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ABSTRACT
Cinematic virtual reality provides an immersive visual experience
by presenting omnidirectional videos of real-world scenes. A key
challenge is to develop efficient representations of omnidirectional
videos in order to maximize coding efficiency under resource con-
straints, specifically, number of samples and bitrate. We formu-
late the choice of representation as a multi-dimensional, multiple-
choice knapsack problem and show that the resulting representa-
tions adapt well to varying content. We also show that separation
of the sampling and bit allocation constraints leads to a computa-
tionally efficient solution using Lagrangian optimization with only
minor performance loss. Results across images and videos show
significant coding gains over standard representations.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Artificial, augmented,
and virtual realities; I.4.10 [Image Representation]: Multidimen-
sional

General Terms
Algorithms, Performance

Keywords
Cinematic VR, Immersive video, Virtual reality, Omnidirectional
video coding

1. INTRODUCTION
Virtual reality (VR) refers to creating an artificial environment

with immersive 3D visual experience. Modern head-mounted dis-
plays (HMDs) have the ability to display wide-field-of-view con-
tent at high pixel densities to provide immersion. Furthermore,
these HMDs can track user head motion and update the displayed
content with low latency. In computer simulated environments like
VR games, the content can be rendered from the desired perspective
by employing 3D models of the environment. Since creating accu-
rate 3D models of real-world scenes is challenging, image-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

IMMERSIVE VIDEO EXPERIENCES ’15 Brisbane, Australia

c© 2015 ACM. ISBN 978-1-4503-3745-8/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2814347.2814348.

rendering techniques are typically used in Cinematic VR applica-
tions. In Cinematic VR, a real-world scene is captured in all direc-
tions (e.g., with a camera rig) resulting in an omnidirectional video
corresponding to a viewing sphere. To simulate depth, a separate
view is generated and presented to each eye. This leads to stereo-
scopic omnidirectional video with corresponding parallax between
the two views.

With advances in camera rigs and stitching algorithms for post-
production, systems for content creation are undergoing continuous
improvement. The delivery of Cinematic VR content may soon be-
come the bottleneck due to the high bitrate required for represent-
ing such content. Unfortunately, modern video coding standards
are not designed to handle spherical content. Therefore, a spherical
video is mapped onto a rectangular plane, resulting in a panoramic
representation, before encoding. A sphere can be mapped onto a
plane in many ways [1], but no mapping can be distortion free [2].
We refer to this as sampling distortion. Next, the video encoder
may introduce coding distortions in order to reduce the bitrate. The
final reconstruction quality of a spherical video is a function of both
sampling and coding distortions.

In this paper, we propose content adaptive representations of om-
nidirectional videos by jointly optimizing the sampling and coding
stages.

2. RELATED WORK
Panoramic representations such as Equirectangular (constant spac-

ing of lattitude and longitude), Equal-area cylindrical (decreasing
vertical sampling to compensate for increasing horizontal sampling
near poles), and cube map (projection of sphere onto cube) are
commonly used to represent spherical content. Most previous re-
search on optimizing sphere-to-plane mappings aim to generate
panoramas for human viewing. For instance, a method for content
preserving projections, with the help of manual inputs, was pro-
posed in [3]. Multi-plane perspective projections were proposed
in [4] to reduce the perceived distortion in foreground objects.

Many compression schemes have been proposed in literature for
coding omnidirectional videos to reduce the bitrate [5, 6]. How-
ever, these methods encode panoramic representations without op-
timizing the sphere-to-plane mapping. Furthermore, these methods
use different metrics to report performance which make it difficult
to make comparisons. The proposal in [7] uses spherical harmon-
ics to encode directly in the spherical domain. Unfortunately, a
lot of recent performance improvements in modern video coding
techniques (e.g., H.264/AVC, H.265/HEVC) cannot be directly ap-
plied in the spherical domain. One of the early studies on the im-
pact of panoramic projection on H.264/AVC encoding was con-
ducted in [8], however without considering polar regions. Mapping
a sphere onto a cube and encoding the faces of the cube can be
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(a) (b) (c) (d)

Figure 1: Illustration of panoramic representations: (a) equirectangular, (b) tiled representation, (c) adjusting sampling densities by resizing
tiles, and (d) adjusting sampling densities to account for content specific statistics and user viewing probabilities.

an attractive way to reformat data to make it suitable for modern
coding schemes. However, cube maps still suffer from the fact that
they oversample the sphere near the edges relative to the center of
the faces, due to perspective projection. One of the first schemes
to adapt the encoding based on the statistics of a given omnidirec-
tional video was proposed in [9]. However, only intra prediction
was considered and the bit allocation across different parts of the
panorama was optimized without taking into account the sampling
problem.

After mapping and encoding, many of the proposed compres-
sion schemes compute the coding error in the panoramic domain.
However, the error in the panoramic domain does not reflect the
error on the original sphere because of the back projection required
to get the points on the sphere. Moreover, in Cinematic VR, only
a viewport (i.e., cutout of the sphere) is shown to a user at any
given time. In recent work [12], viewport PSNR, a metric to com-
pare original and coded panoramic videos using head tracking data
was proposed. Furthermore, it was observed that the points near
the equator are more likely to be viewed than the points near the
poles. To account for such user statistics, latitude weighted spheri-
cal PSNR (L-PSNR) was proposed and shown to be a good proxy
for the actual viewport PSNR, since the user’s viewing directions
are not known beforehand.
Contributions of this paper: We propose a method to generate an
adaptive representation using tiles that can exploit the statistics of
both the underlying omnidirectional content and user viewing be-
havior. For a fair comparison of different representations, we intro-
duce a limit on the maximum number of samples each representa-
tion may use. We optimize the representation to maximize L-PSNR
while staying below the maximum number of samples and the tar-
get bitrate. Next, we show how the joint sample count and bitrate
constraint can be relaxed. This enables separate optimization of the
representation under the sample count constraint using Lagrangian
optimization which yields faster optimization and increased scala-
bility. Finally, we show how potential seams between tiles can be
mitigated using overlapping tiles.

3. OPTIMIZED REPRESENTATIONS
Camera rigs with multiple HD cameras are designed that can

acquire content at very high overall resolutions, such as 6K or 8K.
However, currently most content providers distribute their videos
at a lower resolution, such as 4K, due to two main reasons:

• Prohibitively high bitrate requirements, and

• Limited rendering resources at the display side. In particu-
lar, the relatively slow speed of the CPU-GPU link limits the
resolution of video frames that can be transferred to the GPU
for rendering in real-time.

Considering these factors, we aim to create content adaptive repre-
sentations that minimize distortion under bitrate and sample count
constraints.

3.1 Tiling
The equirectangular projection is widely used to generate a pla-

nar representation of omnidirectional video due to its simplicity.
The constant spacing of latitudes and logitudes leads to a constant
vertical sampling density. However, each latitude is stretched hori-
zontally to fit the desired rectangle. This leads to varying horizontal
sampling density, which tends to infinity near the poles.

One method to change the sampling density while retaining the
rectangular shape is by breaking the equirectangular representation
into multiple tiles. The width and height of these tiles can then be
adjusted to change the horizontal and vertical sampling densities.
More importantly, the introduction of tiles allows us to change the
representation based on content specific statistics and user view-
ing probabilities. More samples can be allocated to tiles (i.e., by
increasing the width and height) which contain content with high
detail or are more likely to be viewed.

3.2 Joint Sampling-Bitrate Optimization
The generation and adjustment of tiles under bitrate and sam-

ple count constraints can be formalized as an optimization problem
with multiple constraints. We start with an equirectangular projec-
tion of the spherical video, as shown in Fig. 1a. This is split into
N tiles (Fig. 1b), where each tile has M options for representa-
tion, generated by varying the sizes and coding at different bitrates
(Figs. 1c and 1d). We refer to the set of options for each tile as a
tile group. Given a bitrate budget R0 and a sample budget R1, the
objective is to minimize the total distortion subject to these con-
straints by choosing one option from each tile group. This can be
mathematically expressed as,

min
x(i)∈{1,··· ,M},∀i

N∑
i=1

d(i, x(i))

subject to
N∑
i=1

r(i, x(i), k) ≤ Rk, k = 0, 1

(1)

where, d(i, x(i)), r(i, x(i), 0), r(i, x(i), 1) are the distortion, bits
used, and samples used for option x(i) in tile group i, respectively.
Distortions are calculated independently per tile using L-PSNR.

This optimization problem is a multi-dimensional, multiple-choice
knapsack problem. A brute force search which exhaustively evalu-
ates all combinations guarantees an optimal solution. However, the
drawback is that brute force search scales poorly since the number
of combinations increases exponentially. Thus, the computational
complexity is O(MN ).

3.3 Separation of Constraints
To be able to consider a larger set of tile options, we simplify the

optimization problem. We observe that the chosen tile resolutions
tend not to change much when changing the target bitrate.
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Thus, we propose the following simplified method:

(1) First, we optimize tile sizes considering only the sample count
constraint.

(2) Then, using the chosen tile sizes, we code the tiles considering
the bitrate constraint.

The tile size determination problem can now be formulated as a
standard budget constrained allocation:

min
x(i)∈{1,··· ,M},∀i

N∑
i=1

d(i, x(i))

subject to
N∑
i=1

r(i, x(i)) ≤ R1

(2)

where, d(i, x(i)) is again the distortion introduced when choosing
an option x(i) in tile group i which has a resolution r(i, x(i)) . An
approximate solution to this discrete problem can be found using
the Lagrangian optimization technique. Specifically, a Lagrange
multiplier λ is introduced and the optimization within tile group i
is rewritten as,

min
x(i)∈{1,··· ,M}

d(i, x(i)) + λ · r(i, x(i)). (3)

The key idea is that, using a common λ for all tile groups, the
Lagrangian cost can be minimized separately for each tile group.
This results in a problem which scales linearly with the number of
tile options, instead of exponentially as in Sec. 3.2. The resulting
overall sample count using Lagrangian optimization depends on the
choice of λ. However, in practice, we can use heuristics or binary
search to find a λ which yields an operating point close to our bud-
get R1. Note that it is also possible to formulate the joint optimiza-
tion of (1) as a Lagrangian optimization, however we would need
to determine the right vector λ in order to reach an optimum, which
is much more difficult than for the scalar case.

Once the tile sizes are determined, ideally the allocation of bits
to different tiles would be performed according to Pareto optimal-
ity conditions. This would involve encoding each tile with a set of
quantization parameters and choosing the best combination across
different tiles. However, in order to reduce computational complex-
ity, we employ the same quantization parameter for all the tiles and
show that the overall loss w.r.t. exhaustive search of Sec. 3.2 is still
very small.

Since this algorithm runs in linear time, we can consider a larger
search space than in the brute force method, i.e., more options
within each tile group and larger number of tile groups.

3.4 Average Tile Configuration
In this section, we investigate whether the content adaptive scheme

proposed in Sec. 3.3 can be approximated by a fixed tiling scheme
learned using the entire dataset. Therefore, an average tile config-
uration within each tile group is computed using the entire dataset.
Let the number of items in the dataset be denoted as K, and the
width and height resulting from the optimization scheme of Sec. 3.3
for tile j and item k be Wjk and Hjk, respectively. Then, the aver-
age tile configuration for tile group j is calculated as,

Ŵj =
1

K

K∑
k=1

Wjk, Ĥj =
1

K

K∑
k=1

Hjk, (4)

where, Ŵj and Ĥj are the width and height of tile j in the aver-
age tile configuration. As in the content adaptive scheme proposed
in Sec. 3.3, bit allocation for the average tile configuration is per-
formed by using the same quantization parameter for all tiles.

(a)

(b)

Figure 2: (a) Magnified images to illustrate potential boundary ef-
fects at the intersection of two tiles. (b) Using overlapping tiles
with alpha blending reduces the appearance of seams.

3.5 Overlapping Tiles
Our proposed tiling scheme allows adjacent tiles to have signifi-

cantly different sampling densities. This difference can sometimes
lead to noticeable seams between the tiles. One way to mitigate
this effect would be to disallow large changes in adjacent tile di-
mensions when the optimization is carried out. But this introduces
dependencies between the tile groups. Therefore, we propose to
generate the tiles such that they overlap with adjacent tiles by a
small fraction. Then, alpha blending is used to combine the over-
lapping regions, resulting in a smoother boundary.

We adjust the optimization schemes proposed in Sec. 3.2 and
Sec. 3.3 to account for the top and bottom overlapping regions.
Specifically, in the scheme in Sec. 3.2, the bits and samples con-
sumed, r(i, x(i), 0) and r(i, x(i), 1) in (1), increase due to over-
lap. Similarly, in the scheme in Sec. 3.3, the resolution of each
tile, r(i, x(i)), increases. However, the distortion contributed by
each tile is still computed using the original tile boundaries to be
able to handle each tile independently. The blending of overlap-
ping regions is done outside the optimization loop and can be seen
as post-processing.

4. EXPERIMENTAL RESULTS
We evaluate the coding efficiency of the omnidirectional video

representation methods described in Sec. 3 on two datasets. The
first dataset consists of 10 omnidirectional images in equirectangu-
lar format at 6Kx3K resolution depicting indoor and outdoor scenes
from the SUN360 database [13]. The second dataset consists of 10
omnidirectional videos in equirectangular format. This consists of
8 videos at 4Kx2K resolution and 2 videos at 6Kx3K1. The 4Kx2K
videos contain full spherical data, while the 6Kx3K videos do not

1The 6Kx3K videos have been generously provided by Jaunt Inc.
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Figure 3: Samples frames from the image dataset.

have content at the bottom, where the tripod was placed for record-
ing. The duration and frame rate of each video is 10 seconds and 30
frames per second, respectively. We used a variety of scenes (e.g.,
concert, outdoor sports, aerial footage, etc.) to cover a wide range
of scenarios.

The testing procedure is as follows. First, for each image or
video, a constraint on the maximum number of samples is assigned.
In all experiments, this constraint is equal to one-fourth the number
of samples in the original (e.g., a 6Kx3K video would have a sam-
ple count constraint of 4.5 million samples). Second, four bitrate
constraints are chosen such that the resulting rate-distortion (RD)
curve spans a range between 30-40 dB. Given the maximum num-
ber of samples and bitrate constraints, the optimization schemes
described in Sec. 3 are run to create content-specific representa-
tions. Note that, in the case where the content is video, only the first
frame is considered in the optimization schemes to limit the com-
putational complexity and the chosen parameters are used through-
out the video. Next, the original data is mapped to this resulting
representation and encoded using an H.264/AVC codec. Then, the
compressed data is decoded and compared with the original data
using L-PSNR. Finally, the resulting RD curves are compared us-
ing BD-rate [10].

L-PSNR was recently developed in [12] in order to compare the
efficiency of various representations of omnidirectional video. The
distortion metric is calculated by sampling points of omnidirec-
tional videos corresponding to a uniform distribution of points on
a sphere. The error contributed by each point is then weighted by
the viewing probability of the point’s latitude. The distortion met-
ric has two main benefits for this application. One, this distortion
metric can be calculated even if the original and coded data use
different representations and/or resolutions. Two, this distortion
metric accounts for user viewing probabilities in HMDs (e.g., users
are more likely to look at equator regions than the poles).

4.1 Content Adaptive Representation
Using the image and video datasets introduced, we evaluate the

performance of our algorithms with various configurations, namely,

• B10-0: Brute-force optimization using 10 resolution and 4 bi-
trate choices per tile. No (0%) overlap between adjacent tiles.

• B10-2: Brute-force optimization using 10 resolution and 4 bi-
trate choices per tile. 2% overlap between adjacent tiles.

• L10-2: Lagrangian optimization using 10 resolution choices
per tile. 2% overlap between adjacent tiles.

• L50-2: Lagrangian optimization using 50 resolution choices
per tile. 2% overlap between adjacent tiles.

Seq. B10-0 B10-2 L10-2 L50-2 Avg-2

0 -9.4% -5.4% -3.9% -9.9% -7.3%
1 -13.2% -8.0% -8.0% -15.9% -7.5%
2 -22.9% -19.7% -19.7% -20.9% -19.9%
3 -5.8% -2.6% -1.1% -5.1% -3.3%
4 -27.9% -24.1% -21.5% -25.7% -22.9%
5 -33.7% -30.8% -30.0% -34.6% -31.8%
6 -23.0% -20.3% -17.3% -22.7% -20.3%
7 -14.4% -12.2% -10.8% -15.0% -5.2%
8 -6.2% -2.7% -0.8% -2.0% -1.0%
9 -30.3% -27.7% -27.5% -28.2% -27.0%

Avg -18.7% -15.4% -14.0% -18.0% -14.6%

Table 1: Results on image dataset. BD-rate comparison of various
representations relative to the equal-area representation using the
evaluation method described in Sec. 4.

Seq. L50-2 Avg-2

0 -17.5% -15.3%
1 1.1% 1.5%
2 -0.9% 1.6%
3 -11.2% -4.1%
4 -14.5% -10.0%
5 -9.5% -8.0%
6 -24.6% 41.0%
7 4.2% 5.2%
8 -17.3% -15.3%
9 -31.9% -20.8%

Avg -12.2% -2.4%

Table 2: Results on video dataset. BD-rate comparison of various
representations relative to the equal-area representation using the
evaluation method described in Sec. 4.

• Avg-2: Average tile configuration. 2% overlap between ad-
jacent tiles.

The resolution choices ranged between 0.25 to 0.75 times the width
and height of the original tiles.

Table 1 summarizes the average bitrate savings of the proposed
methods relative to the equal-area representation on the image dataset
using the BD-rate measure. While the equirectangular representa-
tion is more widely used because of its simplicity, recent work has
shown that the equal-area representation generally performs bet-
ter [12]. Negative BD-rate numbers indicate bitrate savings w.r.t.
this baseline.

As seen in Table 1, both our brute-force and Lagrangian opti-
mization schemes significantly outperform the baseline across all
configurations. The brute-force optimization scheme with no over-
lap (B10-0) achieves a bitrate savings of 18.7%. Next, considering
the requirement of tile overlap, the loss in coding efficiency can
also be seen in Table 1. Specifically, the average gains from using
our brute-force optimization scheme drops from 18.7% to 15.4%
when considering tiles with 2% overlap (B10-2). Furthermore, Ta-
ble 1 shows the loss in coding efficiency when using Lagrangian
optimization rather than brute force search. The average gains drop
from 15.4% to 14.0% when using the Lagrangian scheme (L10-
2). While this loss is not negligible, the Lagrangian optimization
scheme is significantly more computationally efficient. This allows
more tile options to be considered, yielding larger gains than using
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Figure 4: RD curves of two video sequences for different
panoramic projections.

the brute-force scheme with fewer options. In particular, our La-
grangian optimization scheme with 50 resolution choices and 2%
overlap (L50-2) has average bitrate savings of 18.0% on the image
dataset compared to the baseline equal-area representation.

Table 2 summarizes the average bitrate savings on the video
dataset. Here, we consider the best performing method on the im-
age dataset with 2% overlap (L50-2) and compare it to the reference
equal-area representation. The proposed method achieves average
bitrate savings of 12.2% and max savings of 31.9%. It can be seen
that the average bitrate savings on the video dataset is lower than
on the image dataset. This can be due to the fact that the optimized
representation of the first frame is used throughout the video in our
experiments. This can be easily extended such that the optimization
is repeated after a desired interval.

Fig. 4 shows the RD curves for two videos in our dataset, namely
Seq. 4 and 5. These curves show the difference in coding effi-
ciency between using traditional representations (i.e., equirectan-
gular, equal-area) and our proposed methods. In particular, the pop-
ular equirectangular representation performs significantly worse than
other representations. Moreover, our proposed method using La-
grangian optimization with 50 resolutions and 2% overlap outper-
forms all other representations.

(a) (b)

Figure 5: Relative tile sizes when using (a) the equirectangular rep-
resentaiton broken into 6 horizontal tiles and (b) the average tile
configuration trained on the image dataset.

4.2 Average Tile Configuration
An average tile configuration was computed separately for the

image and video datasets. Fig. 5 shows the relative difference in
tile sizes between the tiled equirectangular representation and the
average tile configuration computed using the image dataset. Note
that the illustrated tiles are drawn to scale. In the average tile con-
figuration, the top and bottom tiles, which correspond to the north
and south poles of the omnidirectional video respectively, are sig-
nificantly smaller in both width and height. This large reduction
in width is expected since the horizontal sampling density of the
equirectangular projection is higher near the poles. The similar re-
duction in height is due to content typically containing less detail
near the poles (e.g., sky, ceilings) than in the equatorial regions.
The larger equatorial tiles also match the observation that users tend
to view these areas most frequently.

For the image dataset, the coding efficiency of the average tile
configuration is generally similar to the performance of our content
adaptive schemes. However, the average tile configuration shows
large variation in bitrate savings across the dataset. For instance,
on Seq. 7 in Table 1, the average tile scheme performs 10% worse
than our best content-adaptive scheme. The average savings for the
video dataset in Table 2 is rather low because of Seq. 6, which is
an outlier. Thus, while the average tiling configuration can gener-
ally perform better than the baseline, there exists diverse content
which cannot be handled by such a fixed scheme. Hence, content
adaptivity is crucial in enabling efficient representations of omnidi-
rectional videos.

5. CONCLUSION
In this paper, we have developed an algorithm which signifi-

cantly improves the coding of omnidirectional videos by optimiz-
ing the underlying representation subject to resource constraints.
We showed that the joint optimization of sampling and bit allo-
cation can be formulated as a multi-dimensional, multiple-choice
knapsack problem which is solvable with brute force search. By
separating the constraints on sampling and bit allocation, we also
showed that the optimization problem can be solved efficiently us-
ing a Lagrangian framework. Average bitrate savings of over 18%
and 12% relative to the baseline equal-area representation were ob-
served on an image and video dataset, respectively. While a generic
representation can often perform well, this work shows that a con-
tent adaptive representation can be beneficial due to the diverse na-
ture of omnidirectional content.
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