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ABSTRACT

In generic visual tracking, traditional appearance based
trackers suffer from distracting factors like bad lighting
or major target deformation, etc., as well as insufficiency
of training data. In this work, we propose to exploit the
category-specific semantics to boost visual object tracking,
and develop a new visual tracking model that augments
the appearance based tracker with a top-down reasoning
component. The continuous feedback from this reasoning
component guides the tracker to reliably identify candidate
regions with consistent semantics across frames and localize
the target object instance more robustly and accurately.
Specifically, a generic object recognition model and a semantic
activation map method are deployed to provide effective
top-down reasoning about object locations for the tracker.
In addition, we develop a voting based scheme for the
reasoning component to infer the object semantics. Therefore,
even without sufficient training data, the tracker can still
obtain reliable top-down clues about the objects. Together
with the appearance clues, the tracker can localize objects
accurately even in presence of various major distracting
factors. Extensive evaluations on two large-scale benchmark
datasets, OTB2013 and OTB2015, clearly demonstrate that
the top-down reasoning substantially enhances the robustness
of the tracker and provides state-of-the-art performance.
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1 INTRODUCTION

Generic visual tracking aims at estimating the trajectory
of a target object in a video, given only its initial location.
Recently, it has been applied in applications such as video
surveillance [1, 14], event prediction [26], etc. Visual tracking
is challenging due to distracting factors, including target
variation in appearance and scale, unexpected disappearance
and appearance, and complex scenes (e.g. background clutter,
occlusion, varying illumination and camera motion). An ideal
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Figure 1: Illustration of our top-down reasoning. The top-

down reasoning component provides category-specific
semantics to complement the appearance based tracker.

tracking model should be adaptive to such target variation
and robust to external disturbance.

Besides, another bottleneck for visual object trackers is the
low quality and insufficiency of training data. The mainstream
visual tracking paradigm is learning an appearance model
of the target online using data extracted and labeled by
the tracker itself in the preceding video frames [17, 31, 42].
However, the training samples are usually scarce especially at
the beginning of the visual tracking process. Moreover, some
training data are corrupted due to occlusion, misalignment
and other perturbations. Therefore, with such limited training
samples in quantity or quality, the appearance model of
a target object usually lacks robustness and performs
unsatisfactorily in the complex tracking scenarios.

Nowadays, deep neural networks (DNNs), especially
convolutional neural networks [24] (CNNs), are popularly
used to learn appearance representation of various objects
from massive annotated visual data with object classes
(such as ImageNet [13]), due to their superior representation
power. In visual tracking, CNNs are usually treated as
a black-box feature extractor to boost the robustness of
traditional trackers. Instead of exploiting the deep features
from the fully-connected layer as [19], the feature maps
from the last convolutional layer are more frequently used in
recent trackers, since they encode both semantic information
and structural localization information. Since features
from different convolutional layers capture different image
properties, stacking these features in a traditional tracker can
boost the performance [7]. However, by taking advantage of
features from more cascaded layers, the increasingly complex
models, with massive trainable parameters, inevitably
introduce the risk of severe over-fitting. One solution is to
train a tracker based on features from each convolutional
layer [27, 30]. However, the strategy of integrating these
trackers is non-trivial, since the function of each tracker is not
very transparent and largely depends on the characteristics
of deep features. Moreover, for a specific target, not all the
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features are useful for robust tracking [37]. Some feature
responses may introduce noise. In addition, supervised fine-
tuning of deep CNNs for the explicit tracking task is also
proposed in preceding work [4, 15, 28]. These CNNs may
degrade in the online tracking process for lack or poor quality
of the training samples, which leads to over-fitting and
tracking error accumulation. The online update of CNNs
involves continuous network back-propagation, which costs
much computation and time. Considering above issues in the
CNN based trackers, we aim to design an effective tracker
taking advantage of the robustness of deep CNNs, without
massive parameter learning, model over-fitting or network
online update, and with explicit task-specific reasoning and
task-guided feature map selection.

In this work, we propose a novel object tracking model
augmented by top-down reasoning, which presents tracking
robustness and adaptability simultaneously, as illustrated in
Fig. 1. The top-down reasoning component is able to provide
semantic clues inferred from object category information,
facilitating the visual tracking task. Specifically, at top
category level, instead of blindly exploring visually similar
regions for localizing the target, the deep features are
selected with the informative feedback about the category
knowledge learnt for the target from previous frames. To
effectively incorporate such top-down knowledge for more
robust target localization, a semantic activation map for
target localization is efficiently generated by the selected
features without any online fine-tuning of the convolutional
network or other supervised model training methods. To
be detailed, a GoogLeNet [32] based classifier pre-trained
on massive image data from ImageNet evaluates the target
appearance and finds top-10 probable classes that the target
may belong to. Then, taking advantage of such category
knowledge, the high-level semantic feature maps are actively
selected to generate semantic activation maps for the top-
10 categories. Each semantic activation map highlights the
discriminative category-specific regions. The top-10 categories
are continuously validated in the tracking process by testing
the consistency between their semantic activation maps and
the tracking results. The semantic activation map for the most
consistent category is taken as a category-level localization
prior which helps to locate the target according to its salient
region.

With such top-down reasoning, at lower instance level,
detailed local appearance of the target is learnt and evolves
over time. The appearance models based on supervised
learning methods such as ridge regression or support vector
machines (SVMs) can be exploited and updated continuously
to distinguish the target from the background, especially the
distracters (e.g., other objects in the same class). Here, a
correlation filter [43] is exploited for appearance modeling.

To sum up, the contributions of this work are three folds:

∙ To our knowledge, we are the first to exploit top-
down reasoning in visual tracking. Such a novel top-
down reasoning component complements and enables a
traditional tracker to tackle drastic appearance changes

and accurately distinguish the target from its similar
distracters.

∙ The knowledge of target categorization learnt from
external massive image data is effectively transferred
into visual tracking by the proposed semantic activation
map to help localize the target, which complements the
online appearance modeling using insufficient training
samples.

∙ We conduct extensive experiments on large-scale
benchmark datasets: OTB2013 [40] and OTB2015 [41],
and demonstrate that the proposed tracking algorithm
performs competitively against existing state-of-the-art
methods in terms of accuracy and robustness.

2 RELATED WORK

In this section, we review the tracking methods closely related
to this work.

The correlation filter based trackers [8, 25] are increas-
ingly popular due to their promising performance and
computational efficiency. They learn a filter by replacing
the exhausted correlation operations in the spatial domain
with efficient element-wise multiplications in the frequency
domain using Discrete Fourier Transforms (DFTs). Since
Bolme et al. [3] introduced the correlation filter into the
visual tracking field, several extensions have been proposed
to improve the tracking performance. Multi-channel filters
on multi-dimensional features such as HOG [6] or Color-
Names [35] are learnt in the work [9, 11, 23]. Henriques
et al. [18] proposed the kernelized correlation filter (KCF)
by introducing the non-linear kernel trick into the ridge
regression. Tang et al. [33] proposed a multi-kernel correlation
filter to fully take advantage of invariance-discriminative
power spectrums of various features. One deficiency of the
correlation filter is the unwanted boundary effects introduced
by the periodic assumption for all circular shifts, which
would degrade the discriminative ability of tracking models.
To deal with this issue, Danelljan et al. [9] introduced a
spatially regularized component in the learning to penalize
coefficients of the correlation filter depending on their spatial
locations and achieved excellent tracking accuracy. Adaptive
decontamination of training frames for a correlation filter
was proposed in [10] by minimizing a single loss over both
correlation modeling and the weights of training frames.
Recently, Danelljan et al. [12] introduced a novel formulation
for training continuous convolution filters. In this paper, since
the introduction of category-level priors reduces the tracking
difficulty, a simple version of the correlation filter [43] is
exploited for appearance modeling at instance level.

CNNs [39] are widely used in visual tracking. Generally,
three strategies are usually exploited in the existing CNN
based trackers. First, the pre-trained network’s internal
features are transferred to online tracking. Hong et al. [19]
constructed a discriminative model with features from the
first fully-connected layer of RCNN [16] and an online SVM
for visual tracking. Qi et al. [30] applied correlation filters on
hierarchical features learnt from a deep CNN and combined
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Figure 2: Pipeline of our algorithm. At category level (top), a generic classification network works on the search

patch to generate a semantic activation map based on the most target-related category. At instance level (bottom),
a correlation filter is exploited to estimate the target states under the guidance of the semantic activation map via

top-down reasoning.

these filters using the Hedge method. The concern of this
strategy is that simply regarding the deep model as a black-
box feature extractor may not complement tracking with
off-line training. Second, a CNN is directly applied for
visual tracking and training samples are extracted during
the tracking process to fine-tune this network to learn and
refine a generic object model. For example, a pre-trained
multi-domain CNN combined with a binary classification
layer is updated online in [28] to adapt to the new object
and its continuous appearance changes. Wang et al. [37] fine-
tuned a fully convolutional network in the first frame to
perform foreground heat map regression for the object and
update the network online to avoid background noise. This
strategy enhances both adaptability and robustness of the
trackers, but brings a significant increase in computational
complexity owing to the online fine-tune of the network.
Third, a tracking problem is transformed to the instance
verification problem. A two-stream Siamese network [2, 34]
is trained off-line using the external video data to learn a
matching function, which helps find the candidate patch that
matches best to the initial patch of the object in the first
frame during tracking. The differences between our work and
previous works can be summarized as follows. First, instead
of directly introducing the CNN features into traditional
trackers, we transfer the general CNN classifier into visual
tracking and select useful high-level semantic features to
generate the semantic activation map based on the target
category. Second, the semantic activation map is generated
via a single forward pass instead of back-propagating target
information through the whole network until the image
domain as in [19]. No online fine-tuning is needed for this
activation map generation to refine its localization ability.

3 OUR PROPOSED METHOD

3.1 Overview

Visual tracking usually learns an instance appearance based
classifier that distinguishes the target from the background.
Due to large target appearance changes, external distracters

with similar appearances, and limited training data, it
is usually difficult to find an appropriate classification
margin. Thus, we propose to augment the traditional
instance appearance based tracker with a top-down reasoning
component. This top-down reasoning component benefits
from existing generic object recognition models which have
learnt the category-specific semantics from the massive image
data annotated with a large number of object classes. The
continuous feedback from this reasoning component ensures
the consistent semantics of tracking regions across frames,
which significantly boosts the tracking robustness.

Our tracking pipeline is illustrated in Fig. 2. In the first
frame, a target patch extracted based on the annotated
bounding box is sent to a general pre-trained classification
network with 1000 categories. The top-10 probable categories
are remained for the target semantic restriction. Each
category has a voting weight adjusted online based on
the semantic consistency between this category and the
target category. In the following tracking process, a search
patch centered at the latest target position is extracted
and evaluated by the correlation filter. The target state
predicted by the correlation filter is validated by the top-
down reasoning model. Specifically, a search patch centered
at the predicted target position is extracted and sent to
the classification network. A semantic activation map is
generated based on the most target-related category. If the
target localization based on the semantic activation map
conflicts with the correlation filtering based prediction, the
correlation filter takes re-detection based on the salient
position in the semantic activation map. The final target
state is determined by the highest correlation response in the
two round correlation filtering. We introduce the details of
target localization with top-down reasoning in the following
subsections.

3.2 Top-down Reasoning Model

Recently, many CNN models such as AlexNet, VGGNet and
GoogLeNet have been developed for the large-scale image
classification task. Their corresponding classifiers are trained
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on the large ImageNet dataset and have good generalization
capabilities. They are also robust to data corruption. Thus,
instead of blindly using the high-level semantic CNN features,
we transfer the pre-trained classifier into visual tracking and
take advantage of the robustness of this classifier to weakly
supervise the target localization with the target category.
Specifically, a semantic activation map for the category
of the tracking target is generated, which indicates the
discriminative target regions explored by the CNN to identify
the target category. This map is usually helpful in target
localization when the target undergoes large appearance
changes and the background is complicated, as shown in Fig. 3.
In the video Shaking, the tracking scenario contains large
illumination changes and background clutter. The tracking
target undergoes in-plane-rotation, out-plane-rotation and
scale variation. Our semantic activation maps highlight the
target and show high robustness.

The procedure of generating a semantic activation map for
a specific category is based on the work [38, 44]. The network
architecture of the classifier is based on the GoogLeNet,
which largely consists of convolutional layers, and before the
categorization layer, performs global average pooling on the
final convolutional feature maps. Thus, the importance of
the image regions for a particular category is identified by
projecting back the corresponding classification weights onto
the final convolutional feature maps.

Specifically, for a given image, denote the activation of the
unit 𝑘 in the final convolutional layer at the spatial location
(𝑥, 𝑦) as 𝑓𝑘(𝑥, 𝑦). After performing the global average pooling,
the activation of the unit 𝑘 is expressed as 𝑃𝑘 =

∑︀
𝑥,𝑦 𝑓𝑘(𝑥, 𝑦).

Then, the input of the softmax layer of class 𝑐 becomes
𝑆𝑐 =

∑︀
𝑘 𝑤𝑐,𝑘𝑃𝑘, where 𝑤𝑐,𝑘 is the weight corresponding to

class 𝑐 and unit 𝑘. This weight also evaluates the importance
of a feature map for a class. The classification score is finally

calculated via exp(𝑆𝑐)∑︀
𝑐 exp(𝑆𝑐)

. Thus, we finally have

𝑆𝑐 =
∑︁
𝑘

𝑤𝑐,𝑘

∑︁
𝑥,𝑦

𝑓𝑘(𝑥, 𝑦)

=
∑︁
𝑥,𝑦

∑︁
𝑘

𝑤𝑐,𝑘𝑓𝑘(𝑥, 𝑦)

=
∑︁
𝑥,𝑦

𝐻𝑐(𝑥, 𝑦),

(1)

where the class activation map for class 𝑐 is defined as

𝐻𝑐(𝑥, 𝑦) =
∑︁
𝑘

𝑤𝑐,𝑘𝑓𝑘(𝑥, 𝑦). (2)

This class activation map directly indicates the importance
of the activation at the spatial location (𝑥, 𝑦), leading to the
classification of an image to class 𝑐. By simply up-sampling
the class activation map to the size of the input image, we can
find the image regions most relevant to a specific category.

Since there is no ground truth class label for the tracking
target, and the category of the target may not be included in
the 1000 categories used to train the classifier, we propose to
use a voting based scheme to infer the target semantics and
the approximate target category. Firstly, in the first frame,

#060 #060 #104 #104

#118 #118 #240 #240

Figure 3: Examples of semantic activation maps in the

video Shaking. The blue points are the locations of the

medians of the top-50 activation scores.

with the ground truth annotation of the tracking object,
a target patch with the size of the bounding box centered
around the target is extracted and sent to the classification
network. The target category is restricted into the top-10
categories with the top-10 classification scores. Each top-
10 category has an initial voting weight equal to 1. In the
following frames, when the target state (e.g., position and
size) is determined by our tracker, the target region within the
predicted bounding box is back-projected to each semantic
activation map for a top-10 category. For each category, the
salient position in the highlighted region of the semantic
activation map is estimated by calculating the median of
the candidate positions whose activation scores rank within
top-50. Note that the number of candidate positions does
not affect the performance much because the highlighted
region is usually focused. If the salient position is contained
by the back-projected target region, the voting weight of the
corresponding category is added by 1. Intuitively, the larger
voting weight means that the tracking target is highlighted
by the semantic activation map more frequently, owning more
similar semantics w.r.t the corresponding category. Thus, the
target is always classified into the category with the largest
voting weight.

In the tracking stage, the target state is first estimated
by the appearance based tracker. To validate its accuracy, a
search region of interest is extracted around the predicted
target position with twice the size of the diagonal line of
the predicted bounding box. This image patch is sent to the
classification network and the semantic activation map for
the category with the highest voting weight is generated. The
salient position of the semantic activation map is projected
to the image frame to find whether it is included by the
predicted bounding box. If conflict occurs, it means that the
discriminative target region may not be recognized by the
appearance based tracker and we use the salient position to
re-initialize the appearance based tracker.

Since the semantic activation map locates the target at
category level, and can be distracted by similar objects in
the same class. Thus, to prevent the tracking drifts, we
further propose a distracter detection scheme to determine
the effectiveness of the semantic activation map. Denote the
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salient position inferred by the semantic activation map as
𝑋𝑇 and the target size in the last frame as [𝑊,𝐻]. The
corresponding target region in the semantic activation map
is inferred as 𝑅𝑇 . The reliability of the semantic activation
map is evaluated by the proportion of the activation values
inside the target region:

𝑃𝑇 =

∑︀
(𝑥,𝑦)∈𝑅𝑇

𝐻𝑐⋆(𝑥, 𝑦)∑︀
(𝑥,𝑦) 𝐻𝑐⋆(𝑥, 𝑦)

, (3)

where 𝑐⋆ is the category with the highest voting weight.
When the proportion 𝑃𝑇 is less than a threshold (0.25 in all
the experiments), we assume that the distracter occurs and
the semantic activation map is not reliable. Otherwise, the
activation map is considered to be a useful category-specific
localization prior.

3.3 Instance Tracker with Top-down Clues

The instance tracker grasps the local and detailed target
appearance, which is especially helpful to distinguish the
target from the distracters in the same class. Furthermore,
strong supervision is utilized based on the online target
samples to obtain a finer estimate of the target’s state
(e.g., position and size). Benefiting from the guidance of
the localization prior at category level, a simple JSSC [43]
tracker is sufficient for target localization at instance level.
Note that other appearance modeling methods can also be
used since our top-down reasoning is generic.

The JSSC tracker exploits the block-circulant structure
to model the correlations in the joint scale-spatial space and
accelerate the training and tracking processes. The position
and size of the target are simultaneously estimated in the
joint space. For simplicity, assume a 1𝐷 image is represented
by a single-channel feature. In the training stage, 𝑆 base
samples of size 1×𝑁 are extracted from an 𝑆-layer feature
pyramid. The JSSC tracker is trained on the whole data set
obtained from the cyclic shifts of these base samples denoted
as 𝑋 = {𝑥𝑠(𝑛)}, 𝑠 ∈ {1, 2, . . . , 𝑆}, 𝑛 ∈ {0, 1, . . . , 𝑁 − 1}.
The labels of these samples obey a multivariate Gaussian
distribution in the joint scale-spatial space, denoted as y =
{𝑦𝑠(𝑛)}, 𝑠 ∈ 1, 2, . . . , 𝑆, 𝑛 ∈ {0, 1, . . . , 𝑁 − 1}. The tracker is
learnt by minimizing the squared error over the correlation
responses and the defined labels:

min
𝑤

∑︁
𝑛,𝑠

|⟨𝜑(𝑥𝑠(𝑛)), 𝑤⟩ − 𝑦𝑠(𝑛)|2 + 𝜆‖𝑤‖2, (4)

where 𝜑 is the mapping to the Hilbert space induced by the
kernel 𝜅, defining the inner product as ⟨𝜑(𝑥), 𝜑(�̃�)⟩ = 𝜅(𝑥, �̃�).
The constant 𝜆 ≥ 0 is the regularization parameter controlling
the model simplicity. Furthermore, the closed-form solution
in the dual space for this minimization problem is obtained:

𝛼 = (𝐾 + 𝜆𝐼𝑆𝑁 )−1y, (5)

where 𝐼𝑆𝑁 is an identity matrix and the 𝑆𝑁 × 𝑆𝑁 kernel
matrix 𝐾 explains the correlations of samples from multiple
scale levels and displacements. Since the kernel matrix
𝐾 implies a block-circulant structure and thus can be
diagonalized into a block-diagonal matrix by the DFT matrix,

the JSSC solution in the Fourier domain finally becomes

�̂�*=(diag(𝑔(𝑢0), 𝑔(𝑢1), · · ·, 𝑔(𝑢𝑁−1))+𝜆𝐼𝑆𝑁 )−1ŷ*, (6)

𝑔(𝑢𝑐) =

⎡⎢⎢⎢⎢⎣
𝑘𝑥1𝑥1
𝑐 𝑘𝑥1𝑥2

𝑐 · · · 𝑘𝑥1𝑥𝑆
𝑐

𝑘𝑥2𝑥1
𝑐 𝑘𝑥2𝑥2

𝑐 · · · 𝑘𝑥2𝑥𝑆
𝑐

...
...

. . .
...

𝑘𝑥𝑆𝑥1
𝑐 𝑘𝑥𝑆𝑥2

𝑐 · · · 𝑘𝑥𝑆𝑥𝑆
𝑐

⎤⎥⎥⎥⎥⎦ , (7)

k𝑥𝑖𝑥𝑗 = [𝑘
𝑥𝑖𝑥𝑗

0 , . . . , 𝑘
𝑥𝑖𝑥𝑗

𝑁−1]
⊤, (8)

k𝑥𝑖𝑥𝑗=exp(
−(‖𝑥𝑖(0)‖2+‖𝑥𝑗(0)‖2−2ℱ−1(𝑥𝑖(0)⊙ (𝑥𝑗(0))

*))

𝜎2
),

(9)
where ⊙ represents element-wise products, a hat represents
the Discrete Fourier Transform (DFT) of a vector, * means
the complex conjugate, and ℱ−1 is the inverse DFT.

In the tracking section, the candidates 𝑍 = {𝑧𝑠(𝑛)}, 𝑠 ∈
{1, 2, . . . , 𝑆}, 𝑛 ∈ {0, 1, . . . , 𝑁 − 1} are extracted in the
same way from the joint scale-spatial space. The correlation
response is evaluated via

𝑓(𝑍) = 𝐾𝑍𝑋𝛼. (10)

The kernel matrix 𝐾𝑍𝑋 shows the correlation between all
candidates and the training samples. Considering the block-
circulant properties, the full tracking response is given by

𝑓(𝑍) = diag(ℎ*(𝑢0), ℎ
*(𝑢1), · · · , ℎ*(𝑢𝑁−1))�̂�, (11)

ℎ(𝑢𝑐) =

⎡⎢⎢⎢⎢⎣
𝑘𝑧1𝑥1
𝑐 𝑘𝑧1𝑥2

𝑐 · · · 𝑘𝑧1𝑥𝑆
𝑐

𝑘𝑧2𝑥1
𝑐 𝑘𝑧2𝑥2

𝑐 · · · 𝑘𝑧2𝑥𝑆
𝑐

...
...

. . .
...

𝑘𝑧𝑆𝑥1
𝑐 𝑘𝑧𝑆𝑥2

𝑐 · · · 𝑘𝑧𝑆𝑥𝑆
𝑐

⎤⎥⎥⎥⎥⎦ . (12)

The tracking results of JSSC are validated by the category-
specific localization prior. The salient position of the semantic
activation map for the most related category serves as the
top-down clue to find whether the discriminative target region
is detected by the tracker. The localization inconsistency of
two levels leads to the re-detection of the JSSC tracker based
on the salient position. Note that the semantic activation
map is not exploited as a regularization map similar to
the RTT tracker [5], because this map is generated in a
weakly supervised manner and is not refined by the target
bounding box information. It provides a more accurate
location estimate than the estimate of the target region.
The re-detection of JSSC using the salient position makes
the correlation filter emphasize more on the salient region,
because the cosine window centered at the salient position
usually works on the image patch to refine the filter.

4 EXPERIMENTS

In this section, we introduce the implementation details
and experimental settings of the proposed tracker named
WSJSSC. Then we present both quantitative and qualitative
evaluation results on large-scale benchmark datasets (i.e.,
OTB2013 [40] and OTB2015 [41]).
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Figure 4: Precision and success plots for the state-of-

the-art trackers in OTB2013 using one-pass evaluation.
Trackers are ranked using DP values and AUC values

respectively in their legends. Better viewed in color.

4.1 Experimental settings

The input size of GoogLeNet is set as 224× 224 pixels. For
a fair comparison, we use the same parameter settings for
both our tracker and the baseline JSSC. Especially, both
trackers exploit the HOG features for target localization
at instance level. Compared to the speed of JSSC (11fps),
our proposed WSJSSC tracker is implemented in MATLAB
based on the wrapper of Caffe framework [21] and runs at 3
frames per second on a computer with a 3.3GHz CPU and a
TITAN GPU. The speed degradation mainly comes from the
re-detection of our instance tracker. All the parameters are
fixed across experiments and datasets.

To validate the performance of our proposed WSJSSC
tracker, two large tracking benchmark datasets are exploited.
Specifically, the OTB2013 dataset contains 51 sequences.
The OTB2015 dataset extends the size of OTB2013 to 100
sequences. Two widely-used evaluation metrics: distance
precision (DP) and overlap precision (OP) are used. DP
is the relative number of frames in the sequence where the
center location error is smaller than the fixed threshold of 20
pixels. OP is the percentage of frames where the bounding
box overlap exceeds the threshold of 0.5. A success plot is
introduced, namely the overlap precision plotted over the
range of intersection-over-union thresholds. In this plot, the
trackers are ranked using the area under the curve (AUC)
displayed in the legend. A precision plot is also exploited,
which demonstrates the percentage of frames where the
distance between the estimated target location and the
ground truth location is within a series of thresholds. In
this plot, the trackers are ranked based on DP.

4.2 Evaluation on OTB2013

Our WSJSSC tracker is first evaluated on the OTB2013
dataset, compared with 29 baseline trackers from the dataset,
the baseline JSSC [43] and five state-of-the-art trackers
(MUSTer [20], FCNT [37], CNN-SVM [19], HDT [30], and
SINT [34]). Fig. 4 shows the precision plot and the success
plot over all the 51 sequences.

First, compared with the baseline JSSC, our proposed
WSJSSC tracker achieves large improvements with a DP gain
of 5.1% and an AUC gain of 3.3%. The target localization
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Figure 5: Attribute-based analysis of our approach on

the OTB2013 dataset. In these success plots, trackers
are ranked using AUC values. Better viewed in color.

based on the weak supervision of the target category exploits
category specific semantics that have been learnt by a general
classifier pre-trained on the external massive image data. The
category specific semantics enrich the tracker’s knowledge
about the tracking target, and further guide the instance
tracking based on the top-down reasoning. Therefore, both
tracking accuracy and robustness are enhanced. Second, the
HDT tracker takes full advantage of features from all the six
CNN layers and consequently learns six correlation filters.
These filters are gathered by using an adaptive Hedge method.
Instead of implicitly exploiting different CNN features, we
perform a more explicit tracking task partition from the
general category level to the instance level. These two parts
usually well complement with each other. Although the
top-down reasoning is simple, and especially only weak
supervision is involved at category level, WSJSSC shows
competitive robustness in the precision plot and presents
higher tracking accuracy in the success plot compared to
HDT. Third, FCNT localizes the target by online training
two target heat maps based on features respectively from
top and low convolutional layers. The feature map selection
is carried out in the first frame based on a target heat map
regression model. Compared to FCNT, our WSJSSC tracker
generates a similar high-level target heat map by actively
selecting final convolutional feature maps based on the target
category without any network fine-tuning and online update,
which is not affected by the insufficiency and poor quality of
training samples. Thus, our tracker obtains an AUC gain of
4.6% and a DP gain of 1.5%.

All the 51 sequences in OTB2013 are annotated with
11 different attributes, namely, illumination variation, scale
variation, occlusion, deformation, motion blur, fast motion, in-
plane rotation, out-of-plane rotation, out-of-view, background
clutter and low resolution. Fig. 5 shows success plots for four
attributes that involve significant target appearance changes
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WSJSSC JSSC HDT FCNT SINT
Figure 6: Examples of tracking results of the proposed WSJSSC tracker and state-of-the-art trackers in videos Shaking,
Jumping, Couple, Jogging-2, Soccer, Freeman4, Singer2, Tiger2, football, and Skating1.

degrading the instance tracker’s performance. With the top-
down reasoning, our tracker shows stronger resilience towards
large target appearance diversities. It obtains AUC gains of
3.9%, 7.5%, 2.9%, 1.5% in cases of out-of-plane rotation,
deformation, occlusion and in-plane-rotation.

Fig. 6 shows some tracking results of the top performing
trackers: HDT, FCNT, SINT, the baseline JSSC tracker
and the proposed WSJSSC tracker on 10 challenging videos.
By analyzing the first four videos, we find that top-down
reasoning takes advantage of category specific semantics
to help localize the target and complement the insufficient
appearance modeling at instance level. Thus, compared to
the JSSC tracker, our WSJSSC tracker is less likely to
struggle in tracking drifts and is able to recover from tracking
drifts via category guided target localization. Moreover, the
FCNT tracker drifts more easily as shown in videos Shaking,
Jogging-2, and Soccer. The reason is that the online fine-tuned
CNNs degrade for the contamination of the training data
introduced by occlusion or background clutter, and CNNs are
prone to tracking error accumulation and tracking robustness
decrease. In contrast to this FCNT tracker, our category-
level target localization does not need to online fine-tune or

consecutively update CNNs, thus is less likely to degrade in
cases of external disturbances or self tracking drifts while
inversely contributes to the tracking recovery. Furthermore,
the SINT tracker exploits an off-line trained Siamese network,
which learns a general matching function. This tracker also
presents frequent tracking drifts in the 10 videos, because
the network focuses on generalizing over different targets and
loses some discriminative abilities especially at instance level.
In our tracker, the target localizations from the category and
instance levels complement with each other and boost the
tracking performance.

4.3 Evaluation on OTB2015

We then evaluate our WSJSSC tracker on the OTB2015
dataset. This dataset provides results from 36 trackers
including Struck [17], PCOM [36], TLD [22], etc. We add
the baseline JSSC [43] and five state-of-the-art trackers
(MUSTer [20], HDT [30], CNN-SVM [19], CF2 [27],
DLSSVM [29]) for further comparisons. Similarly, the success
plot with the AUC ranking and the precision plot with the
DP ranking are given in Fig. 7. Compared with the baseline
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Figure 7: Precision and success plots for the state-of-
the-art trackers in OTB2015 using one-pass evaluation.

Trackers are ranked using DP values and AUC values

respectively in their legends. Better viewed in color.

JSSC tracker, our proposed WSJSSC tracker obtains large
improvements with an AUC gain of 3.7% and a DP gain of
6.4%. This result further proves the effectiveness of out top-
down reasoning model and the complementary characteristic
of the category prior. WSJSSC outperforms two most related
trackers (CF2, HDT) by 4.6% and 4.3% in AUC and achieves
a competitive DP score of 82.4%.

An attribute-based analysis of WSJSSC on OTB2015 is
also given. WSJSSC outperforms the existing trackers on
all the attributes. Fig. 8 shows example success plots of
four attributes. Compared with the baseline JSSC tracker,
WSJSSC obtains AUC gains of 4.1%, 2.4%, 2.7%, 5.3% in
cases of out-of-plane rotation, deformation, occlusion and
in-plane-rotation. For these attributes, large appearance
diversities occur, where it is hard for the instance tracker to
decide whether they come from the external disturbance
or the target itself. With the category prior, high-level
semantic information is introduced which makes the decision
much easier. Moreover, in the case of motion blur, WSJSSC
obtains the AUC score of 60% and outperforms the best
CF2 tracker by 2.7%. Motion blur makes the HOG features
less discriminative and degrades the instance-level target
localization. At category level, since the CNN features
are quite robust and focus on the high-level semantic
extraction, the semantic activation map derived from these
CNN features still works well to help locate the target. In
the case of fast motion, WSJSSC obtains the AUC score
of 58.9% and outperforms the CF2 tracker by 3.7%. The
semantic activation map for the target category detects the
discriminative region of the target, which helps detect the
target in a large search area. It also helps re-detect the target
for tracking recovery, contributing to an AUC gain of 0.8%
compared to the second best tracker JSSC in the case of
out-of-view.

We show some failure cases in Fig. 9 to analyze the
limitation of our tracker. In the video Bolt2, two runners are
close to each other and share almost the same appearances,
which makes our tracker confused about who is the real
target. In the video Girl2, long-term occlusion occurs and the
occluding object belongs to the target category. The instance
tracker is updated by the occluding object appearance in the
process of occlusion, resulting in tracking drifts. In the video
Board, the tracking target undergoes abrupt out-of-plane
rotations and visual tracking drifts to the nearby distracter.
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Figure 8: Attribute-based analysis of our approach on

the OTB2015 dataset. In these success plots, trackers
are ranked using AUC values. Better viewed in color.

#040 #118 #655

Figure 9: Exmaple failure cases (Videos Bolt2, Girl2,
Board). Red boxes show our results and green ones are
ground truth.

These tracking failures can not be recovered by means of our
top-down reasoning because of the existence of distracters
within the target category.

5 CONCLUSION

We proposed a new visual tracking model that augments
the appearance based tracker with a top-down semantic
reasoning component. This effective component generates
target localization prior by taking advantage of the target
category specific semantics based on the robust CNN
models pre-trained on large image datasets. The instance
tracker is guided by this localization prior and provides
robust and accurate predictions with consistent semantics
across video frames. Experiments demonstrate that our top-
down reasoning is helpful to enhance the robustness and
adaptability of a straightforward instance tracker.
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