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ABSTRACT 1 INTRODUCTION

Driven by the increasing popular image-dominated social networks,
such as Instagram, Pinterest and Chictopica, sharing of daily-life
street photos now plays an influential role in fashion adoption be-
tween fashion trend-setters and followers. In this work, we propose
a deep learning based fine-grained embedding learning approach
for street fashion analysis by leveraging user-generated street fash-
ion data. Specifically, we present QuadNet, an effective CNN based
image embedding network driven by both multi-task classifica-
tion loss and neighbor-constrained similarity loss. The latter loss
function is computed with a novel quadruplet loss function, which
considers both hard and soft positive neighbors as well as a negative
neighbor for each anchor image. The embedded feature learned
from co-optimization is effective for both fine-grained classification
task and image retrieval task. Quantitative evaluation on a newly
collected large-scale multi-task street photo dataset shows that
our QuadNet outperforms the state-of-the-art triplet network by a
significant margin. In order to further evaluate the effectiveness of
the learned embedding, we analyze and trace the fashion trends of
New York City from 2011 to 2016. In our analysis, we are able to
identify some short-term and long-term fashion styles.
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Mainstream fashion often appropriates street fashion trends as influ-
ences. As an increasing number of users are obsessed with sharing
their fashionable street photos on social media platforms, street
style has become a driving force of fashion trends. By distribut-
ing dressing ideas through the shared street photos, trend setters
(e.g. celebrities and fashion bloggers) are believed to play an impor-
tant role in influencing the personal fashion styles of their followers.
Popular fashion brands even have designed their products based
on influential bloggers!. Meanwhile, the availability of large-scale
street data motivates researchers to analyze street fashion due to its
societal and economic impact. The analytics and applications cover
a wide range of topics, such as fashion photo segmentation [19, 35—
37], fashion style classification [13, 17, 25], street-to-shop clothing
retrieval [14, 16, 20], and data analysis [2, 24, 29, 34].

Street photos collected from image-dominated social network
often consists of weakly-labeled metadata describing fine-grained
image attributes. While most of the previous work focuses on a par-
ticular recognition task, such as clothing parsing [36] and fashion
style classification [13], in fact, street photos contain multiple high-
level attributes that are crucial for fashion analysis. For example, the
particular combination of garments in the given image is strongly as-
sociated with different styles and a particular season. That is to say,
fashion image recognition is genuinely a multi-task classification
problem where a given image has distinct fine-grained attributes,
which can be categorized into single label attributes (i.e. season and
style) or multi-label attributes (i.e. garment categories).

On the other hand, street fashion analysis is highly related to
image recognition and image retrieval tasks. More specifically, in or-
der to provide insights on the noisy street photos, there exist three
fundamental and specific tasks, namely automated street photo an-
notation, street photo retrieval, and fashion trends analysis. An illus-
tration of these tasks is shown in Figure 1. Although it is possible to
design a specialized model for each task, a more efficient approach
is to learn a general and robust feature embedding model from large-
scale user-generated street photos. Once the embedding has been
produced, various analytics and applications can be conducted by
performing clustering or other algorithms in the embedding space.
A straightforward approach to learning such embedding is to use a

Uhttp://fashionista.com/2016/03/style-bloggers-2016
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(a) Street photo auto-annotation (b) Street photo retrieval

(c) Fashion trends analysis: mining popular dressing patterns

Figure 1: Three fundamental tasks for street fashion analysis.

fine-tuned CNN that minimizes the classification loss [12], i.e. ex-
tracting features from the last fully connected layer as embedded
feature. However, this simple solution suffers from two main draw-
backs. First, the learned embedding is usually high-dimensional.
For example, VGG-16 network [26] has a dimensionality of 4096.
Thus, it incurs high overheads for retrieval task. Second, although
the learned embedding has sufficient discriminative capacity that
can be used for the classification task, it is not good enough for
similarity metric. This is because the objective of a classification
task is to learn a clear decision boundary between different classes.
Therefore, the distance between two embeddings may not precisely
reflect the semantic similarity of the corresponding photos.

To address the above issues, we propose a novel embedding
learning network called QuadNet for street fashion analysis, which
produces lower dimensional embeddings by incorporating a new
neighbor-based similarity constraint. Specifically, QuadNet consists
of four identical CNNs to perform embedding learning, where the
shared CNN is jointly optimized with a multi-task classification loss
and a neighbor-constrained quadruplet loss. The multi-task clas-
sification loss is designed for learning the discriminative feature
representation that can perform label prediction for multiple tasks.
The proposed quadruplet loss is designed for similarity metric learn-
ing, where the distance constraints between the embeddings of an
anchor image and its different types of neighbors are encoded. Quan-
titative evaluation on the multi-task street photo dataset shows that
our QuadNet outperforms the state-of-the-art triplet network on
both classification and retrieval tasks. In addition, we demonstrate
the efficacy of the learned embedding by analyzing the fashion
trends of New York City from 2011 to 2016.

Our contributions are summarized as follows:

e We propose a novel neighbor-constrained embedding learn-
ing network called QuadNet for street fashion analysis. A
new quadruplet loss is designed for similarity metric learn-
ing by considering both hard and soft positive neighbors as
well as a negative neighbor for each anchor image.

e We collected a new multi-task street photos dataset, namely
Street Fashion Style (SFS) dataset, with a total of 293,105 posts
from Chictopia for fashion analysis. Each image consists of
weakly-labeled multi-task ground-truth, including season,
occasion, fashion style, garment categories, geographical
and year information.

e Quantitative evaluation on SFS dataset shows the proposed
QuadNet outperforms the conventional triplet network by a
significant margin. A fashion trends analysis of New York
city further demonstrates the efficacy of the learned embed-
ding.
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2 RELATED WORK
2.1 Street Data Analysis

In recent years, influenced by large-scale street data and the de-
mand in the fashion market, researchers have made active research
progress in street data analysis. The early work focuses on clothing
parsing which simultaneously performs garment item segmentation
and labeling on fashion photos [19, 35-37]. This task is extremely
challenging due to the wide variety of garment items, possible vari-
ations in combination, layering, and occlusion. Another stream
of research focuses on the cross-domain clothing retrieval prob-
lem, which aims to find the exact or similar clothing from online
stores from a given a daily street photo [16, 20]. Very recently,
Jiang et al. [14] proposed a deep cross-triplet embedding algorithm
to jointly solve the bi-directional shop-to-street and street-to-shop
clothing retrieval problems. One unique classification problem on
fashion analysis is the fashion style classification, where fashion
photos are classified into five categories [13, 17, 25]. Fashion anal-
ysis with street data has received increasing attentions in recent
year [2, 24, 29, 34]. Vittayakorn et al. [29] analyzed how fashion
trends transfer from runway collections to the dressing patterns in
real life. Yamaguchi et al. [34] presented a vision-based approach to
quantitatively evaluate the influence of social factors and content
factors on popularity in a large real-world fashion social network.
Chen et al. [2] discovered fashion trends in New York City by uti-
lizing semantic clothing attributes (e.g. color, cut, head accessories,
etc.). Simo-Serra et al. [24] utilized a conditional random field model
to predict how fashionable a person looks on a photograph and
suggest improvements to improve her/his appeal.

Different from most recent work, we propose to learn a neighbor-
constrained embedding for street fashion analysis, which enables
many practical tasks such as street photo annotation, street photo
retrieval and fashion trends analysis. Our work is similar to [25].
The main difference is that we propose a unified framework for both
classification and feature embedding learning by jointly optimizing
the classification loss and a new neighbor-constrained quadruplet
loss, whereas [25] used the classification loss to aid the learning of
the embedded feature and an independent classifier is trained with
the learned embedding.

2.2 Multi-label Annotation and Classification

Multi-label image annotation is a fundamental and challenging
research problem. Given an unseen image, the goal is to predict
multiple semantic labels. Makadia et al. [21] proposed a simple
nearest neighbor-based tag transfer approach. Guillaumin et al. [8]
proposed a discriminative framework that combines a weighted
nearest-neighbor model with metric learning capabilities for this
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task. Weston et al. [32] introduced a scalable model by learning
a joint representation of images and annotations that optimize
precision at the top of the ranked list of annotations for a given
image. Chen et al. [3] presented an image tagging method with two
simple linear mappings that are co-regularized in a joint convex
loss function. These above works focus on designing hand-crafted
visual features to improve the accuracy of multi-label annotation. In
contrast to aforementioned approaches, CNNs have been studied to
solve multi-label annotation problem [7, 15, 33]. Johnson et al. [15]
proposed a parametric visual model based on CNNs, where image
metadata is exploited to generate neighborhoods of images. More
recently, image annotation has been formulated as a classification
problem [7, 33]. Gong et al. [7] trained CNNs with the weighted
approximated-ranking loss. Wu et al. [33] addressed the annotation
problem with a semi-supervised approach by jointly optimizing
a weakly weighted pairwise ranking loss and a triplet similarity
loss. Similar with [7], we formulate street photo annotation as a
multi-task classification problem.

2.3 Deep Metric Learning

Deep metric learning has achieved promising results in various
tasks using CNNs based on contrastive loss [1, 9] or triplet loss [4,
10, 23, 30, 38]. The objective is to learn a lower dimensional feature
embedding that captures the semantic similarity among images
with the distances evaluated in the embedding space. Cui et al. [4]
proposed a framework for fine-grained visual categorization and
dataset bootstrapping using deep metric learning with humans in
the loop. Hoffer et al. [10] described a triplet network architecture
for deep metric learning. Wang et al. [30] proposed a deep ranking
model that employs a triplet-based ranking loss and an efficient on-
line triplet sampling method to learn fine-grained image similarity.
Zhang et al. [38] jointly optimized both classification loss and triplet
loss to learn fine-grained feature representation. Bell and Bala [1]
presented a method to learn the visual similarity metric for interior
design with Siamese networks. Deep neural networks with Siamese
or triplet architecture have also been applied to the problem of face
verification, alignment, and recognition [11, 23]. Extending from
pairwise or triplet-wise approaches, Law [18] introduced an image
similarity learning framework with the quadruplet-wise constraints,
while Ustinova [27] presented a Histogram loss for learning deep
embeddings. Likewise, our proposed quadruple also extends from
triplet loss. It should be noted that our quadruple loss has different
definition compared with the quadruplet-wise constraints proposed
in [18]. Different from the triplet loss designed for minimizing the
distance between an anchor image and a positive neighbor, and
maximizing the distance between the anchor image and a negative
neighbor, the proposed quadruple loss enhances the similarity con-
straint by differentiating hard positive neighbor and soft positive
neighbor. The experimental results quantitatively show that our
quadruple loss outperforms the conventional triplet loss.

3 PROPOSED ARCHITECTURE

We propose a unified CNN architecture called QuadNet for robust
neighbor-constrained embedding learning by exploiting the weakly
labeled street photos. For each street photo, its visual content, tags
and neighbors are jointly considered. The goal is to use the learned
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neighbor-constrained embedding learning,.

embedding for both classification and similarity estimation. The
architecture of QuadNet is illustrated in Figure 2. It computes the
embedding of an image x, f(x) € R?, where d is the dimensionality
of the learned embedding. In the training phase, QuadNet requires
four input images, including an anchor image x ¢, a hard positive
neighbor x‘i’+, a soft positive neighbor x’l?_, and a negative neighbor
x7. These four input images are independently fed into four CNNs
(with shared parameters). Two following loss layers are designed for
the neighbor-constrained embedding learning. First, a multi-task
classification loss layer is applied on the negative neighbor image
network to predict the class labels, where three fully connected
layers and corresponding softmax layers are added. Second, a novel
quadruplet loss layer is applied to Ly-normalization embedding of
all four networks. The quadruplet loss layer is designed for simi-
larity metric learning, where the distance constraints between the
embeddings of an anchor image and its different types of neighbors
are encoded.

We jointly optimize the classification loss and the quadruplet
loss in the shared CNN. The overall loss function can be expressed
as:

Lovera1l = Lciass + AQuadLQuad (1)
where Lc14ss is the multi-task classification loss, Loyaq is the pro-
posed quadruplet loss, and Agaq is the weight parameter to control
the trade-off between the two losses terms. During the training
phase, the loss is backpropagated to each layer of the CNN and their
corresponding parameters are updated through Stochastic Gradient
Descent (SGD). Given the learned model and an input image, the
corresponding embedding can be extracted from the network for
street photo classification, retrieval, or trend analysis.

3.1 Multi-task Classification Loss

Annotation of street photos is naturally a multi-task labeling prob-
lem, where some tasks belong to the binary classification problem
(i.e. one label per image) and the others belong to the multi-label
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Figure 3: Illustration of distance constraints in quadruplet loss.

classification problem (i.e. one or more labels per image). For in-
stance, the season annotation task can either be spring, summer,
fall or winter, which is mutually exclusive. On the other hand, the
garment annotation task is very common to have multiple labels,
such as {dress, hat, heels, bag}.

Considering that these classification tasks may share common
features, we utilize the shared CNN to jointly learn a unified dis-
criminative feature embedding that can perform label prediction
for multiple tasks. In this work, we define three annotation tasks,
namely season annotation, style annotation, and garment annota-
tion. Due to the difference in the classification problem, we adopt
two loss functions. Specifically, the cross entropy loss [22] is de-
fined for season and style classification, while a similar multi-label
softmax loss [7] is defined for garment classification. Given N train-
ing images x; and the corresponding season label Y, style label Y,
and garment label Y9, the loss functions of each task are defined as
follows:

1 N K

Ly = ﬁ;jzl—ygjlog(mxi)) @
1 N K;

L = N;El—n{jlog(mxi)) 3)
lN _]I(g

Ly = %;j_l—fﬂog(ﬁ(m) @

where K denotes the number of classes, i indexes images and j
indexes classes. Yifj € {0, 1}, Yl.fj € {0,1} and ij € {0, 1} denote the
ground-truth season label, style label and garment label of image x;
and class j, respectively. Note that Y/, = Y/ / Z;(:gl Y/ fj(xi) rep-
resents the softmax layer output. Finally, the overall classification
loss function Lcjass is defined as:

Lcrass = AMLs + ALy + A3Lg (5)

where A1, A3 and A3 are three weight parameters to control the trade-
off between the three losses terms. We constrain these parameters
to be positive and sum-to-one.

3.2 Proposed quadruplet Loss

The second loss function is the neighbor-constrained similarity loss.
The current state-of-the-art approach for similarity metric learning
of street photos is to employ triplet loss in metric learning [23].
Motivated in the context of nearest-neighbor classification [31],
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triplet loss minimizes the distance between an anchor image and a
positive neighbor, and maximizes the distance between the anchor
image and a negative neighbor. Triplet loss is effective when the
data on hand can be easily distinguished as (hard) positive or (hard)
negative, such as face recognition [23] and object classification [4,
38].

However, the triplet loss is not the optimal solution for street
photos as many samples consist of multiple class labels. Given a
specific anchor image, except its hard positive and negative neigh-
bors, there exists many images which are partially similar yet not
identical to the anchor image, we refer them as soft positive neigh-
bor. As illustrated in Figure 2, the input anchor image and its hard
positive neighbor share more common labels and high visual simi-
larity, whereas its soft positive neighbor share less common labels
and visual similarity with anchor image. To this end, we propose a
novel quadruplet loss, where the soft positive neighbor is differen-
tiated from the hard positive neighbor. In this work, we define the
similarity between two street photos by using the corresponding
garment and season labels. The season label can be regarded as a
soft constraint to remove the visual ambiguity of same category
of garments. For example, a winter dress and a summer dress are
both belong to the dress label yet its visual appearance is highly
different due to the season. Formally, given an image pair x; and x2,
the corresponding similarity is defined using the Jaccard similarity
function as:

Te, N Ty,

S(x1,x2) = T UT
X1 X2

(6)

where Ty, are the ground-truth garment and season labels of image
x;. This similarity function is used to sample different types of
neighbors for an anchor image.

Given a quadruplet set, where each training sample consists of
an anchor image x2, a hard positive neighbor x'l?+, a soft positive
neighbor x’l?_, and a negative neighbor x, our goal is to learn an
p+
L

embedding that assigns a short distance for < x3, x? > pairs,

a medium distance for both < x2, x? > pairs and < x?

pairs, and a long distance for < x3, x} > pairs (see Figure 3). Since
we require to compute distances in the learned feature space for
retrieval task, all features are normalized by Ly-normalization to
eliminate the scale differences. The feature normalization can be
achieved via f’(x) = f(x)/~/f (x)Tf(x).

Formally, the intuition illustrated in Figure 3 can be expressed:

,x] >

/() = FPDE+mi < IF7(3) = f/ (12
IF/ ) = £/ E +ma < IF/(3) = £/ ()2
/() = FEEDE+ms < IF/ () = F/ (12
s.t.:mp > my
s.t.:mp > m3

,xP ,X7) e Q

a P
Y (xi, x; ;

1
where m1, ma, m3 are the margin parameters that regularize the gap
between the squared Euclidean distance of the two corresponding
image pairs. Q is a specific quadruplet set and has cardinality N.
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Similar with the triplet loss, the quadruplet loss over N samples
can be defined as follows:
N
Lowd = 5 Z; [1mas (0,1 + 117 (e8) = £ ) = 1F () - £/ (D12
+max (0,ma + [/ (x8) = £/ GIE = 1f/(x8) = £ (e)IE)
+max (0,ms + |/ (xf) = £ = If (x) = £/ (D) ]

s.t.:mqg > my

®

s.t.:myp > ms3

a Pt P .n
Y(xi,x; ,x; ,X;) €Q

4 EXPERIMENT
4.1 Dataset

Currently, there exists a few public street fashion datasets, such
as Fashionista [36] and Fashion 144k [24]. However, these datasets
do not provide the required labels for our proposed street fashion
analysis. In order to facilitate this study, we collected a new street
photos dataset from Chictopia?, namely Street Fashion Style (SFS)
dataset3, where a total of 293,105 user posts are crawled. In each
post, a user usually publishes the photograph of her/his worn outfit
along with associated tags. Generally, these tags include current
season, the suitable occasion, fashion style, the detailed garment
information (e.g. category, color and brand), the geographical and
year information. The geographical and year information is used
in the fashion trends analysis (Section 4.3).

In this work, we select the labels of season, style and category of
garments as the ground-truth of the classification task. The color
labels are not considered due to the data sparseness. The season
classification task consists of four classes, namely spring, summer,
fall, and winter. For style classification, classes with small amount
of ground-truth labels are removed and 15 dominant classes are
retrained?. For garment classification, we remove small accessories
classes (e.g. bracelet, necklace and ring) as it covers little visual
region for image recognition, and retain a total of 24 dominant
classes®. To alleviate the missing label problem, we apply a simple
yet effective filtering mechanism called minimal dressing pattern,
which indicates the minimum amount of labels required to form
a dressing style. We define two basic dressing patterns: (1) dress
with shoes; and (2) upper garment with bottom garment and shoes.
Based on these constraints, we assembled a total of 85,720 images
and associated labels for our classification and retrieval analysis.

To generate the quadruplet set, we consider each of the assem-
bled images as an anchor image, and the corresponding hard pos-
itive neighbor, soft positive neighbor, and negative neighbor are
uniformly sampled with Eq. 6 using the similarity threshold 0.9, 0.3,
and 0.001, respectively. The similarity threshold for sampling the
soft positive neighbors is denoted as o, where the influence of its
selection will be discussed in Section 4.2.4. Examples of the sampled
quadruplet set are shown in Figure 4. In our experiments, we split
the data into the same training set, validation set, and test set with
a ration of 7:1:2 for both classification and retrieval experiments.

Zhttp://www.chictopia.com/

3available via https://doi.org/10.5281/zenodo.833051

4 yocker, casual, comfortable, basic, eclectic, trendy, classic, chic, urban, romantic, elegant,
bohemian, sexy, preppy, denim

5 bag, blouse, blazer, boots, cardigan, coat, dress, hat, heels, jacket, jeans, leggings, pants,
sandals, shirt, shoes, shorts, skirt, sunglasses, sweater, tights, top, t-shirt, vest
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Figure 4: Examples of the quadruplet set.

4.2 Evaluation

QuadNet extends VGG-16 network [26] by adding an additional
fully-connected layer (128D) on its 6th fully-connected layer. The
CNN model is fine-tuned with the initial weights that pre-trained
on the ImageNet dataset. We apply global normalization with zero
mean and unit variance in the preprocessing phase. No data augmen-
tation or whitening is applied in our implementation. The optimal
parameters are selected with the following steps: First, we choose
the optimal values for weight parameters 11, A2 and As. During
the fine-tuning stage, we set Aguad = 0 to ignore the influence of
quadruplet loss. Based on the intensive preliminary experiment,
the parameters are fixed as A1 = 0.3, A2 = 0.3 and A3 = 0.4. Second,
we evaluate the weight parameter Ag,aq from [0.1, 1.0] with step
size of 0.1, where Agyaq = 0.2 achieves the best performance. We
observed that if Agya1 is too large, the classification accuracy is
greatly reduced, whereas a small value leads to the slow conver-
gence of the similarity loss. On third step, we search the optimal
values for m1, my and ms. We test m; from 0.1 to 1, while mg, ms
are set around |m;/2]. Through our experiments, we empirically
set my = 0.5, my = 0.2, my = 0.3 for best performance. And as 128 is
the common dimension for feature embedding learning, here, we
empirically set the parameters feature dimension d = 128.

In this work, we mainly compare QuadNet with two baseline
methods. The first baseline is the deep model sharing the same
extended CNN architecture but using conventional triplet loss. The
second baseline is the proposed method in [25]. In the following
section, we evaluate our QuadNet in three tasks, namely classifica-
tion with deep models, classification with SVM models and image
retrieval.

4.2.1  Fashion Photo Classification with Deep Models. Due to
different types of classification, different evaluation metrics should
be employed. For season and style classification, we adopt the com-
monly used accuracy metric in multi-class classification. Following
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Table 1: The classification results of trained deep models.

. Season Style Garment
Method Dim .. ..
accuracy | accuracy | per-class precision | per-class recall ‘ overall precision ‘ overall recall

VGG_STL 4096 | 0.4113 0.2015 0.4277 0.4693 0.4966 0.5970
VGG_MTL 4096 | 0.4546 0.2602 0.4286 0.4459 0.4853 0.5719
VGG_128_MTL 128 0.4524 0.2468 0.3962 0.3434 0.4672 0.5240

| Simo-Serra et al. [25] | 128 | 0.4355 0.2119 0.2858 0.2706 0.3827 0.4317
TripletNet 128 0.5400 0.3518 0.4796 0.4347 0.5406 0.5213
QuadNet 128 | 0.6450 | 0.4338 0.6279 0.5276 0.6414 0.5954

the previous work [7], the performance of garment classification is
quantified with the following metrics:

c c c c
1 N; 1 N¢
) A
c NP c N‘q

i=1 "% i=1""i (9)
_ 1?:1 NiC _ z:g:l Nic
0= . pr o =i g
i=1 Vi =1 Vi

where P, is per-class precision, R, is per-class recall, P, is overall
precision, and R, is overall recall.
Below are the details of the comparison methods:

(1) VGG_STL: Here, we adopt the first six layers of VGG-16 mod-
els [26] as the first baseline. The VGG-16 model is fine-tuned
with single-task classification loss.

(2) VGG_MTL: Sharing the same structure with VGG_STL but fine-
tuned with multi-task classification loss

(3) VGG_128_MTL: To validate the benefits of the co-optimization
of classification loss and similarity loss, we train the same ex-
tended CNN model using only the multi-task classification loss.

(4) Simo-Serra et al. [25]: We use the network and the ranking
loss on triplets proposed in [25] to learn the embedding for
comparison.

(5) TripletNet: We jointly optimize conventional triplet loss and
multi-task classification loss with triplet network, sharing the
same CNN architecture with QuadNet.

All models are individually tuned to achieve the best perfor-
mance for fair comparisons. The classification results are reported
in Table 1. All VGG-16 based models (i.e. VGG_STL, VGG_MTL,
VGG_128_MTL, TripletNet, QuadNet) outperform Simo-Serra et al.,
which demonstrates that the network used in [25] is inferior to
VGG-16 network in terms of classification. By comparing the results
of VGG_STL and VGG_MTL, we observe that multi-task learning
improves the season and style classification. However, the gar-
ment classification performance is reduced. We also observe that
VGG_MTL outperforms VGG_128_MTL across all tasks. This may
be caused by the fact that the lower dimensional feature embedding
(in our case is 128) reduces the discriminative capacity. QuadNet and
TripletNet surpass VGG_128_MTL, which proves that joint learning
of classification loss and similarity loss does improve the classifica-
tion results substantially while the lower feature embedding does
not sacrifice the classification results. Further, we found that, for
season and style classification tasks, and the pre-class precision and
overall precision of garment, QuadNet and TripletNet outperform
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VGG_STL and VGG_MTL, which is a strong evidence of the ad-
vantages of joint learning. Finally, by comparing the classification
results of QuadNet and TripletNet, we found that our QuadNet
outperforms the state-of-the-art triplet network by a significant
margin.

4.2.2  Fashion Photo Classification with SVM Models. To eval-
uate the quality of embedded features extracted from each model,
we use the embeddings from the above deep models to train a set
of linear SVMs with L2 regularization and L2 loss [6]. It is worth
noting that the training set, test set and validation set are same
as that used in previous classification tasks. The training data is
balanced when training the garment classifier. The results are re-
ported in Table 2. To test the impact of Ly-normalization towards
classification, we introduce TripletNet_I2 and QuadNet_I2, which
add a Ly-normalization layer on TripletNet and QuadNet, respec-
tively. We first compare the classification results between Table 1
and Table 2. For each embedding network, the season accuracy and
style accuracy in Table 2 are both very close to its corresponding
terms in Table 1. It demonstrates the effectiveness of embedded
features trained with deep models. For the garment classification,
the per-class precision and overall precision drops from Table 1 to
Table 2, while per-class recall and overall recall increases for each
embedding model. This may be caused by the different training pro-
cesses. For these deep models, we train a single softmax classifier,
where the SVM models consist of 24 independent binary classi-
fiers for each garment label. The results indicate that deep models
are better at dealing with multi-label classification compared with
SVMs. Then, by comparing the classification results in Table 2, our
QuadNet and QuadNet_I2 achieve the best performance in each
evaluation metric. By comparing the classification results between
two pairs, (TripletNet, TripletNet_I2) and (QuadNet, QuadNet_l2),
we found that Ly-normalization has little impact on classification.

4.2.3  Fashion Photo Retrieval. To evaluate how well the learned
embedding can be used as a distance metric, we use an image-to-
image retrieval evaluation, where the Euclidean distance between
two embeddings is used to calculate the semantic similarity of the
corresponding photos. Specifically, 5,000 images are randomly se-
lected from the test set as query set. For each query image, its
K-nearest neighbors are retrieved from the remaining test set. To
decide whether two images are relevant or not, one way is to use
crowdsourcing strategy. To avoid labor-intensive manual labeling,
we use the existing image labels. Based on the previous similarity
function Eq. 6 that samples these neighbors, we set the threshold to
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Table 2: The classification results of trained SVM models.

Method Dim Season Style Garment
accuracy | accuracy | per-class precision ‘ per-class recall ‘ overall precision ‘ overal recall
VGG_STL 4096 0.4169 0.2121 0.3478 0.6075 0.3797 0.6061
VGG_MTL 4096 0.4434 0.2315 0.3230 0.5969 0.3449 0.5921
| Simo-Serra et al. [25] | 128 | 0.4594 0.2048 0.2772 \ 0.3524 \ 0.3050 | 03395
TripletNet 128 0.5978 0.3411 0.3730 0.5981 0.4138 0.5858
TripletNet_l12 128 0.5951 0.3348 0.3756 0.5964 0.4176 0.5838
QuadNet 128 0.6537 0.4280 0.4401 0.6667 0.4992 0.6650
QuadNet_l2 128 0.6522 0.4161 0.4365 0.6685 0.4940 0.6664
QuadNet_[2 QuadNet_[2 QuadNet_[2
QuadNet QuadNet QuadNet
TripletNet_I2 TripletNet_[2 TripletNet_I2
TripletNet TripletNet r, | 8 o v TripletNet
Simo-Serra et al. Simo-Serra et al. & q w"‘li‘ Simo-Serra et al. Jﬁfu.%
i
- I3 T
VGG_MTL ! VGG_MTL &&J&& VGG_MTL
it L 1

Figure 5: Some examples of top-5 retrieval results.

judge the relevance of two images as 0.3, which is the same value for
sampling soft positive neighbors. The intuition is that the relevant
results are at least the positive neighbors of a query image. The
performance is shown in Figure 6, where Precision@K is utilized as
the evaluation metric and six embeddings are compared. As shown,
VGG_MTL achieves the worst performance, which indicates that
fine-tuned CNN embeddings are not suitable for measuring the
semantic similarity between street photos. Overall, QuadNet_I2
achieves the best performance, followed by QuadNet, TripletNet_l2,
TripletNet, and Simo-Serra et al. [25], which demonstrates the effec-
tiveness of our proposed quadruple loss. By comparing the feature
embeddings with or without Ly-normalization, we found that L,-
normalization is essential for measuring image similarity. Examples
of top-5 retrieval results are shown in Figure 5.

4.2.4 Discussions. In our QuadNet, the classification loss can be
applied on one of the four embedded layers. Here, we evaluate the
impact of the sensitivity of this selection. From the experimental
results, we found that QuadNet gives the best performance when
the classification is applied to the negative neighbor, followed by
the hard positive neighbor and the soft positive neighbor. Optimiz-
ing the classification loss with the anchor image gives the lowest
performance. Similar results are observed with TripletNet. Then,
we test the influence of 0. With the optimal parameter setting, we
evaluate o in the range of [0.2, 0.8] with step size of 0.1. From the
classification results of these deep models, we found that the varia-
tions of each evaluation metric (i.e. accuracy of season, accuracy of
style, precision and recall of garment) are within 4% — 5% difference.
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Figure 6: Evaluation results of image-to-image retrieval task.

4.3 Street Fashion Trends Analysis

Mining the trends of popular fashion items and dressing patterns
from social media data are crucial for fashion marketers and de-
signers. Here, we attempt to trace the fashion trends of New York
City from 2011 to 2016 with the learned embedding and additional
information (i.e. geographical and year information). New York City
is chosen for our analysis because of its reputation as the fashion
capital of the world®. Note that we only consider the fashion trends
for female users due to the scarcity of male users’ posts. By utilizing
the geographical and year information from SFS dataset, we obtain

Chttp://www.vogue.co.uk/article/new-york-is-crowned-fashion- global- capital
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a total of 12,835 posts of New York City from 2011 to 2016 (2011:
2,595 posts; 2012: 2,900 posts; 2013: 2,812 posts; 2014: 1,994 posts;
2015: 1,033 posts; 2016: 1,501 posts). These posts are all mapped into
a unified embedding space using only their visual information with
QuadNet_I2. To observe the common dressing patterns or fashion
items from the generated embedding space for each year, we pro-
duce a visualization tool for fashion trends analysis called fashion
trend map. First, we reduce the original 128 dimension embeddings
to 2 dimensions with t-SNE [28]. Then, we employ agglomerative
hierarchical clustering algorithm [5] to cluster these posts. Based on
preliminary experiments, we set the maximum number of clusters
to 20. Thus, similar dressing patterns and fashion items are mapped
into the same cluster or adjacent clusters. If a specific dressing
pattern or item is popular, it may occur in multiple clusters. Due
to space constraints, we only display the fashion trend map from
2011-2013 (see Figure 7). More visualization results are provided in
the supplementary material.

By leveraging the fashion trend map from 2011 to 2016, we made
the following observations: (1) In these generated clusters, except
some noisy clusters that have no common fashion item or dressing
pattern, we can observe one or two dominant fashion items and
dressing patterns from each cluster as shown with the representa-
tive photos. For example, cluster 5, 6, 17, 19 are the regions of pants
and jeans, while the popular dressing patterns are jeans/pants with
shirt/top. (2) Some dressing pattern or item will be repeated for
a few years, such as pure color pants (2011-2013), dress with belt
(2011-2012), pure color shorts (2011-2012), distressed jeans (2013-
2016), print dress (2013-2016), print pants (2015-2016), and black
leather jacket (2011-2016). It is an interesting finding that the fash-
ionable women of New York City have a preference for the black
leather jacket, matched with either dress or pants. (3) Some fashion
styles just appear for a single year, such as red skirt (2011), dress
& cardigan (2011), irregular dress (2012), olive green jacket (2013),
plaid blazer or coat (2015), off-the-should top (2016), off-the-should
dress (2016), and color fur coat (2016). (4) Some fashion styles will
become popular again after a few years, such as pleated skirt (2012,
2016). (5) Denim related fashion products, which include jeans,
denim shorts and denim jacket, take an important role in street
fashion, whereas the popular dressing patterns involve jeans with
jacket/shirt/top, denim shorts with top or blazer, denim jacket with
dress. From the evolution of above fashion trends, we can conclude
that some fashion styles just appear for a short period of time while
some will last for a few years.

5 CONCLUSION

In this work, we propose a novel neighbor-constrained fine-grained
embedding learning approach for street photo representation and
analysis. Specifically, we present an effective CNN-based network
structure jointly optimized with a multi-task classification loss and
a new quadruplet loss. The multi-task classification loss is designed
to learn the discriminative feature representation while the quadru-
plet loss is designed for similarity metric learning. Thus, the learned
embedding can be used for fine-grained categorization and simi-
larity measures simultaneously. Quantitative evaluation shows the
effectiveness of our proposed architecture. For future work, we
consider adding other kinds of fashion data such as runway photos
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Figure 7: The fashion trend map from 2011 to 2013.

Tiotressed jeans

distressed jeans

into the embedding learning framework, which enables a variety
of interesting fashion analytics and applications.
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