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ABSTRACT
Automatic classification of depression using audiovisual cues can
help towards its objective diagnosis. In this paper, we present a
multimodal depression classification system as a part of the 2016
Audio/Visual Emotion Challenge and Workshop (AVEC2016). We
investigate a number of audio and video features for classification
with different fusion techniques and temporal contexts. In the audio
modality, Teager energy cepstral coefficients (TECC) outperform
standard baseline features; while the best accuracy is achieved with
i-vector modelling based on MFCC features. On the other hand,
polynomial parameterization of facial landmark features achieves
the best performance among all systems and outperforms the best
baseline system as well.

Keywords
Multimodal signal processing, behavioral signal processing (BSP),
depression, Teager energy operator, i-vector, facial landmark,
fusion

1. INTRODUCTION
Depression is an affective disorder which has long been

recognized as a major concern for individual well-being, often
leading to mental disability, morbidity and mortality. It is
characterized by the impairment of the patient’s ability to cope
with stressful life events and also often associated with persistent
feelings of negativity, sadness, loss of interest or pleasure and
low self-esteem. Depression is also associated with a range
of physiological symptoms such as weight loss, insomnia and
fatigue. Severe depression is considered one of the leading
causes of suicide [19] and substance abuse. It is linked with
other psychological disorders such as bipolar affective disorder
(also known as manic disorder), dementia [22], and even cardio-
vascular conditions [4]. According to a recent report published
by World Health Organization (WHO), it is estimated that around
350 million people worldwide are affected by moderate and severe
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depression [27]. Depression has been identified as a burden to the
economy and affects justice and social systems [17]. These reasons
have made detection and treatment of depression a high priority
towards improvement of the life and health of millions of people.

The standard of depression diagnosis is based on the criteria
of the Diagnostic Statistical Manual (DSM) of mental disorders.
The outcome of the diagnosis is based on the scores obtained from
answering the DSM questionnaire. There are little to no physical
tests that directly provide a diagnosis. Studies have shown an
alarming rate of false detection in depression diagnosis by general
practitioners [30]. The consequences of false detection could be
severe. In fact, under-detection could lead to insufficient treatment
whereas over-detection could lead to over-treatment, either leading
to decreased quality of life. Thus, any valuable contribution to aid
in accurate prediction of depression is critical. Recent advances
in machine learning, artificial intelligence, and behavioral signal
processing allow researchers to view this as a joint human-machine
problem and employ a range of modalities to better quantify
depression.

The Audio-Visual Emotion Challenge and Workshop (AVEC
2016) provides a research opportunity to investigate a range
of signal processing and machine learning methodologies for
depression recognition through the Depression Classification sub-
Challenge (DCC). In this work, we use data- and knowledge-
driven feature extraction methods followed by machine learning
techniques including multimodal fusion to predict depression labels
from audio-visual information. The primary contribution lies in
proposing multimodal features that capture depression behavior
cues in a multi-resolution modeling and fusion framework. Teager
energy-based and i-vector features along with phoneme rate and
duration are proposed to predict depression from audio. On the
other hand, polynomial parameterization of temporal variation
along with perceptually motivated distance and area features
obtained from facial landmarks in video modality is used for the
same task. We also investigate the impact of different temporal
resolutions on various modalities. We find that a window-based
representation of the features with a large temporal context results
in better prediction of depression than frame-level analysis. This is
in agreement with the slow-varying nature of depressive behavior,
as reflected in human audio-visual signals during communication.

The rest of the paper is organized as follows. Section 2 gives
a brief review of related research, while Section 3 introduces the
dataset. Section 4 and 5 describe the features for the audio and
video modalities respectively. Section 6 describes different aspects
of the classification systems. Section 7 focuses on the multimodal
fusion methods and Section 8 on the regression technique used
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for depression severity estimation. The experimental results are
reported in Section 9. Finally, conclusions are drawn and future
directions are given in Section 10 and 11, respectively.

2. RELATED LITERATURE
In recent years, there has been significant interest in research

on identification of depression from behavioral signals, namely,
speech and visual modality of human communication. Early
work on speech-based markers in relation to depression relied
on subjective observation and manual or empirical decision
making by clinicians [37]. Recently, more data-driven approaches
towards depression detection found several speech features to be
useful—such as vocal jitter [32], shimmer [38], harmonics-to-noise
ratio (HNR) [1] etc. The usefulness of these voice quality features
was consistent with the hypothesis that depressed individuals
tend to have unnatural and monotonous speech patterns [8].
Further research [31, 35] showed that characterization of glottal
flow waveform improves discrimination of depressed speech.
Furthermore, pause duration [44] and global speech rate [45] are
known to be vocal biomarkers of a depressed individual.

Along with speech and vocal cues, depression is also reflected
in facial expression, head movement, eye gaze and gesture. A
significant amount of literature is available on detecting depression
from facial expressions. Alghowinem et al. [2] used yaw, roll,
pitch and their statictics to recognize depression from head pose
and movement. Ooi et al. [34] applied eigenface and Fisherface
methods on the facial images of adolescents to detect the risk of
being depressed. Hamm et al. [18] developed automated facial
expression and action units (AU) recognition system to find and
analyze neuropsychiatric disorders, which are sometimes actively
or passively related to depression.

A good amount of research has been done in multimodal fusion
of audio and video features to detect and analyze depression.
Kächele et al. [20] have used a hierarchical classifier model to
find the state of depression using audio-visual fusion. Vocal
prosody and facial action units have also been used in [5] to detect
depression. Meng et al. [28] used Motion History Histogram
(MHH) dynamical features [29] to recognize depression from both
audio and video.

3. DATASET
The current work uses the publicly available multimodal

depression data set, Distress Analysis Interview Corpus - Wizard
of Oz (DAIC-WOZ) [16], which is a collection of interviews
of individuals conducted by Ellie, a virtual human designed to
help diagnosis of psychological distress conditions. The dataset
is annotated with self-reported PHQ-8 [23] scores of depression
as well as binarized depression ratings of the subject. The
challenge primarily addresses the automatic classification problem
of depression (depressed vs. not depressed) from audio and video
modalities.

4. AUDIO FEATURES
4.1 Baseline features

The baseline audio features for the DCC challenge include a
set of features extracted using COVAREP toolbox. It consists
of several prosodic features (fundamental frequency and voicing)
and some knowledge-driven voice quality features (such as glottal
features and formants), along with standard spectral features like
MFCCs and harmonic model features. The complete list of these
features can be found in [46].

4.2 Extended spectral and prosodic features
Since the baseline audio feature set does not include a few

features deemed useful for depression prediction (such as jitter,
shimmer etc.), we choose to extract some additional features.
We use the baseline feature set from INTERSPEECH 2013
computational paralinguistics challenge (ComParE) [39]. This
set consists of pitch, energy, spectral, cepstral coefficients
(MFCCs) and voicing related frame-level features referred to
as low-level descriptors (LLDs). Some other LLDs include
logarithmic harmonic-to-noise ratio (HNR), spectral harmonicity,
and psychoacoustic spectral sharpness. We use the OpenSMILE
toolkit [12] to extract all these features.

4.3 Teager energy cepstral coefficients
The Teager Energy Operator (TEO) is motivated by the energy

in an oscillating system and has found use in many speech
applications [15,50]. This nonlinear energy operator (Ψ), proposed
by Teager and Kaiser [21], is defined below for a given signal or
feature stream x[n].

Ψ(x[n]) = x[n]2− x[n−1]x[n+1] (1)

Because of its nonlinearity property, TEO can robustly track
rapid changes in a local context, which is specifically useful in
presence of noise. Teager-energy cepstrum coefficients (TECCs)
were introduced in [15] as a robust alternative to MFCCs in an
emotion recognition application in noisy conditions. We adopt
these features for our depression prediction system. To compute
TECCs, first the spectrum of the speech signal is computed
and then TEO is applied before the remaining stages of cepstral
coeffcient computation in Mel scale. The process also involves a
pre-processing stage including frame blocking, windowing with a
hamming window and pre-emphasis.

4.4 Feature representation with a large
window

All the features discussed so far are extracted at a high temporal
resolution due to the non-stationarity of speech signal. We use
a 25 ms sliding frame with 10 ms shift to perform the feature
extraction. However, it is difficult to characterize depression at
such a fine resolution. Unlike emotion, which can change rapidly
within a short speech segment (within 2 seconds, for example),
expression of depression in speech is a much more slowly varying
phenomenon. For this reason, we choose to integrate the vocal
information within a large window containing multiple frames,
consistent with prior work on behavioral signal processing [25].
In this work, we choose a window of 10s duration and 5s shift
and combine features from all frames within that window by taking
their arithmetic mean. We will refer to this feature representation
as window-level features throughout this paper, as opposed to the
very short-term frame-level representation.

We mask the virtual human speech and the non-speech regions to
consider only the speech segments of the subject. We use the start
and end time-points of continuous utterances from the transcripts
to obtain voice activity detection (VAD) labels.

All the windows from a certain session can be used for training
using the label of that session (depressed vs. not depressed) since
depression can be considered a user state that does not change
rapidly.

4.5 i-vector modeling
Recently i-vector modeling using total variability framework

was proposed for speaker verification task [9] with state-of-
the-art performance. The total variability framework provides
an effective way to capture speaker variability and channel
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Table 1: Different audio feature sets
Feature Scope of analysis Dimension

COVAREP 10s-window-level 74
Formant features 10s-window-level 5

Baseline 10s-window-level 79
IS ComParE 2013 10s-window-level 130

i-vector 10s-window-level 50 - 600
eGeMAPS session-level 88

Phone features session-level 17
session-level features - 105

variability in a low dimensional sub-space. We hypothesize
that the vocal characteristics of depression are reflected in the
spectral variability over time. Previous analysis of acoustic
properties of depressed subjects has shown spectral properties like
amplitude modulation, formants and spectral power distribution to
be potential discriminators from neutral speech [7,13]. The i-vector
framework has been shown to be extremely effective in capturing
spectral variability cues in application to speaker recognition [41],
language recognition [10], native language identification [42] and
speaker age classification tasks [43]. In [49], the i-vectors were
used to detect emotions in speech. In this work, we employ total
variability modeling to capture the variability between depressed
and non-depressed speakers. The i-vector extraction process could
be represented as follows:

M = m+T v, (2)

where m is the mean super-vector of the Gaussian mixture
model-universal background model (GMM-UBM). M is the mean
centered super-vector of the speech utterance derived using the
0th and 1st order Baum-Welch statistics. T is the low rank total
variability matrix representing the speaker and channel variabilities
trained using Expectation-Maximization (EM). v is the i-vector
representation of the speech utterance.

In our work, the UBM and the total variability matrix are trained
on the in-domain data. To compensate for the data sparsity, we
over-sample our training set by perturbing the raw audio files by
spectral warping and addition of white Gaussian noise at different
signal-to-noise ratios. The depressed class is oversampled more
than the not depressed class to compensate for unbalanced class
distribution. 13 dimensional MFCC features are extracted using a
frame size of 25ms and an overlap of 10ms. Additionally, the first
and second order derivatives (∆ and ∆-∆) of MFCCs are computed
to give 39 dimensional feature vector. Voice activity detection
(VAD) labels are inferred from the transcripts to mask the non-
speech regions, similar to window-level and session-level analysis.
The GMM-UBM component dimensions are experimented upon,
ranging from 512 to 2048. The total variability subspace rank is
experimented for dimensions in the range 50 - 600.

4.6 Session-level acoustic features
Since depression reference ratings are provided per subject at

a global level, we also investigate classification based on features
extracted from the entire session. The major challenge for such
an approach is the small sample size (number of sessions) of the
dataset, which has led us to use a small minimalistic feature set.
We use the extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) [11] for this purpose, which has showed promising
results in paralinguistic applications. It consists of various
functionals over standard spectral, cepstral, prosodic and voice
quality features and is extracted from OpenSMILE toolkit [12] for
all speech frames in a session.

4.7 Phoneme-based features
4.7.1 Text-audio alignment

We first utilize the transcript to extract the continuous utterances
spoken by the subject. Then, we use the start and end time-points of
each utterance to obtain the corresponding audio segment. Finally,
we run the Gentle forced aligner [33] on these transcript-audio
pairs to obtain the start and end time-points of each phoneme in
each utterance.

4.7.2 Phoneme rate and duration
We extract phoneme rate and phoneme duration information at

the utterance-level as well as the session-level. We obtain the
utterance-level phoneme rate by dividing the number of phonemes
present in each utterance by the corresponding utterance duration.
Statistical functionals (mean, variance, median, min, max, range,
skewness and kurtosis) of these utterance-level features (phone
rate and duration) are then computed across the entire session.
Finally, we obtain the session-level phoneme-rate by dividing the
total number of phonemes by the total duration over all turns. This
results in a 17-dimensional (2×8+1) feature vector per session.

In order to account for the class size imbalance in the dataset, we
create smaller-length sessions for the depressed class by splitting
each original session into multiple contiguous sub-sessions. This
step results in nearly equal number of training samples in both
classes.

5. VIDEO FEATURES
Since no raw video is made publicly available for the AVEC

2016 DCC, we use the baseline video features to derive meaningful
meta features as described below.

5.1 Baseline features
Two sets of baseline video features are provided in the challenge.

The first one contains facial landmarks (2D and 3D), Histogram
Oriented Gradient (HOG) features, estimated gaze direction, and
3D position and orientation of the head. These are computed from
the raw video using the OpenFace [3] toolkit. The second set
consists of continuous measures of 20 facial action units (AUs) and
emotions estimated with the FACET [26] toolkit.

5.2 Marker velocity and acceleration features
We use the same 10s-window level feature extraction technique

as discussed in Section 4.4. Table 2 shows the dimensions of
different feature sets we have extracted along with their assigned
names. FacialMarker1 contains the baseline OpenFace features
averaged over the frames in a window. These are concatenated with
their velocity (first order derivative) and acceleration (second order
derivative) to create FacialMarker2 features. For convenience, we
will refer to velocity and acceleration as ∆ and ∆-∆ respectively
throughout the paper. The AU feature set is constructed in similar
manner from the raw FACET features. To boost the classification
performance, we extract additional features as described below.

5.3 Polynomial parameterization on the facial
marker features

To capture the temporal variation of the facial expression,
polynomial fitting is performed on the features of different frames
in a particular window and the coefficients of the fitted polynomial
are used as new features [47]. The central idea is to capture the
temporal variation of facial expression rather than the position of
the landmarks at any particular time. The 3D positions of the 68
facial markers, along with eye gaze and head pose are taken from
the baseline features provided. For every feature, all the values in
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Table 2: Different video feature sets
Feature set name Description Dimension

FacialMarker1

3D landmarks 204
Eye gaze 12

Head pose 6
Total 222

FacialMarker2 FacialMarker1 + ∆ + ∆-∆ 666

Polyfit FacialMarker1 222
Polynomial parameterization 666

AU

AUs 30
∆ AUs 30

∆-∆ AUs 30
Total 90

Geometrical

Distance 11
∆ distance 11

Area 26
∆ area 26
Total 74

VideoFeatSet1 FacialMarker2+Geometrical 740
VideoFeatSet2 VideoFeatSet1+Polyfit 1406

a particular window (10s) are fitted into a 2nd order polynomial
and the three coefficients of the polynomial are taken into account.
So, the three coefficients carry the information about the temporal
variation of the corresponding feature in a compact way. In total,
this generates a 666 dimensional feature vector (termed Polyfit) for
every window.

5.4 Geometrical features
We also extract geometrical features, namely distance and area

features, from the face. This set contains distances between
particular points as shown in Fig. 1a and areas formed by joining
specific points as in Fig. 1b [48]. Clearly, the distance features carry
information about mouth opening and closing, mouth stretching,
eye opening and closing, eyebrow lifting etc. Similarly, the area
features reflect changes in face topology. Our hypothesis is that
these features capture information about facial expressions relevant
to depression detection. 11 distance features and 26 area features
are extracted from the x and y co-ordinates of the 68 landmark
points (please see Table 2).

The distances are normalized by the width of the face since
the face width does not change in different expressions or
emotions [48]. The areas are normalized by the mean area of
the face of a particular person over the whole session. So, these
features are less dependent on different face structures and face
areas of different persons as well as invariant to the individual
differences in face topologies for the same expression.

The ∆ features are also taken into consideration to capture the
nature of change in the face topology. As shown in Table 2, the
dimension of the whole geometrical feature vector is 74.

6. CLASSIFICATION
6.1 Feature selection

Because of the high dimensionality of the video feature sets
and consequent risk of overfitting, we perform feature selection
to choose a reduced subset of features before classification. This
strategy is specifically useful for facial marker feature sets. We use
Mutual Information Maximization (MIM) based feature selection
method [24], where every feature Xk is evaluated based on a mutual
information score JMIM = I(Xk;Y ) based on the class label Y . This
feature selection procedure is also used while performing session-

level classification, as the number of sessions becomes comparable
to the number of features used.

6.2 Classifier: Support Vector Machine
6.2.1 Window-level: SGD-SVM

A linear support vector machine (SVM) classifier with stochastic
gradient descent (SGD) learning is used for all feature sets except
for the session level feature sets and the i-vector system. The
hyperparameters of the classifier (α , loss function and regularizer)
are tuned by a grid search on 10-fold cross-validation of train and
development set. Then training is performed only on the training
data with optimized parameters. This process is also similar to the
baseline system [46]. The implementation of SGD-SVM in Scikit-
learn [36] toolbox is used for this purpose. The use of such a fast
and simple classifier enables us to experiment on various feature
sets more efficiently.

6.2.2 Session-level: Kernel-SVM
Since we have small number of data samples in session-

level system, we use support vector machine (without SGD) for
classification. Different types of kernels (linear, polynomial,
RBF) are used with SVM. The choice of the kernel and other
hyperparameters including C, γ etc. are optimized by grid search
with cross-validation.

6.3 Gaussian Probabilistic LDA
Gaussian Probabilistic Linear Discriminant Analysis (G-PLDA)

models have shown to be effective classifiers for i-vector based
systems [40] which constitute the current state-of-the-art speaker
recognition systems [14]. The i-vectors extracted were length-
normalized as in [14] and used in a G-PLDA framework for
classification. To compensate for the limited sample size for
training the G-PLDA model, each speaker session is split using
10 second window with 5 second overlap. The output of the G-
PLDA system consists of the log-likelihoods of both classes for
each session. For final classification, the log-likelihoods of the
constituent splices representing a session are fused as described in
section 7.2

7. FUSION SCHEMES
7.1 Feature-level fusion

Feature-level fusion is used for the different feature sets of
the video modality. Table 2 shows the description of the fused
feature sets for video. FacialMarker2 and geometrical features are
concatenated to create VideoFeatSet1 feature set. Finally, the Polyfit
features are appended with the VideoFeatSet1 features to create
VideoFeatSet2 feature set. The reason for not using the AU features
in early fusion is their poor performance (discussed in Section 9) on
the development set. Moreover, feature level fusion is performed
while using session-level audio features and phoneme features.

7.2 Temporal fusion
The majority of the classification experiments are performed at a

finer temporal resolution than the originally provided depression
labels. In other words, the class labels are given per session,
while window-level classification predicts a label for each window.
Therefore, we can employ predictions of all windows throughout
a given session to derive a single session-level depressed or not
depressed label. The signed confidence score C(x) for a feature
vector x is defined as a function of the class posterior probabilities
against the class label y as shown below:

C(x) = logP(x|y = 1)− logP(x|y = 0), (3)
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(b) 26 area features

Figure 1: Geometrical features computed from the facial landmarks.

where 1 and 0 indicate depressed or not depressed classes
respectively. For all the window-based classification experiments,
class-posterior log-probabilities are added for all windows in a
given session and the class that maximizes the cumulative posterior
log-probability is chosen as the hypothesized class. Similarly,
for the ivector classification, the log-likelihood scores from the
G-PLDA system are summed for all the splices constituting a
session and the class that maximizes the total log-likelihood score
is selected. This confidence-based technique proved to be more
robust and effective compared to the simple majority voting for
both SVM and i-vector systems.

7.3 Multimodal late fusion
We perform late-fusion of session-level decisions from multiple

modalities to investigate its effectiveness at predicting session-
level depression ratings. We first build depression-prediction
SVM models for each modality separately. Then, we obtain
classification-confidence scores at window-level and session-level
for video and audio modalities respectively.

In the video stream, we uniformly resample the window-level
confidence scores to obtain 10 scores per session. From the audio
stream, we obtain 2 confidence scores per session, one each for
i-vector and phoneme features. Finally, we use these scores in
a classification scheme to predict whether a session belongs to
depressed or not depressed class. Thus, we also examine if the
phoneme stream provides complementary information to the audio
and video by testing the system with a fusion of only the latter two
modalities.

To account for class-size imbalance, we randomly select a subset
of the not depressed samples that is equal in size to that of the
depressed class. We then train an RBF-kernel SVM model on these
samples and predict the labels for the development set samples. The
final prediction labels are obtained by taking a majority vote over
51 independent runs.

In addition, we also perform simple logical AND operation
between predictions made by audio and video modalities, similar
to the baseline system.

8. RANDOM FOREST REGRESSION
Random Forest estimator is an ensemble learning method which

fits multiple decision tree classifiers/regressors by random selection
of features and optimizes by bagging and aggregating the results.
The number of estimators are tuned using grid search on 10-
fold cross-validation of train and development set, and the best

parameters are retained and used for final regression. The system
setup is identical to the baseline system [46]. The trimmed mean of
regression scores of constituent windowed samples is used to get
the regression score representing the corresponding session. The
regression performance is evaluated using Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE).

9. RESULTS AND DISCUSSION
9.1 Classification results

The results of each modality are presented in this section. Since
the dataset has a very skewed distribution of classes, we provide
unweighted and weighted F1 scores, precision, and recall.

9.1.1 Audio system
Table 3 illustrates the performance of the proposed audio

systems. All audio feature sets except IS2013 ComParE features
outperform the baseline. TECC features alone perform better than
the baseline, while the session level systems perform better than
any of window-level SVM classifier systems. We also achieve
improvement in performance by the use of phoneme features in
addition to acoustic features for session-level classification.

The i-vector - PLDA system outperforms the baseline by a
significant margin. We observe that the i-vector system provides
improvement to both the depressed and not depressed classes,
thereby asserting the robustness of the system. An absolute
increase of 17% is achieved with F1 score metric for the depressed
class whereas for the not depressed class the performance increases
by an absolute 32%.

On test dataset, the best performing audio system achieves F1
scores of 0.48 and 0.85 for depressed and not depressed classes
respectively, which are much above the baseline performance (0.46
and 0.68).

9.1.2 Video system
A comparison of the performances of different video feature

sets along with the baseline is presented in Table 4. The results
are obtained after fusing the results of 100 independent runs of
SGD-SVM (Section 6.2) on the development set. We observe
poor performance of the AU feature set. We further notice that
FacialMarker2 achieves better performance than FacialMarker1,
indicating that ∆ and ∆−∆ of facial markers are informative. The
geometrical features perform better than facial marker feature sets,
despite a comparatively smaller dimensionality.
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Table 3: Results on development set for audio (values for not depressed class are shown in parentheses)
Features Classifier F1 score Precision Recall Weighted F1 score
Baseline SVM-SGD 0.41 (0.58) 0.27 (0.94) 0.89 (0.42) 0.55

IS2013 ComPareE SVM-SGD 0.40 (0.84) 0.38(0.85) 0.43 (0.82) 0.75
TECC features SVM-SGD 0.43(0.86) 0.43(0.86) 0.43(0.86) 0.77

eGeMAPS SVM-polynomial 0.46 (0.88) 0.5 (0.86) 0.43 (0.89) 0.80
eGeMAPS+phone SVM-polynomial 0.47 (0.83) 0.4 (0.88) 0.57 (0.78) 0.76
i-vector (MFCC) G-PLDA 0.57 (0.89) 0.57 (0.89) 0.57 (0.89) 0.83

Table 4: Results on development set for video (values for not depressed class are shown in parentheses)
Feature set name F1 score Precision Recall Weighted F1 score

Baseline 0.58 (0.86) 0.47 (0.94) 0.78 (0.79) 0.81
FacialMarker1 0.36 (0.71) 0.27 (0.85) 0.57 (0.61) 0.64
FacialMarker2 0.38 (0.73) 0.29 (0.86) 0.57 (0.64) 0.66

Polyfit 0.38 (0.73) 0.28 (0.86) 0.57 (0.64) 0.66
AU 0.11(0.69) 0.09 (0.75) 0.14 (0.64) 0.57

Geometrical 0.40 (0.76) 0.31 (0.86) 0.57 (0.67) 0.69
VideoFeatSet1 0.48 (0.78) 0.36 (0.91) 0.71 (0.67) 0.72
VideoFeatSet2 0.42 (0.78) 0.33 (0.87) 0.57 (0.71) 0.71

VideoFeatSet2 + Feature selection 0.63 (0.89) 0.56 (0.92) 0.71 (0.86) 0.84

Table 5: Regression results on development set
Modality Features Regressor MAE RMSE

Video Baseline Random Forest 5.8767 7.1332
VideoFeatSet2 + Feature Selection Random Forest 6.4799 7.8644

Audio Baseline Random Forest 5.3566 6.7418
i-vector PLDA log-likelihood scores Linear Regression 5.8237 6.7334
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Figure 2: Variation of F1 scores for two classes on the development
set with number of features selected.

Table 6: F1 scores on development set for mulimodal late fusion
(values for not depressed class are shown in parentheses)

System F1 score
Audio only 0.57 (0.89)
Video only 0.63 (0.89)

Late fusion 1 (A+V) 0.40 (0.84)
Late fusion 2 (A+V) 0.40 (0.84)

AND(A,V) 0.63 (0.89)

Using geometric features along with facial marker feature sets
(VideoFeatSet1) achieves improved F1 score over using either of
them separately. However, further adding polynomial parametric
feature sets (VideoFeatSet2) leads to decline in the performance,
possibly because of overfitting caused by the high dimensionality
of the feature set and limited training data. To address this, feature
selection (Section 6.1) is applied on this feature set. Fig. 2 shows
the variation of F1 scores of the two classes on the development set

with number of features selected. We start with 100 features and
successively add 50 features in each iteration. At every step we run
SGD-SVM 100 times and obtain the final result by fusing different
runs.

The best performance is obtained with 300 features, with F1
scores of 0.63 and 0.89 for depressed and not depressed classes
respectively. We get a 5% increase in F1 score for the depressed
class and 3% increase for the not depressed class over the baseline
performance.

We obtained F1 scores of 0.29 and 0.80 on test set using the video
modality. The comparatively poor performance might be because
of data mismatch between development and test dataset.

9.2 Multimodal late fusion results
Multimodal fusion is performed on the best individually

performing audio and video systems.
The methods discussed in Section 7.3 do not seem to improve

the performance. The results are shown in Table 6, where first
and second fusion schemes refer to majority voting and summation
of confidence scores across multiple runs, respectively. Based
on our initial analysis, it appears that the decline in performance
after fusion might be because of inconsistency of confidence scores
across individual modalities. For example, the audio system seems
to have higher confidence value with a wrongly classified sample,
whereas the prediction of the video system turns out to be correct,
yet with a lower confidence score–causing a misclassification of the
sample.

However, we obtain F1 scores of 0.63 and 0.89 (for depressed
and not depressed classes respectively) after logical AND-based
fusion between two modalities, which is similar to the performance
of the video modality itself. This observation is also consistent with
baseline fusion.

9.3 Regression results
Table 5 lists the regression performance of our best-performing
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audio and video systems. In both the cases, our systems are
comparable to the baseline. We did not create a multimodal system
for regression and neither did we optimize the individual systems
for regression, and hence the gains we see in classification do not
translate to regression. We observe that in our systems the audio
modality is a better regressor compared to the video, while in the
classification task video modality performs better, similar to the
baseline results.

10. CONCLUSIONS
In this paper, we propose a multitude of features for depression

classification, addressing the AVEC 2016 depression sub-challenge
(DCC). The multimodal classification system performs better than
the baseline systems on the development dataset. The i-vector
system performs the best for the audio modality, while polynomial
parameterization of facial landmarks along with geometrical
features turns out to be the best video feature set. Our model
considers a temporal context of overlapping windows to integrate
information relevant to depression. The experiments show that
this approach outperforms the baseline approach of frame-level
analysis. The contribution of this work is proposing potentially
robust and knowledge-driven feature sets in both audio and visual
modalities, which may be used in conjunction with a more
sophisticated classifier to achieve even better classification.

11. FUTURE DIRECTIONS
In future we plan to use class specific UBM for i-vector

extraction. The idea behind this approach is to examine the
projection of the depressed class statistics on the not depressed
class and vice-versa. Speaker-level normalization of features
to remove inter-speaker variability could potentially improve the
performance of the systems [6]. Vocal Tract Length Normalization
(VTLN) for MFCC features under the i-vector framework [42]
is a potential audio normalization technique to be investigated.
Observing the effectiveness of TECCs over MFCCs, we intend
to use TECC as front-end features to i-vectors for depression
detection task. Also applying i-vector modeling to video features
can be a future direction after obtaining promising results on audio
data.
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