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ABSTRACT
Augmented Reality (AR) based navigation has emerged as an impres-
sive, yet seamless way of guiding users in unknown environments.
Its quality of experience depends on many factors, including the
accuracy of camera pose estimation, response delay, and energy
consumption. In this paper, we present SeeNav – a seamless and
energy-e�cient AR navigation system for indoor environments.
SeeNav combines image-based localization and inertial tracking
to provide an accurate and robust camera pose estimation. As
vision processing is much more compute intensive than the pro-
cessing of inertial sensor data, SeeNav o�oads the former one from
resource-constrained mobile devices to a cloud to improve track-
ing performance and reduce power consumption. More than that,
SeeNav implements a context-aware task scheduling algorithm that
further minimizes energy consumption while maintaining the accu-
racy of camera pose estimation. Our experimental results, including
a user study, show that SeeNav provides seamless navigation expe-
rience and reduces the overall energy consumption by 21.56% with
context-aware task scheduling.
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1 INTRODUCTION
Since the �rst augmented reality (AR) system was prototyped in
1993, the AR devices and applications have developed a lot. Recent
AR applications such as Pokémon GO have a�racted tremendous
a�ention. �eir success shows that people are ge�ing acquainted
with AR applications. Meanwhile, the market of AR applications
is expected to grow to $83 billion by 2021 [3]. However, there are
still a lot of technical challenges to be solved in order to provide
seamless user experience.

In this work we present SeeNav1, a seamless and energy-e�cient
AR navigation system for indoor environments. SeeNav solves
two key challenges to the user experience of an AR navigation:
the continuous and accurate camera pose estimation, and the
energy e�ciency of the AR application.
1Demo video available at h�ps://tinyurl.com/n8tnsgg
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A camera pose in general refers to a combination of a position
and an orientation. �e camera pose relative to a 3D space can
be represented by at least six parameters, three representing the
translation and the others representing the rotation. Currently,
�ducial marker based tracking [7, 8] is widely used by popular AR
platforms, such as Vuforia, ARToolkit and Metaio. However, prede-
�ned markers require installation and maintenance. To overcome
this issue, researchers have proposed a marker-less tracking [13, 20]
that works by extracting and matching natural visual features in
the environment. Such technique is promising, yet faces unsolved
issues when an environment contains insu�cient visual features.
Another approach is called inertial tracking, which utilizes inertial
sensors such as a gyroscope and an accelerometer for estimating
the heading and the orientation of the device. �e inertial tracking
su�ers from severe dri� problems [10, 11], thus cannot provide
accurate tracking during the continuous operation. To solve the
above-mentioned problems, we propose a novel tracking algorithm
that complements a marker-less visual tracking with an inertial
tracking to provide a continuous, accurate and robust tracking. Our
approach fully utilizes the high accuracy of an image-based localiza-
tion [6] and marker-less tracking in feature-full environments2, and
the robustness of the inertial sensing in feature-less environments.

Energy e�ciency is a key criterion of designing applications for
mobile devices such as smartphones and AR glasses [4]. Due to the
heavy computation of vision processing and the continuous opera-
tion of cameras, the energy e�ciency of AR applications remains
a challenge. For example, a�er the launch of a widely played AR
mobile game Pokémon GO, there were numerous complaints about
the application draining phone’s ba�ery in a few hours [1, 21]. To
shed more light towards this issue, we measured the power con-
sumption of 5 freely available AR based applications. We compared
the results to our solution and additionally included measurements
of a non-AR navigation app – Google Maps, to emphasize the power
consumption di�erence between AR based and conventional mobile
applications. As illustrated in Figure 1, AR applications in general
draw much more power. �e most power hungry one, Campus
Maps3, would drain a typical smartphone ba�ery of 2800mAh in
less than two hours. To reduce the energy consumption on mobile
devices, SeeNav o�oads compute-intensive tasks (i.e. vision based
camera pose estimation) to a cloud. In addition, SeeNav implements
a context aware task scheduling algorithm which minimizes the
frequency of image sampling while maintaining a high accuracy
of the tracking, and utilizes a light weight rendering engine for

2Our implementation of image-based localization provides 1 meter accuracy in our
test environment.
3h�p://www.navvis.com/campus-maps
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Figure 1: Comparison of power consumption between
SeeNav, 5 other AR applications, and Google Maps - Navi-
gation & Transit. Except for Google Maps, the other applica-
tions were run in AR mode (camera capture and the related
vision processing is involved).

augmented objects to further reduce the power consumption. Ac-
cording to our experimental results, the energy consumption in
general decreases by 21.56% with context-aware task scheduling.

�e contributions of this work are summarized below.
(1) It combines a marker-less visual tracking with an inertial

sensing to provide an accurate and robust camera pose
estimation in indoor environments.

(2) It o�oads heavy computations to a cloud to enable energy
e�ciency and scalability.

(3) It proposes an adaptive, context aware task scheduling
algorithm that drastically reduces the power consumption
imposed by the visual tracking.

(4) It provides an experimental evaluation of an AR navigation
system from performance, energy-e�ciency and usability
perspectives.

Besides the scienti�c contributions, in this paper we also share
our practical experience on developing and implementing an AR
navigation system. �e rest of this paper is structured as follows:
Section 2 gives an overview of background and related work, Sec-
tion 3 describes system design, Section 4 explains the tracking
mechanisms, and Section 5 presents the experimental evaluation
before we conclude the paper in Section 6.

2 BACKGROUND AND RELATED WORK
Before we summarize the previous works on the AR navigation, we
will �rst introduce a 6 Degrees of Freedom (DoF) tracking, which
is an essential building block of AR applications. Note that a 6 DoF
movement of an object can be described as translation and rotation
in a 3D space. For marker-less AR applications, it is vital to support
the 6 DoF tracking in order to properly a�ach augmented objects
to a scene.

2.1 6 DoF Tracking
Indoor positioning techniques that use Bluetooth low energy bea-
cons [24] or Ultra-wideband (UWB) transmi�ers [22] only support
3 DoF tracking. �e techniques can only provide a position of

a smartphone but not its facing direction. Moreover, these tech-
niques require installation and maintenance of an extra hardware
infrastructure.

�ere are two typical ways of providing a 6 DoF tracking. �e
�rst is to couple beacons with inertial sensors [25]. Given an initial
position obtained from beacons, inertial sensors on a mobile device
can estimate an orientation of the device in respect to the world
compass, and can report 3D rotations from a gyroscope and 3D
movement from an accelerometer. Solely inertial sensor based
tracking is resource e�cient, however, it is known to be sensitive
to noise and its tracking accuracy degrades over time [5].

�e other approach is to calculate a 3D pose from a 2D camera
image. For example, Huang et al. [12] utilized panorama images to
estimate the position and the facing direction of a user in indoor
environments. Jiang et al. [6] proposed iMoon that implements
an image-based localization based on Structure from Motion (SfM)
techniques. SfM supports large scale 3D reconstructions from un-
ordered images [9]. Liu et al. [17] utilized deep learning for im-
age matching and tracking along indoor paths. �ese approaches
achieve high accuracy, compared with inertial tracking. However,
it comes at a price of highly increased processing requirements and
power consumption. Moreover, vision based approaches may fail
in certain environments with insu�cient visual features, e.g. plain
white walls, windows, and glass panels. �erefore researchers pro-
posed fusing visual tracking with other types of sensing [7, 16, 17].

Liu et al. [16] presented an AR application framework that incor-
porates both visual and inertial sensors to provide context aware
tracking solution. �ey highly focused on mitigating inertial sen-
sor errors on consumer devices and improving an overall scene
tracking accuracy. �eir tracking solution runs locally on a smart-
phone and requires acoustic beacons deployed in the area to obtain
a coarse-grained location before starting the visual tracking. How-
ever, their solution may face serious challenges in large venues or
places where acoustic beacons are not available.

In this work, we adopt ideas similar to iMoon for calculating
position and orientation of a smartphone. Di�erently from iMoon,
the focus of this paper is placed on the fusion of visual and inertial
sensor data for a continuous real time tracking.

2.2 AR Navigation
Simultaneous Localization And Mapping (SLAM) has been em-
ployed by AR devices such as Google Tango4 and Microso� Hololens5

for device tracking and localization. To implement SLAM, these
devices are typically equipped with depth cameras.

Concerning the fact that depth cameras are rarely available on
consumer devices, researchers have proposed to use visual SLAM
for a smartphone-based indoor tracking, since the visual SLAM
requires only a monocular camera. �e visual SLAM can provide
not as accurate, though reliable enough real time tracking and
localization. Due to real time requirements, the visual SLAM works
with an ordered sequence of images and is applied for tracking
short trajectories only. For example, HyMoTrack [7] utilizes SLAM
tracking, 2D to 3D feature matching to identify the initial position

4h�ps://get.google.com/tango/
5h�ps://www.microso�.com/en-us/hololens
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Figure 2: Screenshots of the SeeNav Android client. From
le� to right: a) identifying an initial location with an image;
b) the main screen showing a map of the premises, the cur-
rent position of a user (marked as a blue dot) and a planned
route to a destination; c) AR navigation mode.

of a device, and falls back to an inertial tracking when the vision-
based approach fails. Since all the processing is done on a device,
they had to lower the frame rate to around 20 frames per second.

Mulloni et al. [19] introduced an AR navigation that utilizes
step detection for tracking and �ducial markers as info points to
calibrate a position of a user. However, the approach still requires
e�ort to install and maintain additional markers.

Ventura et al. [23] proposed a client-server-based tracking solu-
tion for an AR navigation. Researchers combined a global localiza-
tion on a server side with the visual SLAM tracking on a mobile
device. �e initial position of the client was obtained by matching
an image sent by a client to an SfM model on the server side. In
order to speed up the localization and narrow down the search
space, the device also sends GPS coordinates, as well as a device
compass rotation. Later, the position returned from the server is
used in combination with position and orientation estimated by
the local SLAM algorithm. �e system achieved an accuracy of
several meters outdoors and less than a meter accuracy in a small
indoor area. However, the initialization of the tracking system took
several seconds and the system lacked scalability for large areas
and larger amounts of users.

In our work we utilize SfM based localization techniques, which
enable fast localization in large scale environments and o�er an
instant system startup. Instead of combining SfM and SLAM, we
fuse SfM-based pose estimation with inertial tracking to achieve
high accuracy while enabling tracking in feature-less environments.

3 SYSTEM OVERVIEW
SeeNav implements the application scenario described in Section
3.1, and follows the cloud-based system architecture presented in
Section 3.2.

3.1 Application Scenario
Alice arrives at a new conference center, which she visits for the �rst
time in her life. She needs to �nd a conference room and would also like
to take a cup of co�ee on the way. �e conference center is a complex
building with multiple halls, rooms and �oors. It is not trivial to

�nd a way around, even by following signs inside the venue. Luckily,
Alice has a smartphone with an AR based indoor navigation app. She
opens the application and locates herself by simply pointing the phone
towards the premises. She instantly gets a 2D map with her location
and sees nearby Point-of-Interests (PoIs). She can already see that
there is a café nearby. She then searches for her conference room and
receives a navigation path to the place. However, instead of analyzing
the route, she simply switches on the AR mode and an augmented
arrow conveniently points towards a direction she needs to go to. In
this way, Alice reaches her destination quickly and stress-free.

To implement the above-mentioned scenario, SeeNav provides
the following features: (1) obtaining the initial position of a user
based on an image captured inside premises, (2) o�ering PoI search,
(3) supporting real-time and accurate camera pose estimation and
tracking, and (4) containing a 3D rendering engine for showing
augmented 3D objects inside the camera view.

3.2 Cloud-based System Architecture
Previous works [7, 23] showed lots of e�ort in running the vision
based localization on mobile devices. However, due to resource
demanding computer vision algorithms, the localization could only
be done within a small area or highly in�uenced the device render-
ing frame rate. To solve this issue, SeeNav adopts a client-server
architecture where compute-intensive and data-intensive tasks are
o�oaded to the backend server running on a cloud.

Backend Server �e backend server is responsible for building
and maintaining 3D point clouds, calculating navigation paths and
instructions, and estimating real time camera poses from images.
Regarding the implementation, SeeNav applies the same approach
as iMoon [6] to create 3D models (in the form of point clouds) of
indoor environments and implement an image-based localization
using SfM. Di�erently from iMoon, SeeNav takes video as an input
for 3D model generation, and is implemented using an open source
library OpenMVG6. Since indoor environments may change over
time, our service supports partial 3D model updates, when a video
of the changed scene is uploaded to the system. We build an SfM
based 3D model from the new video, match and append it to an
already existing 3D point cloud and remove the points from the old
point cloud that overlap with the new one. �e image-based local-
ization service accepts a smartphone-taken photo as an input, and
calculates an accurate position and orientation (pose) of the device
based on feature matching. �e hybrid approach that combines
image-based localization and inertial tracking will be detailed in
Section 4. Since we execute localization services on a cloud which
already holds 3D point clouds and venue maps, we also utilize the
cloud environment for launching navigation service and PoI search.
Our navigation service is based on an A* (A star) algorithm and
can quickly �nd a waypoint path between a given source and a
destination.

Android Client �e client collects visual and inertial sensor
data based on context (described in Section 4.2), conducts a light-
weight sensor fusion (described in Section 4.1), and provides user
interfaces. As shown in Figure 2, SeeNav Android client provides
user interfaces for browsing a top-down �oor plan, locating and dis-
playing user’s position on the �oor plan, searching for PoIs, �nding

6open Multiple View Geometry library h�ps://github.com/openMVG/openMVG
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paths to a chosen destination, and guiding the user to the desti-
nation using AR. To reduce power usage and provide impressive
visuals, we designed and developed a light weight 3D rendering
engine for AR. Our 3D rendering engine is based on Android frame-
work Java bindings for OpenGL, thus provides rapid startup times
and high frame rates. It contains all the essential parts of a ren-
dering engine, including textured objects rendering, hierarchical
scene graphs, external resource loading, caching and drawing. We
analyzed the energy e�ciency of the engine as shown in Section 5.2.
We also evaluated the usability of our mobile client through a small-
scale user study that is explained in detail in Section 5.3.

�e above-described cloud-based architecture design of SeeNav
allows us to balance the trade-o� between accuracy, response de-
lay, and energy e�ciency. Firstly, o�oading compute-intensive
vision-based mapping and localization from resource-constrained
mobile devices to the cloud reduces response delay and energy
consumption. Secondly, downloading and storing a 3D point cloud
– that is necessary for calculating camera poses – locally on a device
would require a signi�cant amount of the device networking and
storage resources. For example, the size of a 3D point cloud can
be more than 200 MB for a medium-size (around 4500m2) venue.
�irdly, the 3D point clouds need to be updated when the indoor
scenes change. It is much easier to maintain and update the point
clouds when they are stored in the cloud instead of the end devices.
Finally, executing localization on a cloud enables easier deployment
and maintenance of client applications on di�erent consumer de-
vices including smart phones, watches or glasses that may have
di�erent operating systems (i.e. Android, iOS, Windows), because
client code is leaner and the only requirements for an end user
device is to capture photos, collect data from inertial sensors and
communicate with the server.

4 ROBUST AND ENERGY-EFFICIENT
TRACKING

We propose to complement the marker-less visual tracking with an
inertial tracking to improve the robustness and energy-e�ciency.
Regarding the robustness, whenever an image-based localization
fails due to occlusion or lack of visual features, a subsequent camera
pose can be estimated based on the inertial sensors alone. Mean-
while, we minimize the frequency of the image-based localization,
in order to reduce the energy consumption while maintaining a
su�cient level of tracking accuracy.

4.1 Sensor Fusion for Robust Tracking
Figure 3 illustrates the work�ow of camera pose estimation when
both visual and inertial sensors data is available. Here, the visual
data refers to an image captured from a rear-facing camera of a
hand-held device, while the inertial sensor data refers to gyroscope
and accelerometer readings. We omit using an integrated digital
compass, because magnetic �elds are highly preturbed indoors [2]
and compass readings may change signi�cantly while passing by
inductive or magnetic devices, computers, or metal structures. As
we obtain an initial camera pose from the image-based localization
service, we rely on the inertial sensors for estimating only delta
rotations and therefore can completely avoid using a biased compass
sensor.

Figure 3: �e work�ow of a hybrid tracking. �e input in-
cludes both image and inertial sensor data.

Figure 4: Estimation of the rotation angle α between orienta-
tions. ~s and ~v represent the estimates of orientations based
on inertial sensor data and image, respectively.

�e work�ow starts by capturing an image from a camera pre-
view session and obtaining the current device orientation from a
gyroscope. We have to note, that in order to start the tracking, our
algorithm has to obtain an initial position and orientation from the
image based localization. �e image is sent to the backend server
for calculating a 6 DOF camera pose. Once the response arrives, the
mobile client calculates the rotation angle α between projections
of an inertial sensor based and an image based direction vectors (as
illustrated in Figure 4). A�er that, the mobile client estimates the
�oor level based on a relative device orientation, and rotates the
augmented �oor level by the angle α to properly align real-world
and augmented scenes together. At the end, the mobile client o�-
sets the augmented scene according to the position returned from
the image-based localization. �e implementations of the inertial
tracking and the �oor level estimation are described below.

Rotation Estimation We utilize an Android framework rota-
tion vector sensor7 that combines readings of accelerometer and
gyroscope to provide a quaternion rotation of a device. As the
estimated rotation is noisy, we address this issue by averaging
quaternion rotations. Concerning the high sensor sampling rate
and the requirement for a low latency, we apply a fast averaging
algorithm [18] to calculate the average over a small set of samples.
In practice, we empirically set the number of samples to 20, which
is enough to make the rotation tracking ji�er-free and smooth.

Calculation of Position O�set Obtaining a relative position
o�set is not a trivial task. Previous works show that user’s position
can be tracked using dead-reckoning [11, 14] techniques. Dead-
reckoning is a process of calculating a current position based on
a previous position and the estimated speed over an elapsed time.
7h�ps://source.android.com/devices/sensors/sensor-types.html#game rotation
vector
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Figure 5: �e work�ow of inertial tracking.

(a) Without calibration (b) With calibration

Figure 6: Floor level estimation without/with using iner-
tial sensors for calibration. Solid blue lines represent aug-
mented world orientations, and dashed red lines represent
real world �oor orientations.

Step detection sensors became pervasive in recent years with an
increasing number of phones that have a dedicated step detection
hardware. Furthermore, the step detection proved to be more accu-
rate than tracking the accelerometer readings [14]. While imaging
data is not available or a�er the image-based localization fails,
SeeNav utilizes the step detection to calculate subsequent positions
of a user. As described in Figure 5, once a step is detected, the
mobile client calculates a new position by o�se�ing the previous
one by a step length towards the facing direction of the device. We
assume that the user walks approximately towards the same way
as the phone is facing. Concerning the dri� problem of the dead-
reckoning, the image-based localization is needed for a trajectory
calibration. �e scheduling between the image-based localization
and the inertial tracking must take into account both accuracy and
energy e�ciency. �e detailed tracking algorithm is described in
Section 4.2.

Floor Level Estimation We render an arti�cial �oor plane at
a �oor level to check how the augmented world will be placed on
top of the camera view. If there is an error in the pose estimation,
the �oor plane looks tilted in respect to the real world �oor (see
Figure 6a). Even without rendering the augmented �oor it is easy
to spot that augmented objects that were supposed to be placed
on the ground are either “�ying” or “buried” below the ground. In
order to eliminate the errors in the �oor level estimation, we use
the inertial sensors to estimate orientations of the device and the
augmented �oor. We obtain a quaternion rotation of a device in
respect to an Earth’s gravity vector, and exploiting the fact that

a �oor level indoors is mostly �at, we estimate augmented �oor
rotation, which then perfectly aligns with the ground level, visible
in the camera view (see Figure 6b).

4.2 Context-aware Task Scheduling for Energy
Savings

�e aim of this work is not only to provide accurate tracking but
to also minimize power consumption. As presented in the previous
section, we track a user using inertial sensors between the two
consecutive image based localization requests. As we show later in
Section 5.2, the image based tracking requires much more power
than the inertial tracking. In the AR view, we could issue a new
localization request whenever the previous one is completed to have
the best accuracy of the tracking. However, this would dramatically
increase the number of requests made to the server, and would also
increase the power consumption on a mobile device.

To minimize the energy consumption while maintaining the
accuracy, SeeNav adopts the following four mechanisms. 1) When
a user is in a stationary position (only changing an orientation),
we do not issue localization requests unless a user turns by at least
δ degrees, since we already know the position of the user and
have a fairly accurate orientation estimation. 2) Once the user
starts walking, we obtain an image based location every T steps
to quickly account for any errors caused by the step detection. 3)
A�er obtaining each image based location, we calculate the distance
error ϵ between last known sensor based position and the image
based position. If ϵ > E + ε , then we start increasing the frequency
of the image based localization (T = T − 1). When the error is
ϵ < E − ε , we start decreasing the frequency (T = T + 1). Here,
E = 1 meter, ε = 0.15 meter. We also enforce constraints on T :
Tmin = 5 and Tmax = 30. 4) �e only time when two subsequent
requests are sent to the server is when localization query fails and
the client application needs to send another image for localization.
�roughout extensive tests, explained in Section 5.1, we show that
optimal values for our case areT = 20 steps and δ = 40 degrees, thus
we use those values to initialize our adaptive tracking algorithm.

5 EVALUATION
We have evaluated the performance and energy e�ciency of SeeNav
through experiments. More speci�cally, we analyzed the accuracy
of the tracking algorithm described in Section 4.2 using di�erent
image sampling frequencies, and measured processing delay of
localization requests. Regarding energy-e�ciency, the mean power
consumption of the SeeNav client in the AR mode is compared with
other AR applications. In addition, we analyze the breakdown of
the power consumption between so�ware features. We have also
conducted a small-scale user study to evaluate the usability and
e�ciency of the system in real environments. �e experimental
results are discussed in this section.

5.1 Performance
We evaluated the accuracy of our tracking algorithm through a
�eld test in a university building that contains classrooms, long
corridors, a restaurant area and a library. We �rstly took videos of
the premises and built a 3D point cloud using SfM. �e point cloud
contained more than 450.000 points and covered approximately

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

190



(a) 5 steps (b) 10 steps (c) 20 steps (d) 10 steps + angle (e) 20 steps + angle

Figure 7: Comparison between planned navigation paths (in solid blue lines) and the estimated trajectories (dashed orange
lines). For the estimated paths, small dots represent positions estimated using inertial sensors, while larger dots represent
positions obtained from image-based localization. During the tests, users always walked along the planned paths. From le�
to right: a) Image based localization done every 5 steps, b) every 10 steps, c) every 20 steps, d) every 10 steps or when a turn
was detected, e) every 20 steps or when a turn was detected.

1500m2. It was used for image-based localization and path �nding.
In this venue we achieved position accuracy of less than 1 meter
and facing direction accuracy of less than 5 degrees, 90% of the
time. We then used the SeeNav Android client to conduct an AR
navigation in the following four steps.

(1) Open the Android client and obtain the initial position
based on a photo (see Figure 2)

(2) Choose a destination inside the premises
(3) Begin navigating and follow the planned navigation path

(solid blue line in Figure 7)
(4) Finish the test once the application reports that the desti-

nation is reached

During the test we recorded every position update in the client
application and drawn them as a path alongside a navigation route
planned by the backend system. As presented in Figure 7, solid
blue paths represent system generated navigation routes, which
we followed, while dashed orange lines show the path positions
estimated by the mobile client. Cyan and red markers represent
position of a user and a destination, respectively, when the system
noti�ed that the user has reached the destination.

As described in Section 4.2, the image-based localization is sched-
uled according to the number of accumulated steps a�er ge�ing the
previous image-based location, and the relative rotation. Figures 7a
- 7c show the results when the client issued localization requests
every 5, 10 and 20 steps. While having localization every 5 steps
showed a good accuracy, increasing the step interval resulted in
notable navigation errors. It is clearly visible in the Figure 7c, where
the image based localization was done only every 20 steps. �is
low frequency of the image-based localization allowed large dri�s,
especially a�er a user turned. According to Figures 7d - 7e, if the
image-based localization was done also a�er every signi�cant turn,
the overall tracking accuracy dramatically improves, even at the
interval of 20 steps. Our later tests concluded that the best threshold
for detecting a turn was around 40 degrees. When the threshold

App idle
(17.6%)

Sensors
(2.5%)

3D rendering
(12.4%)

Localization
(25.4%)

Camera
(42.2%)

(a)

App idle
(22.4%)

Sensors
(3.2%)

3D rendering
(15.8%)

Localization
(4.8%)

Camera
(53.8%)

(b)

(c)

Figure 8: (a) Power consumption breakdown for the di�er-
ent features and components (b)�e breakdown a�er apply-
ing the adaptive tracking algorithm (c) Setup of the power
measurement

was smaller, due to the movement of a user, the image based lo-
calization was issued even when the user was going along rather
straight paths. When it was larger, some turns were undetected.

During the tests we also measured response delays of the image
based localization. We recorded the duration from when a photo
is sent from the client until a camera pose is returned. �e mean
response delay is 466.83ms (σ = 99.8). During the tests, the client
phone was connected to a Wi-Fi network and was sending images
of an average size of 222KB (σ = 86.19).
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5.2 Energy e�ciency
To evaluate the power consumption of the SeeNav Android client in
the AR mode, we utilized Samsung Galaxy S4(GT-I9506) smartphone
with Android 6.0.1 operating system. We connected the device to a
Monsoon power monitor tool8 to monitor the power consumption
(see Figure 8c).

To get an initial understanding about the problem of power
consumption, we evaluated 5 freely available AR applications: cre-
ativiTIC and Animal 4D+ that are based on Vuforia9 AR engine,
Kudan Simple Samples which is based on Kudan10 framework and
Arilyn11. We also tested Campus Maps mobile application that has
similar functionality to our AR navigation system. For a compar-
ison, we included a widely used Google Maps mobile application
in navigation mode. We ran each application for 60 seconds and
measured the mean power consumption. We did not consider the
power consumption during an application start up phase but rather
during a regular use, e.g. real time tracking for the �rst four appli-
cations, image based localization mode for the Campus Maps and
navigation modes for Google Maps and SeeNav.

Figure 1 shows the power consumption of the benchmarked
applications. It is instantly clear that AR based applications con-
sume way more energy than a contemporary navigation application,
which proves that it is challenging to make an energy e�cient AR
based navigation application. Kudan, Vuforia and Arilyn based appli-
cations showed very similar results, while Campus Maps consumed
the most power. SeeNav, on the other hand, showed to be more
power e�cient than the other AR based applications. However, it
still consumes almost twice the power of Google Maps.

In order to understand which components of our client appli-
cation contribute the most towards the power consumption, we
executed the application with its di�erent modules turned o�. We
started with a setup where the application is showing only a 2D
map and has its basic user interface (UI) initialized. We then enabled
camera view, inertial tracking, augmented 3D scene rendering, and
image based localization services one by one. We ran the tests 10
times for 30 seconds and recorded the mean power consumption.
For the localization component test, we sent localization requests
periodically, every 1 second. A�er we obtained mean power con-
sumption values from each aforementioned component, we sub-
tracted the mean power consumption of an idle application to get
raw power consumption for each component.

�e comparison of power consumption for di�erent mobile ap-
plication components is presented in Figure 8a. It is noteworthy
to mention, that the camera view consumes more than 42% of to-
tal power. Even a�er changing the camera resolution from the
highest to the lowest, the power usage di�erence was negligible.
During our experiments, we did not use camera �ash light. Since
the camera view is an essential component of an AR application,
the power consumption of camera cannot be removed. �e iner-
tial tracking accounted only for 2.5% of power consumption and
the augmented scene rendering for 12.4%. However, the image-
based localization contributed signi�cantly to the overall power
consumption (25.4%). It is due to transmi�ing localization requests
8h�ps://www.msoon.com/LabEquipment/PowerMonitor
9h�ps://www.vuforia.com/
10h�ps://www.kudan.eu/
11h�p://www.arilyn.�

Figure 9: Recorded paths of study participants

and receiving responses from the server. We calculated that each
localization request on average consumes 485.62J . �erefore, it is
clear that decreasing the frequency of the server requests helps
to notably reduce overall power consumption. In practice, due to
a dynamic fashion of our context aware tracking algorithm, we
send image-based localization requests much less o�en than once
every second. �ough it highly depends on premises, planned paths
and users behavior, during our case study, explained in Section 5.3,
we show that localization requests are typically issued every 7.2
seconds. Figure 8b shows a power consumption breakdown with
our adaptive tracking enabled. Obviously, the power consumption
of the localization component signi�cantly reduces a�er applying
the adaptive tracking algorithm.

5.3 User study
In order to prove usefulness and performance of our system, we
conducted a small scale user study. We randomly asked 17 partic-
ipants (8 female and 9 male) whom we met in our o�ce building
to try out SeeNav. All the participants were in age groups of 20-29
and 30-39 years. All the participants admi�ed being lost in indoors
at least sometimes and 16 of them agreed that indoor navigation
would be useful for them.

Each participant was asked to complete the following tasks: (1)
Use localization function to locate themselves within premises. (2)
Select a destination. (3) Follow the navigation arrow in the AR mode
to reach the destination. During each study case, we observed the
participants but did not interfere with them in any way. We also
collected the following data on our mobile client: 1) traces where a
participant walked, 2) time to reach the destination, 3) a number of
image-based localization requests. Figure 9 shows all recorded paths
that the study participants took. �e participants travelled in total
1653m. Regarding image-based localization, a request was issued
on average once every 7.22s (σ = 2.21), or around 9 requests per
minute. �erefore, comparing with power consumption of image-
based localization when the localization is done every second (see
Figure 8a), our adaptive tracking algorithm achieved more than
85% energy savings on localization and decreased the total amount
of application power consumption by 21.56%.

Every participant was asked to �ll in a survey about the user
experience. We have designed our survey questions in a way that
we could apply Likert scale [15] on the results. �e questions were:

(1) Can you locate yourself with the application?
(2) Is the location accuracy good enough?
(3) Is the AR view useful in �nding your destination?
(4) Does the navigation route show a clear and correct path

to the destination?
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Very positive Positive Neutral Negative Very negative

Figure 10: Answers to survey questions

(5) Is the �oating arrow helpful in �nding your way?
Additionally, each participant could write additional comments at
the end of the survey. Figure 10 shows the results of the survey as
a diverged stacked chart, where colored bars represent how well
participants have felt about each feature that we asked. For example
for question 1, very positive answer is “All the time”, while the most
negative is “Never”.

�e survey shows that 88% of the participants agreed that SeeNav
provided good enough accuracy and 82% were able to easily locate
themselves in the premises. Even though 6% of the respondents
indicated that they could not easily locate themselves, all the respon-
dents successfully arrived to their destinations. A few respondents
experienced errors in �nding their way (question 4). �is was
mainly due to failures of the image based localization, since those
persons were mostly pointing the phone camera downwards. We
are planning to address the issue in a future design of SeeNav, by
introducing haptic feedback and more clear instructions for using
camera based localization. From this user study we make two im-
portant conclusions: 1) Users are not keen to keep phone upwards
even a�er instructed to do so, especially for prolonged periods of
time, 2) an intuitive AR based navigation is easy to follow and is
highly helpful for the users.

6 CONCLUSION
In this work we present SeeNav – a seamless and energy e�cient
AR navigation solution. We achieve high navigation accuracy and
reliable pose estimation by fusing visual and inertial sensor data. We
achieve low latency and minimize power consumption by adopting
a cloud-based architecture and deploying a context-aware tracking
algorithm. Finally, the user study proved our solution to be handy,
e�ective and user friendly, with numerous positive responses from
the respondents. As a future work, we plan on adding an augmented
path and augmented information boards to the mobile client, to
further enhance our AR navigation system.
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