-VTT dataset, for example, the BLEU@4
achieves 7.08% relative improvement than the previous best
performance. For Youtube2Text dataset, the METEOR and
CIDERr scores improved significantly but our performance on
BLEU@4 is lower than the SCN-LSTM. The BLEU@4 metric
focuses on the syntactic agreement, while METEOR and
CIDEr concern more about semantic meanings. Therefore,
we consider the sentence generated from M&M TGM are
more semantically relevant with the video content.

To be noted, the semantic concepts used in SCN-LSTM
are trained with additional image data because they claim Y-
outube2Text corpus is too small to train reliable concept clas-
sifiers, but our M&M TGM is purely trained on Youtube2Text
for latent topic prediction and sentence generation. Hence,
we argue that for video captioning, the guidance from latent
topics might be superior than detected semantic concepts
for the following reasons: 1) videos contain more objects
than images but many might be irrelevant to the description;
2) topics contain additional information besides concepts
such as actions from motion modality and words from speech
modality; and 3) the prediction accuracy is important for the
decoder and topics are easier to be classified than concepts.

5.5 Experimental Analysis
Generalization Ability: To evaluate the generalization

ability of our proposed method, we conduct the cross dataset
experiment. We train M&M TGM on MSR-VTT dataset and
test its performance on the Youtube2Text dataset. Results
are presented in Table 4. We can see that the proposed M&M
TGM works significantly better than Vanilla model for cross

1winner of the MM16 VTT challenge.

Table 4: Comparison of generalization ability of the
vanilla model and our proposed M&M TGM model.
The models are trained on MSR-VTT training set
and evaluated on the Youtube2Text testing set.

BLEU4 METEOR ROUGEl CIDEr

Vanilla 32.92 30.16 62.51 51.02

M&M TGM 34.67 30.68 63.68 55.39

Table 5: Caption performance comparison of differ-
ent topic prediction losses.

dataset loss BLEU4 METEOR ROUGEl CIDEr

MSR-

VTT

l2 43.81 29.26 62.13 48.50

KL 43.40 29.11 62.01 48.64

Youtube

2Text

l2 47.56 34.21 70.45 79.57

KL 45.98 33.65 69.76 78.06

(a) MSR-VTT (b) Youtube2Text

Figure 4: CIDEr scores with number of topics on (a)
MSR-VTT and (b) Youtube2Text datasets.

(a) MSR-VTT (b) Youtube2Text

Figure 5: The caption performance (sum of all met-
rics) with different multi-task hyper-parameter λ.

datasets evaluation on all four metrics, which demonstrates
that our method not only can improve the caption perfor-
mance for in-domain videos but also generalize well on videos
in the wild.

Topic Loss Selection: We compare the caption perfor-
mance using l2-distance or KL-divergence as Ltopic in the
TGM model. Table 5 presents the results. The l2-distance
consistently surpasses the KL-divergence across datasets and
metrics. So unless otherwise specified, we use l2-distance as
the topic prediction loss.

The Number of Topics K: We also explore different
number of topics on each dataset and the results are shown
in Figure 4. The best number of topics for MSR-VTT is
50 and for Youtube2Text is 5, which shows that the more
diverse the dataset is, the more amount of topics is required.

The Multi-task Parameter λ: Since caption genera-
tion is our main goal, we consider that the weight on topic
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Figure 6: Examples on MSR-VTT testing set.
M&M TGM can generate more accurate description-
s than Vanilla model.

prediction loss should not surpass the weight on caption
generation loss. Therefore, we search the best multi-task
hyper parameter λ

1−λ in range [0.1, 1] with step of 0.1. To
save space, we present the sum of all the metrics in Fig-
ure 5 and the trends are similar for different metrics. The
multi-task learning with different λ > 0 all achieves better
performance than single-task learning (λ = 0), which proves
the robustness of our multi-task training with respect to the
hyper-parameter.

5.6 Qualitative Analysis

To gain an intuition of the improvement on generated video
descriptions from M&M TGM model, we present some video
examples with the video description from Vanilla model and
M&M TGM on testing set of MSR-VTT.

In Figure 6, we can see that M&M TGM can generate
more accurate video descriptions than Vanilla model even
though they utilize the same multimodal features. In Figure 7,
though the descriptions from Vanilla and M&M TGM are
both correct, M&M TGM model can produce more detailed
information about the video contents. We also observe that
M&M TGM employs more unique words with 493 compared
to the 391 unique words in Vanilla model.

The reason behind these quality improvements could be
that M&M TGM can narrow down the sentence generation
space according to the predicted latent topics. This enables
the model to focus on subtler differences between similar
concepts such as the soccer and rugby sports in the upper
row of Figure 6, and cover more detailed descriptions under
the topic such as making airplane vs. folding paper in the
upper row of Figure 7 with more specialized words.

5.7 Human Interaction in Captioning

Besides the improvement on the caption performance, our
topic-guided model can provide an interface for users to be
involved in the caption generation. For example, users could
simply assign a category tag to the uploaded videos with
minimum costs to refine the automatic generated video de-
scriptions. To evaluate the performance boosts with the

Figure 7: Examples on MSR-VTT testing set.
M&M TGM can generate more detailed descriptions
than Vanilla model.

Table 6: The influence of human interactions on Y-
outube2Text dataset with noisy and clean expert-
defined topics assignment.

BLEU4 METEOR ROUGEl CIDEr

noisy topic 46.47 32.99 69.20 74.24
clean topic 49.35 35.10 71.14 82.79

human enhancement to our topic-guided model, we manu-
ally re-annotate the expert-defined topics for Youtub2Text
dataset as the clean version and compare its caption perfor-
mance with the noisy assigned topics. Results are shown in
Table 6 which demonstrates that a huge gain can be achieved
with the manual correction of the topics in low cost.

6 Conclusions
In this paper, we propose a novel topic-guided caption mod-

el to address the topic diversity challenge for open-domain
video captioning task. The proposed model can predict
the latent topics of videos and then generate topic-oriented
video descriptions with the topic guidance jointly in an end-
to-end manner. We utilize the multimodal topic mining
approach to construct video topics automatically and take
a teacher-student learning perspective to predict the latent
topics purely from video multimodal contents. The topic-
aware decoder can exploit the predicted topics to adjust its
weights to fit the topic-dependent sentence distributions. Our
experimental results on two public video caption benchmark
datasets show that the proposed model can generate more
accurate and detailed descriptions within different topics and
improves the performance consistently on all metrics on both
datasets. Furthermore, we show that our model has very
good generalization ability across datasets. The proposed
topic-guided caption model can be considered as a generic
framework, which could be integrated with other techniques
such as temporal attention or hierarchical video encoder. We
will study such integration in the future.
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