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ABSTRACT

With the popularity of social media nowadays, tons of pho-
tos are uploaded everyday. To understand the image con-
tent, image classification becomes a very essential technique
for plenty of applications (e.g., object detection, image cap-
tion generation). Convolutional Neural Network (CNN) has
been shown as the state-of-the-art approach for image classi-
fication. However, one of the characteristics in social media
photos is that they are often applied with photo filters, espe-
cially on Instagram. We find that prior works do not aware
of this trend in social media photos and fail on filtered im-
ages. Thus, we propose a novel CNN architecture that uti-
lizes the power of pairwise constraint by combining Siamese
network and the proposed adaptive margin contrastive loss
with our discriminative pair sampling method to solve the
problem of filter bias. To the best of our knowledge, this is
the first work to tackle filter bias on CNN and achieve state-
of-the-art performance on a filtered subset of ILSVRC2012.

Categories and Subject Descriptors

1.5.4 [Computing Methodologies]: PATTERN RECOG-
NITION—Applications
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1. INTRODUCTION

With the emergence of social media in recent years, lots of
photos are uploaded everyday (e.g., 70M photos per day on
instagraml). Understanding the stories behind the photos
is becoming a strong need for analyzing the user behavior
on social media. With widespread photo editing and shar-
ing services like Instagram and Facebook, people can easily
change the lighting and the color tone by applying filters
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Figure 1: An example shows that a correctly pre-
dicted image with high confidence will be mispre-
dicted after applying photo filters. In this case, the
photo is applied with “Nashville” filter on Instagram.
We call this phenomenon filter bias.

(e.g., Hudson available in Instagram) with just a few clicks.
Based on the statistics of Instagram images, around 54% of
photos have been enhanced by filters.? Thus, considering
the side effects brought by the filtered images has become
an issue that we cannot neglect.

Recently, deep learning is playing an important role in im-
age classification. Convolutional Neural Networks (CNN),
like AlexNet [6], VGG-Net [10] and GoogLeNet [11], achieve
state-of-the-art performance. However, most of the tradi-
tional models ignore the effects brought by photo filters in
image classification. For instance, as Figure 1 shows, a nor-
mal image which is predicted correctly with high confidence
would be messed up after applying filters while humans can
still recognize it correctly. Besides, Table 1 shows that the
performance of most of the well-known models would de-
grade drastically after simply applying filters to validation
images (e.g., top-5 accuracy from 80% to 54% on AlexNet [6]).
These results suggest the previous work in machine learning,
even with the state-of-the-art performance, are vulnerable to
the filtered images. We call this phenomenon filter bias.

A lot of work has been published on image classification
with CNN, but few of them take care of the filter bias.
Domain adaptation tackles the problem of domain shift by
adapting one model from a source domain to another target
domain. In this scenario, we can treat one filter as one do-
main and use domain adaptation works, such as [9, 14] to
deal with the filter bias. However, it might be hard to get
filter information of a photo on social media. In addition, if
we treat one filter as one domain, there would be infinitely
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Table 1: The top-1/top-5 accuracy on the origi-
nal and filtered images. The performance among
most of the state-of-the-art CNIN models degrades
severely after applying filters to the same validation
set (ILSVRC2012 Val). Here, we use filter “Valen-
cia” available on Instagram.

ILSVRC2012 Val | Without filter
AlexNet [6] 56.87%/80.30%
VGG-Net [10] 68.27%/92.50%
GoogLeNet [11] | 68.70%/88.90%

With filter
30.14%/53.70%
50.95%/74.58%
47.85%/73.02%

many domains that we need to adapt to since we can easily
change the parameters of a filter (e.g., the lighting and the
color tone) to generate a brand new filter. Moreover, the
focus of domain adaptation works is limited to one-to-one,
or many-to-one domain adaptation, and it might be prob-
lematic to adapt to the domains of all filters.

Guo and Wang [3] discover the problem that a filtered
image would harm the descriptor of SIFT and try to learn
a more robust domain-invariant descriptor. However, it is
limited in a shallow model and test on a small scale of data
and filter types. Recent works [12, 2] explore the adversarial
examples that can easily “hack” the deep CNN models. We
can take any arbitrary image and fool a state-of-the-art CNN
model to classify it as whatever class we want while the
noises we added are almost imperceptible to the human eye.
These works give us hints about the root of filter bias and
imply that it is not dependent on the CNN architecture, i.e.,
it might be suffered from the linear nature of CNN.

Thus, we propose a pairwise regularization method and
a discriminative pair sampling technique to relieve the fil-
ter bias and learn representations that are more robust and
filter-invariant. Meanwhile, we also create a challenging fil-
tered image dataset—Filter100—that contains around 1 mil-
lion filtered photos. To the best of our knowledge, this is the
first work to address the problem of filter bias on CNN-based
image classification on social media photos.

2. PROPOSED METHOD

As we stated in the previous section, we attempt to learn
filter-invariant representations that are less vulnerable to fil-
tered images. The intuitive way to solve this problem is
data augmentation. It is easy to generate filtered images
from original images; however, it is hard to generate and
include all types of filtered images for training since the size
of training data would grow excessively and training models
on this scale of images is unrealistic. Hence, we introduce a
novel CNN architecture which learns robust representations
by integrating a Siamese network with our proposed adap-
tive margin contrastive loss. Moreover, the discriminative
pair sampling prevents the size of training data from over-
growth and improves the performance. We start by gener-
ating affordable types of filtered images and use a pairwise
constraint to regularize the classification loss which helps
filter-invariant representation learning.

2.1 CNN Structure

We propose a novel CNN architecture, which is illustrated
in Figure 2. It is a Siamese network with both columns
composed by AlexNet [6] and two additional adaptive mar-
gin contrastive losses between them to force these layers to
learn filter-invariant representations. A Siamese network is a
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Figure 2: Our proposed CNN architecture for filter-
invariant representations learning. It is a Siamese
network composed of two AlexNet [6] and the ad-
ditional adaptive margin contrastive loss. Combin-
ing the classification loss with two adaptive margin
contrastive losses helps us to learn both semantic
meaningful and filter-invariant representations.

weakly-supervised learning structure first proposed by [1]. It
learns the similarity relationship from labeled pairs of data
as similar or dissimilar. Though Siamese is a two-column
architecture, the parameters of the layers on both columns
are identical. It has been shown that Siamese networks are
very effective for learning invariant representations [4, 13].

2.2 Pairwise Definition For Siamese Network

For Siamese network, it requires pairwise data for the
training process. First, we define the similar and dissimilar
pairs in our work. We treat the image pairs that are gener-
ated from the same image but with different types of filters
(we treat original images as one kind of filtered images) as
similar pair. Since the two filtered images are exactly gen-
erated from the same original image, we expect their rep-
resentations to be more similar and try to make these two
embeddings closer (e.g., dog images in Figure 3). For the
dissimilar pairs, we sample those image pairs that have the
same filter type but are drawn from different classes.

2.3 Adaptive Margin Contrastive Loss

After selecting pairwise training data, it is essential to
measure the quality of learned representations. Hence, we
propose a novel loss function based on the contrastive loss
in [4] and it is defined as the following;:

Ly (i, @), 8i,5) = (i, ) L ;
max (0, Madapt — D(xs,x;)) if 85, =0
where D(xi,2:) = ||z; — 2;||3. We denote z; and x; as the

representations from image ¢ and j respectively. s; ; equals
to 1if z; and x; are regarded as a similar pair, otherwise as a
dissimilar pair, and mgqap: is our proposed adaptive margin.
The physical meaning of adaptive margin contrastive loss is
to make the representations of similar pairs closer and try to
keep that of dissimilar pairs at least mqqapt away from each
other. The illustration of adaptive margin contrastive loss
function is shown in Figure 3. The idea of adaptive margin
Madapt is inspired by [7]. For each iteration, we calculate the
pairwise distance D of all the similar and dissimilar pairs in
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Figure 3: Illustration of adaptive margin contrastive
loss. We visualize the relationship between sample
point (star symbol), its corresponding similar pairs
(orange points) and dissimilar pairs (blue points)
on a 2D-plane. The idea is to encourage the simi-
lar pairs (generated from the same image but with
different filter types) to be closer, and keep dissim-
ilar pairs (drawn from different class but with same
filter type) at least mqdqp: apart from each other.

one batch. Then, we calculate the average pair distance
between similar pairs as meansim, as well as meang;s for
dissimilar pairs. After that, we set the adaptive margin
Madapt for each iteration as the following:

1
Madapt = Q(meansim + meandss).

The idea is to separate the representations of similar and
dissimilar pairs to avoid confusing. By using adaptive mar-
gin rather than a fixed margin, we can get rid of the effort
for tuning the margin parameter and adapt to datasets with-
out any pre-processing. We apply two adaptive margin con-
trastive losses on both pool5 and fc7 layer since they are the
last layer of the convolutional part and the fully-connected
part respectively. Therefore, the final objective loss function
of our proposed method is

L=L(X,Y)+ACo(P,S).

We denote X as the training data, Y as the labels, L. as clas-
sification loss and £, means the adaptive margin contrastive
loss we propose. P are the training pairs we sampled from
X, and S are the collections of indicators for similar and dis-
similar pairs. Hence, combining with the classification loss
and the adaptive margin contrastive loss we added, we can
learn a representation that is both semantic meaningful and
filter-invariant.

2.4 Discriminative Pair Sampling

In the training phase, we may want to learn as many pairs
as possible to avoid overfitting. However, the number of
possible pairs increases quadratically with the number of
selected filters, and makes it unrealistic to include all the
possible pairs in training set since it will be computationally
prohibitive. For instance, as described in Section 2.2, 50,000
original images with 5 types of filtered images in training set
will result in more than 10 billions of possible pairs. Intu-
itively, we can use uniform sampling to limit the number of
pairs in training data, but it will give a sub-optimal solu-
tion. Therefore, we propose a discriminative pair sampling
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method which tries to include as many informative pairs as
possible in a given number of selection. The idea is to se-
lect similar pairs whose changes of the color and lighting are
more drastic, which might be more informative for training.
For every original image, we sample similar pairs with the
probabilities proportional to the pairwise distance based on
fc7 layer representations. For instance, if we include orig-
inal images and filtered images with N types of filter, we
have all CY ™! possible similar pair combinations for every
single image g, which is denoted as U. If we want to select
k similar pairs from all possible combinations U with the
representation on fc7, which is denoted as x. We sample
similar pairs with the probabilities of each pair combination
as the following:

D(‘ri7 l’j)
Eu,UCU D(muv .’Eu) ’

where g¢; ; means the similar pair of image g with filter type
i and j. By using this discriminative pair sampling method,
we can learn in a more efficient and effective way.

3. EXPERIMENTS

Since we want to learn a both filter-invariant and semantic
meaningful representation, we use zero-shot testing, in other
words, test models on the validation images applied with
filters which are unseen in training. Therefore, we can ensure
we learned robust representations that are less vulnerable
to different types of filters. In this section, we describe the
details of the experiments we conducted.

3.1 Filter100

To generate a large scale dataset with filters, we randomly
sample 100 classes from ILSVRC2012 [8] with 500 images
per class. After that, we apply 18 types of popular filters
available on Instagram to generate filtered images and finally
form a dataset that contains 0.95M images (original images
included) in total. We call this dataset Filter100.

For one single training set, we randomly select 5 types of
filters and include the corresponding filtered images along
with the 50,000 original images as training set, which con-
tains 300,000 images in total. In validation, we use zero-shot
testing, i.e., we use the filtered validation set only contains
13 unseen filters to evaluate the robustness of learned rep-
resentations. There are total 65,000 images in a single vali-
dation set. We repeat the procedure 5 times on 5 different
train/validation sets and report the average accuracy of the
5 sets to reduce the bias caused by the selection of filters.

Prob(gi,;) =

3.2 Experiment Settings

For the implementation, we use Caffe [5] to implement
our adaptive margin contrastive loss layer and the Siamese
network structure as we illustrated in Figure 2. We sam-
ple 6 similar pairs and 6 dissimilar pairs from every original
images, which results in 0.6M training pairs for each train-
ing set by using our discriminative pair sampling method.
After that, we use the pre-trained Caffenet model as the
initial weights in our fine-tuning process by using the CNN
architecture we designed.

3.3 Experiment Results

Table 2 shows the result of pure AlexNet fine-tuned with
only 50,000 original images in Filter100 and the performance
degrades from around 80% (test on only validation images



Table 2: Our method outperforms all the other works, like pure AlexNet [6] fine-tuned on 100 classes subset
of ILSVRC2012 without any filtered images and the one fine-tuned on Filter100, on all 5 train/test sets with
different filter selections. Also, our work surpasses the state-of-the-art in domain adaptation [14] and implies
that domain adaptation cannot adapt to such a “filter domain” and cannot relieve the filter bias problem.

Set 1 Set 2 Set 3 Set4 SetH Average
AlexNet [6] (fine-tuned without filtered images) | 65.93% 66.96% 67.33% 67.93% 65.96% 66.82%
AlexNet [6] (fine-tuned on Filter100) 70.53% | 70.69% | 73.93% | 73.22% | 69.60% | 71.59%
DDC [14] 70.42% | 70.67% | 73.56% | 72.86% | 68.93% | 71.29%
Adaptive Margin Contrastive Loss + TL55% | T1.24% | 74.70% | 73.87% | 70.01% | 72.34%
Uniform Sampling (ours)
Adaptive Margin Contrastive Loss 4 71.76% | 71.65% | 74.93% | 74.19% | 70.29% | 72.56%
Discriminative Pair Sampling (ours)

with no filter) to around 67% (with filter) in all validation
set, which is concurrent with the result in Table 1. Then,
we compare with AlexNet fine-tuned with Filter100, and the
result shows that the traditional data augmentation tech-
niques reduce the performance degradation caused by filter
bias. However, our work surpasses it by utilizing pairwise
constraint. Furthermore, compare with uniform sampling,
discriminative pair sampling effectively limits the pair num-
ber in training and further improves performance. In addi-
tion, we observe that the mean distance of similar pairs on
the learned fc7 representations in our work is much smaller
than the one in other work, which is about 9 times smaller
than the one in AlexNet fine-tuned on Filter100. That is
to say, an image and its filtered images are more similar af-
ter considering pairwise constraint in the learning process,
which is coincident with our intuition. We think it is one of
the key points to learn filter-invariant representations.
Moreover, our work outperforms the state-of-the-art in
domain adaptation, DDC [14]. We treat original images
as source domain and both original and filtered images as
target domain to do supervised domain adaptation. The re-
sults indicate that it might be hard to solve filter bias by
simply adapting to such a big “filter domain.” To sum up,
we outperforms all of the literature aforementioned in all
5 train/validation set and achieves state-of-the-art perfor-
mance in image classification on social media photos.

4. CONCLUSIONS AND FUTURE WORKS

We point out the problem of filter bias in image classifi-
cation on social media photos and propose a novel CNN ar-
chitecture leveraging the pairwise constraint to relieve this
phenomenon. We propose an adaptive margin loss function
which dynamically selects the most suitable parameter for
different batches in the training process. Furthermore, the
discriminative pair sampling method we propose effectively
limits the pair number needed in training and improves the
performance. To the best of our knowledge, this is the first
work to deal with the problem of filter bias in CNN-based
image classification and our work surpasses other works and
achieve state-of-the-art performance.

Determining the optimal selection of filters included in
training is still an issue. We will exploit more cues about
how different types of filters affect the CNN model in our
future work. Moreover, though the implementation of our
architecture is based on AlexNet [6], the adaptive margin
contrastive loss we propose is not limited to AlexNet. We
will work on other state-of-the-art CNN architectures, like
GoogLeNet [11] and VGG-Net [10] to find out a generic
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method that can learn a more filter-invariant and seman-
tic meaningful representation to improve the performance
of image classification on social media photos.
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