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ABSTRACT

The goal of this paper is to simultaneously segment the ob-
ject regions appearing in a set of images of the same ob-
ject class, known as object co-segmentation. Different from
typical methods, simply assuming that the regions common
among images are the object regions, we additionally con-
sider the disturbance from consistent backgrounds, and indi-
cate not only common regions but salient ones among images
to be the object regions. To this end, we propose a Discrim-
inative Low Rank matrix Recovery (DLRR) algorithm to
divide the over-completely segmented regions (i.e., super-
pixels) of a given image set into object and non-object ones.
In DLRR, a low-rank matrix recovery term is adopted to de-
tect salient regions in an image, while a discriminative learn-
ing term is used to distinguish the object regions from all
the super-pixels. An additional regularized term is imported
to jointly measure the disagreement between the predicted
saliency and the objectiveness probability corresponding to
each super-pixel of the image set. For the unified learning
problem by connecting the above three terms, we design an
efficient optimization procedure based on block-coordinate
descent. Extensive experiments are conducted on two public
datasets, i.e., MSRC and iCoseg, and the comparisons with
some state-of-the-arts demonstrate the effectiveness of our
work.
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Figure 1: Examples about the object region. The
region inside red contour is the true object regions,
while the one inside green contour is the non-object
region although is salient.

1. INTRODUCTION

The object segmentation is a fundamental task in com-
puter vision and multimedia, and it can benefit from many
applications, e.g., object retrieval and image editing. Pro-
vided with some priors to indicate what or which the object
regions are, some supervised or interactive object extraction
approaches [9][6] can achieve good performance. However,
they are hard to be extended to a large scale dataset due to
expensive requirements on human interaction or manually
labeled training data. Alexe et al. [1] proposed a general
object detector, but it does not leverage the shared informa-
tion among different images of the same or similar objects.

To alleviate such expensive requirements and leverage the
shared information, recent researches focus on the task of
object co-segmentation, which is to simultaneously segment
the same or similar objects appearing in a set of images. A
representative solution is to mine the similar object regions
by a discriminative clustering framework [4], in which the
clustering step is used to merge image pixels into two clus-
ters while the discriminative learning step is to maximally
distinguish the two clusters. Considering the diversity of
background, Joulin et al. [5] proposed an improved multi-
class co-segmentation method by combining spectral clus-
tering and discriminative clustering. Besides, Mukherjee et
al. [8] adopted a direct solution to make the possible object
regions in images similar to each other. Most of previous ap-
proaches work on the assumption that the regions common
among images are deemed as the object regions. However,
the truth is not the case, in that the background regions may
be consistent. For example, shown in Fig. 1, the ‘grass’ re-
gions may be common within the ‘baseball’ images. How to
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Figure 2: The flowchart of our method. In “discrim-
inative learning” part, red points denote salient and
common regions (i.e., object), green points denote
salient but uncommon regions (i.e., non-object), and
blue points denote non-object regions.

effectively resist the disturbance of such case, and further to
precisely identify the true object regions become our focus
in this paper.

To this end, we jointly exploit saliency detection and com-
mon region mining from a set of images to perform the task
of object co-segmentation. That is, the object regions are as-
sumed to be not only common among images but also salient
in contrast with background regions. It can naturally elimi-
nate the disturbance of those background regions consistent
with each other. Just as shown in Fig. 1, we can easily
catch the "baseball player’ regions as the true object regions
because they are salient and simultaneously appear in these
four images, while the common but non-salient regions (e.g.,
baseball field) and the salient but uncommon regions (e.g.,
baseball referee and billboard) are deemed as background.

For this purpose, we propose a unified learning framework,
named as discriminative low rank matrix recovery (DLRR)
for object co-segmentation, as shown in Fig. 2. Given a set
of images of an object class, we first over-completely segment
each image into super-pixels, and then employ the proposed
DLRR to identify the salient and common regions in the im-
age set. Inspired by the work in [7], we adopt the basic idea
of low-rank matrix recovery to detect the salient regions of
an image, i.e., decomposing the super-pixel-wise represen-
tation of each image into a low-rank matrix and a sparse
matrix, and using the l;-norm of each column in the sparse
matrix to measure the saliency of the corresponding super-
pixel. Besides, discriminative learning is incorporated on the
image set to model the salient and common super-pixels. To
promote the both terms each other, we import a regularized
penalty to measure the disagreement between the predicted
saliency and the discriminative output. By jointly consid-
ering the above three terms, a unified optimization problem
is obtained, and a block-coordinate descent optimization al-
gorithm is presented to solve the proposed problem. Exten-
sive experiments on two publicly available benchmarks, i.e.,
MSRC and iCoseg, show the satisfied performance of our
proposed method. Our main contributions are summarized
as follows.

e To the best of our knowledge, we are first to consider
the disturbance of consistent background regions for
object co-segmentation.

e To overcome the disturbance, we propose to jointly
perform saliency detection and common region mining
among images to precisely identify the object regions.
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e We propose a discriminative low-rank matrix recovery
algorithm to solve the object co-segmentation problem,
and an efficient optimizing process is also designed.

The rest of the paper is organized as follows. In Section 2,
we elaborate our proposed model for object co-segmentation,
and its optimization algorithm is presented in Section 3. The
experimental evaluation is given in Section 4 followed with
the conclusion in Section 5.

2. PROPOSED MODEL

Given a set of images 7 with the same class label, image
over-segmentation is performed by mean-shift clustering [3]
to each image i based on extracted features including color,
gabor feature and steerable pyramid feature, and N; super-
pixels are obtained. For the j-th superpixel in the i-th im-
age, we use the mean of the features in this superpixel as
its feature representation fi; € R”, then we get the feature
representation of the i-th image Fy = [fi1, fi2, -+ , fin,]. Let
yi € [0,1]**Yi denote the probability vector of superplxels
to be foreground in the i-th image. The larger y;; is, the
more likely for the j-th superpixel in the i-th image to be
target object.

2.1 Low Rank Matrix Recovery

For an image, the background usually lies in a low dimen-
sional space, while the salient regions are usually unique
and are quite different from the rest [10]. Therefore, low-
rank matrix recovery method is adopted to detect image
saliency. An image is represented as a low-rank matrix plus
sparse noises in the feature space, where the low-rank ma-
trix explains the non-salient regions (or background), and
the sparse noises indicate the salient regions. That is, F; =
L;+S;, where L; is the low rank matrix corresponding to the
background and S; is the sparse noise matrix corresponding
to the salient regions. Since the rank norm and lp norm
lead to an NP-hard problem and it has been shown that the
nuclear norm and the /1 norm is the tight convex approxi-
mation for the rank and the lop norm [11]. Thus, we obtain
the following convex surrogate:

(L7, 87) = argmin(|[Li[[ + AlIS:]l1)

1
stF; =L;+S; ( )

where || - ||« is the nuclear norm. The [;-norm of each col-
umn S;; in S; can be used to measure the saliency of the
corresponding superpixel [10]. The larger ||.S;;||1 is, the more
likely for the j-th superpixel in the i-th image to be salient
region.

However, not all the salient regions are meaningful, and
some small regions with high-contrast and uniqueness may
be considered as meaningless noise by human. Hence we
consider some priors to handle the meaningless noise, which
is integrated to the low rank recovery framework as follows.

(Li,87) = argmin(|[Li[[ + AlIS:]l1)

_ 2
S.t.FiPi = Li + Si

where P; is a diagonal matrix corresponding to the high
level prior such as color or location prior. Since objects near
the image center are more attractive to people, a Gaussian
distribution based on the distance to the image center is
chosen as a high level prior to reduce small salient regions
near the image edge in our experiments.



Algorithm 1: Object Co-segmentation by DLRR
Input: Feature Matrix F, high level Prior P
and the required parameters
Initialize: solve Equ.(2) by the method in [11]
1: while not converged do
1

2= e

3ty = aiSih

4: while not converaged

5: 0" = 0" — astep {[1(fij) — yis) fis + 20"}
6: end while

T while not converaged

8: Y =y — astep2[ 0" F + 202 (y" - )]

9: end while

10:  solve problem (6) in algorithm 2
11: end while

Output: foreground probability y

2.2 Discriminative Learning

The saliency detection is mainly evaluated from the view
of a single image. However, it cannot exactly catch the ob-
ject regions common among images. To this end, a logis-
tic regression based discriminative learning is exploited to
predict the probability of each superpixel to be the target
object. The objective function is to minimize the following
regularized function.

Z Z [yi; log(h

+ (1 —yij) log(1 — h(fi;))] + r]16]|*

where 0 is the model parameter to be learned. h(fi;) =
is the predictive result.

(fi3)) 3)

1
1+exp(—07T f;;+b)

2.3 Proposed Formulation

As discussed in section 1, the ideal object regions as a re-
sult of co-segmentation are required to be both salient and
common among a given set of images. Thus, we expect, the
aforementioned two parts should be learned simultaneously
and promote each other. We import a regularization penalty
to measure the disagreement between their predicted results.
Specifically, the {1 norm of each column S;; in S; stands for
the salient score of the j-th superpixel and y;; in discrimina-
tive learning is the probability of the j-th superpixel to be
target object. Consequently, the disagreement is measured
by the following equation.

ERZZi(yij—

i=1 j=1

ail|Si 1) (4)

where «; is the normalized weight for the superpixel saliency
in the ¢-th image. By jointly exploiting the above aspects,
the proposed model is formulated as follows.

min » (| Lill« + AlSill1) + 1 Ep + p2 Er
=1

st. F;P;, =L; + Si,i cT
where p1 and p2 are two non-negative trade-off parameters.

3. MODEL OPTIMIZATION

Considering the objective function is a difference of con-
vex functions, a optimization procedure based on block-
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Algorithm 2: Solving problem (6) by inexact ALM
Input: matrix F;, P;, y;; parameters A\, 8, p2, a;, D
Initialize: Y° = F;P,/J(F;P;); S° = 0; 8° = 1075;
Bmaz =10%p =15 k=0
1: while not converged do

2. (U,2,V)=svd(F;P; — SF + (85)71Y")
3 LI =UT e[SV
. _ A—20a;pu2yn+207 iy ZtD=1,¢m 1Si(tm)l
Boes ] T,
6: S!““(m n) Ta[ (m7 n)]
7. YR = YR 4 gR(F P, — LFT - sk
8 B = min(pB", Brmax)
9: k< k+1

10: end while
Output: (L}, S¥)

coordinate descent is designed and we summarize it in Al-
gorithm 1, where F = [Fy,--- ,F;], y = [y1, - ,y-], and
S = [a1]|Sitl|1, -+, ar||S-~.|]1]. Lines 4-6 is to learn model
parameter 6 in the discriminative algorithm. Lines 7-9 is to
predict the probability to be target object based on saliency
detection result and discriminative learning together. The
low rank matrix recovery problem given the guidance infor-
mation y can be solved by solving the following Augmented
Lagrange Multiplier(ALM) problem.

(L7, 87) = argmin(|[Lq ||« + AISi[h) + tr(Y" (FiPi — L;

N;

Li —Si [ +u2 ) (yij —

j=1

B
+ 5 | FiP; — aillSi;ll)*  (6)

where ¢r(-) is the trace of a matrix, Y is the Lagrange mul-
tiplier and 8 > 0 is a penalty parameter. The inexact ALM
method in [7] is used for efficiency and outlined in Algorithm
2, and T[] is the soft-thresholding (shrinkage) operator.

4. EXPERIMENTS AND RESULTS

To validate the effectiveness of the proposed method, we
conduct experiments on two publicly available benchmarks,
e., MSRC-v2' and iCoseg [2]. And we compare the pro-
posed DLRR with three state-of-the-art approaches [4][5][8],
and two special cases of DLRR. The first special case is de-
noted as LRR, which directly uses the the saliency detection
result based on low rank matrix recovery as the object prob-
ability. That is, 41 and p2 are both set to 0 in the proposed
model (5). The second one is denoted as DIS, which is a
two-step method. The low rank matrix recovery is first per-
formed to get the image saliency ||Si;||1, and then we learn
the discriminative model with the fixed S;;. The visual fea-
tures used for over-segmentation include color features, ga-
bor features, and steerable pyramid features, which are same
to the work in [10]. The segmentation performance is mea-
sured by the intersection-over-union score and defined by
& LY s g Sg; , where R; is the segmentation result of im-
age ¢ and GT is the ground truth. This evaluation metric
is standard in PASCAL challenges.

MSRC-v2 consists of 14 classes of images, and each class
contains 30 images, except that the ’cat’ class contains 24
images. The comparison of different methods on the dataset
is listed in Table 1, where we directly cite the results of [4] [5]

1
http://research.microsoft.com/en-us/projects/ObjectClassRecognition/

-8i))



Table 1: Results on MSRC Dataset

class | DLRR LRR DIS [5 18] [4]
Bike 48.8 45.3 54.9 | 43.3 428 423
Bird 44.4 45.0 32.3 | 47.7 - 33.2
Car 53.3 53.0 486 | 59.7 52,5 59.0
Cat 58.6 59.4 47.8 | 319 5.6 30.1
Chair 50.5 52.1 413 | 39.6 394 37.6
Cow 63.8 63.0 51.0 | 52.7 26.1 45.0
Dog 50.1 51.3 36.9 | 41.8 - 41.3
Face 52.1 52.7 442 | 70.0 40.8 66.2
Flower | 56.3 54.2  53.3 | 51.9 - 50.9
House 51.1 493 454 | 51.0 66.4 50.5
Plane 46.1 43.8 442 | 21.6 334 217
Sheep 64.9 64.5 56.7 | 66.3 45.7 604
Sign 62.4 61.1 55.2 | 58.9 - 55.2
Tree 57.1 52.1 64.5 | 67.0 559 60.0
Avg. 54.2 53.3 483 | 50.2 409 46.7
Std 6.5 6.6 8.5 139 169 131
Table 2: Results on ICoseg Dataset
class No. | DLRR LRR DIS | [5] [4]
Baseball 25 62.8 55.2 55.8 | 13.6 314
Football 33 39.3 369 35.1 | 387 149
Monk 17 40.4 364 282 | 73.8 684
BrownBear | 5 39.5 40.6 33.7 | 57.5 494
Ferrari 11 54.5 485 498 | 387 264
Skating 11 54.2 453 67.0 | 72.7 38.1
AlasBear 19 41.6 40.2 38.8 | 41.6 46.1
TajlMahal 5 46.6 454 411 | 371 384
Helicopter | 12 62.4 64.7 50.8 | 33.3 61.0
Kite 18 45.8 439 373 | 22.1 57.8
Avg 16 48.7 457 43.8 | 429 432
Std - 9.2 87 118 | 19.7 16.6

[8] reported in [5]. From the results in Table 1, DLRR out-
performs all the compared methods in terms of the average
performance, and specially achieves the best performance
for 8 of 14 classes. In addition, our method is more robust
than the others because of the minimum standard devia-
tion. Compared with LRR, DLRR improves obviously for
the classes with high coherence(e.g., sign, flower and tree).
For DIS, using predicted saliency as the prior for discrim-
inative learning in a progressive manner, it decreases the
performance by a large margin compared with DLRR.
Table 2 gives a quantitative comparison with [4] [5] on the
iCoseg dataset. Since we mainly focus on the segmentation
of the common object regions from the background, then
the class number in [5] is set to 2. We use the publicly
versions of [5, 4] to get the co-segmentation results and prefer
the regions with larger overlap with ground truth as the
target object regions. From results in Table 2, we can find
that DLRR achieves the best performance for 5 of 10 image
classes, and the average segmentation score increases 12.7%
relatively to [4]. Conclusions conducted above are further
verified. DLRR outperforms the state-of-the-art methods
for most classes and are more robust to class changes, and
DLRR shares the advantages of LRR and DIS. Compared
with LRR, DLRR improves obviously for the classes with
high class coherence (e.g., baseball, skating and Tai Mahal).
Figure 3 presents some object co-segmentation results of
the proposed method on the both datasets, in which the
successful and unsuccessful examples are both shown.
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Sheep Flower Sign Bird

Figure 3: Some object co-segmentation results.

The failed results may be due to the diversity of the object
appearance.

5. CONCLUSIONS

In this paper, a novel discriminative low rank matrix re-

covery algorithm is proposed to perform object co-segmentation.

Our method works on the assumption that object region
should be not only common among images but salient one
in an image. This is the first to be used in the task of object
segmentation. We import the low rank matrix recovery term
to measure the saliency of super-pixels so as to eliminate
the disturbance from those consistent backgrounds, while a
discriminative learning term is used to model the true ob-
ject region simultaneously. Besides, a regularized penalty is
employed to promote the both terms each other. A joint
optimization algorithm is designed to solve the proposed
formulation. Extensive experiments have shown the outper-
forming performance compared with some state-of-the-arts.
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