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ABSTRACT

Hashing has shown its efficiency and effectiveness in facilitating
large-scale multimedia applications. Supervised knowledge (e.g.,
semantic labels or pair-wise relationship) associated to data is ca-
pable of significantly improving the quality of hash codes and hash
functions. However, confronted with the rapid growth of newly-
emerging concepts and multimedia data on the Web, existing su-
pervised hashing approaches may easily suffer from the scarcity
and validity of supervised information due to the expensive cost
of manual labelling. In this paper, we propose a novel hashing
scheme, termed zero-shot hashing (ZSH), which compresses im-
ages of “unseen” categories to binary codes with hash functions
learned from limited training data of “seen” categories. Specifi-
cally, we project independent data labels (i.e., 0/1-form label vec-
tors) into semantic embedding space, where semantic relationships
among all the labels can be precisely characterized and thus seen
supervised knowledge can be transferred to unseen classes. More-
over, in order to cope with the semantic shift problem, we rotate
the embedded space to more suitably align the embedded seman-
tics with the low-level visual feature space, thereby alleviating the
influence of semantic gap. In the meantime, to exert positive effects
on learning high-quality hash functions, we further propose to pre-
serve local structural property and discrete nature in binary codes.
Besides, we develop an efficient alternating algorithm to solve the
ZSH model. Extensive experiments conducted on various real-life
datasets show the superior zero-shot image retrieval performance
of ZSH as compared to several state-of-the-art hashing methods.
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INTRODUCTION

Hashing is a powerful indexing technique for enabling efficient
retrieval on large-scale multimedia data, such as image [22, 33] and
video [1]. Specifically, in order to achieve shorter response time
and less computational cost, hashing encodes high-dimensional data
into compact binary codes (i.e., O or 1) substantially. In this way,
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Figure 1: An illustration of newly-emerging concepts and images
unseen to the existing learning systems.

data can be compactly stored and Hamming distances can be ef-
ficiently calculated with bit-wise XOR operations. Because of its
impressive capacity of dealing with “curse of dimensionality” prob-
lem, hashing has been extensively employed in various real-world
applications, ranging from multimedia indexing [8] to multimedia
event detection [20].

There are mainly two branches of hashing, i.e., data-independent
hashing and data-dependent hashing. For data-independent hash-
ing, such as Locality Sensitive Hashing [6], no prior knowledge
(e.g., supervised information) about data is available, and hash func-
tions are randomly generated. Nonetheless, huge storage and com-
putational overhead might be cost since more than 1, 000 bits are
usually required to achieve acceptable performance. To address this
problem, research directions turn to data-dependent hashing, which
leverages information inside data itself. Roughly, data-dependant
hashing can be divided into two categories: unsupervised hashing
(e.g., Iterative Quantization [7], Order Preserving Hashing [26] and
Robust Discrete Spectral Hashing [32]), and supervised hashing
(e.g., Supervised Hashing with Kernels [16], Weakly-supervised
Hashing [34] and Supervised Discrete Hashing [22]). In general,
supervised hashing usually achieves better performance than unsu-
pervised ones because supervised information (e.g., semantic labels
and/or pair-wise data relationship) can help to better explore intrin-
sic data property, thereby generating superior hash codes and hash
functions.

Along with the explosive growth of Web data, traditional super-
vised hashing methods have been facing an enormous challenge,
i.e., the generation of reliable supervised knowledge cannot catch
up with the rapid increasing speed of newly-emerging semantic



concepts and multimedia data. In other words, due to the expen-
sive cost of manual labelling (time-consuming and labor-intensive),
sufficient labelled training data is usually not timely available for
learning new hash functions that can accurately encode data of
new concepts. As illustrated in Figure 1, within the “seen” zone,
where images are attached with known categories, existing super-
vised hashing algorithms may perform well because they are fed
with correct guidance. However, outside the seen area, supervised
hashing algorithms may easily fail to generalize to data of new
categories that they never observe, e.g., seqway, a two-wheeled,
self-balancing, battery-powered electric vehicle. Moreover, most
of current approaches use supervised information in the form of
either 0/1 semantic labels or pair-wise data relationship for guid-
ing the learning process, which implies that precious correlation
among label semantics are inevitably ignored. One straightforward
consequence of the semantic independency is that each category
can neither learn from other relevant categories nor distribute its
own supervised knowledge to other seen classes and/or even those
unseen ones.

The aforementioned disadvantages motivate us to consider if we
can encode images of “unseen” categories into binary codes with
hash functions learned from limited training samples of “seen” cat-
egories? The key challenge of achieving this goal is how to set
up a tunnel to transfer supervised knowledge between “seen” and
“unseen” categories. In recent years, zero-shot learning (ZSL) [2,
12, 21, 24] has been widely recognized as a way to deal with this
problem. The ZSL paradigm aims to learn a general mapping from
the feature space to a high-level semantic space, which helps to
avoid rebuilding models for unseen categories with extra manually
labelled data. ZSL is mostly achieved by using class-attribute de-
scriptors to bridge the semantic gap between low-level features and
high-level semantics, where new categories are thus learned using
only the relationship between attributes and categories. However,
most of existing attribute based ZSL methods still suffer from: (1)
erroneous guidance derived from imprecise or incomplete human-
labelled attributes [10], which is usually due to the lack of expertise
or mislabeling by annotators, etc.; (2) diminishing of discrimina-
tion for pre-defined attributes when facing domain shift [14, 19].

Recently, mining other auxiliary datasets has been shown to be
helpful to tackle the zero-shot learning problem. For instance, with
a huge corpus such as Wikipedia, one can obtain word embed-
dings that capture distributional similarity in the text corpus [25],
such that similar words can be located in similar place. During the
learning phase, visual modality can be grounded by the word vec-
tors, and such knowledge can thus be transferred into the learned
model. Inspired by this, many approaches choose to utilize auxil-
iary modalities to address the zero-shot problem. Socher et al. [24]
used word embedding as supervision in order to detect novel cat-
egories and perform classification accordingly. Frome et al. [5]
adopted a similar manner, which connects raw features and word
embedding space using the dot-product similarity and hinge rank
loss.

As aforementioned, with the explosion of the newly-emerging
concepts and multimedia data, we are in urgent demand of a reli-
able and flexible hash function that can be adopted to hash images
of unseen categories. However, in the hashing domain, the zero-
shot problem has been rarely studied. In this work, we propose a
novel hashing scheme, termed zero-shot hashing (ZSH). Inspired
by the superior capacity of the word embedding for capturing the
semantic correlations among concepts, we map mutually indepen-
dent labels into a semantic-rich space, where supervised knowledge
of both seen and unseen labels can be completely shared. This strat-
egy helps to encode images of unseen categories without any assis-

1287

tance of visual observation in those unknown classes. Besides, even
though we cannot retrieve images of exactly the same category, se-
mantically related objects can be returned. Moreover, we recognize
the problem of semantic shift caused by off-the-shelf embedding.
The embedded space is then rotated to make the hash functions
more generalized to images of unseen categories. To further im-
prove the quality of hash functions, we also preserve local struc-
tural property and discrete nature in binary codes. We summarize
our main contributions as below:

e We address the problem of employing limited training data
of seen categories to learn reliable hash functions for trans-
forming images of unseen categories into binary codes. We
propose a novel zero-shot hashing scheme, which bridges
gaps between originally independent labels through a seman-
tic embedding space. To the best of our knowledge, this is
one of the first works that study the problem of hashing data
from newly-emerging concepts with limited seen supervised
knowledge.

We devise an effective strategy for transferring available su-
pervised knowledge from seen classes to unseen classes. In
particular, we project labels into a word embedding space,
where semantic correlations among labels can be quantita-
tively measured and captured. In this way, unseen labels can
leverage the well-established mapping from its semantically
close seen categories. For instance, segway may learn from
bicycle and automobile.

Since the initial semantic embedding is from an off-the-shelf
word embedding space, which may bring in potential seman-
tic shift between categories and the original visual feature.
To alleviate the influence, we propose to further rotate the
embedding space to better fit the underlying feature char-
acteristics, thereby narrowing down the semantic gap effec-
tively.

In order to generate more reliable hash functions, we propose
to improve the intermediate binary codes by exploring under-
lying data properties. Concretely, we impose discrete con-
straints on binary codes during the learning process as well
as preserve data local structure, i.e., if two datums share sim-
ilar representations in the original space, they are supposed
to be close to each other in the learned Hamming space.

The rest of this paper is organized as follows. In Section 2,
we briefly review some related work on zero-shot learning and
hashing. In Section 3, we elaborate our proposed ZSH, together
with an efficient optimization method and the corresponding algo-
rithm analysis. Extensive experimental results on various different
datasets are reported and analyzed in Section 4, followed by the
conclusion of this work in Section 5.

2. RELATED WORK

In this section, we briefly review some related works on zero-
shot learning and hashing, and discuss the relationship between our
proposed approach and existing solutions.

2.1 Zero-Shot Learning

Learning with no data, a.k.a., zero-shot learning, has been proved
to be an effective direction to tackle the increasing difficulty posed
by insufficient training samples. A promising strategy for solv-
ing this problem is to utilize an intermediate semantic layer to rep-
resent an image. Specifically, with visual attributes or other se-
mantic abundant descriptors, a novel image can thus be defined as



(7

£ f Embedding Model )

-

o R

cat baby train

=2 i

v

Hash
Function

Query of
Unseen

Retrieval
Results

tower sea moon
L Unseen J \ i J

)
=1}

Semantic
Alignment

v i :

_Binary Codes

— e

beach dog car

drum flower fish
Seen

\

& 2/ \. J \.

Offline + Online

Figure 2: The overall architecture of the proposed zero-shot hashing framework.

the relationship between category and intermediate representation.
Farhadi et al. [4] proposed to classify unseen objects by describing
them with visual attributes. The work in [15] studies the prob-
lem of zero-shot learning for facilitating new tasks, which has also
proven to be useful when predicting categories not shown in the
training dataset. Recently, learning for classifying novel images
with auxiliary knowledge (e.g., leveraging textual relationship in a
large corpus) has been shown to be powerful for zero-shot tasks.
By exploring the correlations among semantic concepts, the label
of any unseen data can be reasonably inferred. Socher et al. pro-
posed a cross-modal transfer method for zero-shot learning [24],
which uses word embedding to detect unseen classes. The work
in [5] also adopts the similar scheme as [24]; but the difference
is that a new language model and a different loss function is em-
ployed to connect two modalities. However, all above methods are
only evaluated in classification or recognition scenario. To our best
knowledge, our proposed ZSH is one of the first works that focus
on handling the large-scale high-dimensional visual indexing prob-
lem in zero-shot scenario, i.e., hashing novel images that are not
observed by existing learning systems. By adopting a natural lan-
guage model [9], we can precisely capture the correlations between
different concepts, and thus hash unseen images into correct spots
in Hamming space.

2.2 Hashing

In this part, we briefly review fast search with binary codes us-
ing hashing techniques. Similarity search is a challenge of pursu-
ing data points of smallest distance in a large scale database. One
of the easiest hashing schemes is dubbed Local Sensitive Hash-
ing [6], which designs hashing function with no prior knowledge
of the data distribution. However, such hashing methods require
significantly large code length to achieve acceptable performance,
which may cause unnecessary overheads in a database. To address
this problem, learning-based hashing comes as a trend. Unsuper-
vised hashing methods mine the statistic distributional information
in the data, generating an optimized hashing function to preserve
certain data properties in the original space. Classical algorithms
(e.g., Spectral Hashing (SH) [27]) learns binary codes which pre-
serve local structural information in the data. Shen et al. proposed
Inductive Manifold Hashing (IMH) [23], which adopts manifold
learning techniques to better model the intrinsic structure embed-
ded in the feature space. In [7], Gong et al. devised an effec-
tive approach, termed Iterative Quantization, focusing on minimiz-
ing quantization error during unsupervised training. Note that a

1288

real-world database is commonly described by multiple modali-
ties/resources, such as visual features or textual information. In [36,
29], they utilized information of at least two different resources to
achieve promising performance in cross-media search. Since the
unsupervised way is guided with little human-level knowledge, su-
pervised hashing has been proposed to use guiding information to
learn binary codes. Hashing techniques in this category have been
emerging continuously in recent years, and representative meth-
ods include Kernel Supervise Hashing (KSH) [16], Minimal Loss
Hashing (MLH) [18], Supervise Discrete Hashing (SDH) [22], La-
tent Factor Hashing (LFH) [35] and Column Sampling Based Dis-
crete Supervised Hashing (COSDISH) [11], etc. Recently, with the
success of deep learning, hashing using CNN has also shown the
promising performance [31].

Admittedly, hashing algorithms have provided a possible solu-
tion for tackling the “curse of dimensionality” problem. When no
training samples of certain “unseen” categories are provided, all
above hashing methods may easily fail to generalize to the new
data, limiting the hashing capability in the “seen” area where each
category possesses some training images. Besides, as the database
evolves all the time, re-training hashing function frequently is ex-
pensive, thereby leading to impractical usage in large dynamic real-
world databases. Based on the above analysis, a hashing method
that can perform well on unseen data draws a strong need.

3. ZERO-SHOT HASHING

In this section, we elaborate our zero-shot hashing (ZSH). We
firstly present a formal definition of hashing in zero-shot scenario,
and then depict the details of ZSH, including a brief introduction
of overall framework, transferring supervised knowledge, seman-
tic alignment as well as hashing model. Finally, we introduce the
optimization process and algorithm analysis.

3.1 Problem Definition

Suppose we are given n training images X = [z1, 2, ..., Zn] €
R4*™ labeled with a seen concept set C, where x; € R¥*! ¢
1,2,...,n and d is the dimensionality of visual feature space. De-
note Y = [y1,y2,...,yn] € {0,1}°*" is the binary label matrix,
where y; € {0,1}°*" is the label vector of the i-th sample z; and
c is the number of seen classes in C. Different from conventional
supervised hashing scenario, where both testing data and training
data are associated with the same concept set, i.e., C, we intend to
cope with the situation where testing data and training data share no



common concepts. In other words, testing data (denoted as X (W)
belongs to an “unseen” category set C*), i.e., ™ NC = . Using
only the training images X where no training samples of the “un-
seen” categories in C ) are available, we aim to learn a hash func-
tion f : R™! — {—1,1}"*', which can map images belonging
to both C™ and C from original visual feature space to [-bit binary
codes. The learned hash function f not only guarantees that the
binary codes of semantically relevant objects have short Hamming
distances, but also generalizes well to the testing data belonging to
the unseen categories.

3.2 Opverall Framework

The flowchart of our overall framework is illustrated in Figure 2.
As we can see, there are two stages: the offline phase and the online
phase. In the offline phase, suppose only images of a limited num-
ber of categories are visible to our system. We firstly extract visual
features of the training images through a convolutional neural net-
work. At the same time, we use an off-the-shelf NLP model to
transform seen labels into a semantic-rich embedding space, where
each label is represented by a real-valued vector. With the embed-
ded semantics, the relationships among both seen and unseen cate-
gories can be well captured and characterized. Instead of 0/1-form
label vector, ZSH supervises the learning of hash functions with
the embedded semantic vectors to transfer supervised knowledge.
We further rotate the off-the-shelf embedding space to better align
with the low-level visual feature space. Meanwhile, ZSH preserves
local structural information and discrete nature of the intermediate
binary codes to improve hash functions. Finally, we use the learned
hash functions to transform all the images in the database into bi-
nary codes for subsequent retrieval. In the online phase, when a
new query image of any unseen category arrives, we encode the
new image into binary code following the same mapping and re-
trieve images that are close to this query in the Hamming space.

3.3 Transferring Supervised Knowledge

In general, most of existing supervised hashing algorithms may
retrieve relevant results of queries in the seen categories since there
are supervised information for understanding the queries. Never-
theless, when the hashing systems have no knowledge of certain
unseen classes, query images from these classes will be probably
be misunderstood, thereby leading to inaccurate search. One of the
main causes is that the supervised information is in the form of 0/1-
form label vectors or pair-wise data relationship, which implicitly
makes labels independent to each other and omits the inherent cor-
relation among their high-level semantics (e.g., cat is as different
from truck as from dog). As illustrated in Figure 3, using indepen-
dent labels, each object will be mapped to an independent vertex
of a hypercube, and the distance between any two categories will
be the same. In order to address such disadvantage, we propose to
connect label semantics by taking advantage of the superior ability
endowed by neural language processing techniques. Specifically,
as illustrated in Figure 3, we map independent labels into a word
embedding space, where semantic correlations among labels can be
quantitatively measured and captured. Therefore, unseen labels can
leverage the well-established mapping from its semantically close
seen categories. For example, in the embedding space, cat and dog
will be close to each other. Hence even the hashing systems may
never observe any cat images, they can still gain some useful clues
from the supervised knowledge of dog. We adopt the language
model [9] pre-trained using free Wikipedia text. This model lever-
ages not only local information but also global document context,
thereby achieving superior performance over other competitive ap-
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Figure 3: An illustration of independent 0/1-form labels v.s. word
embedding.

proaches. Every category is embedded into a 50-d word vector'.
In the subsequent part, we consistently represent the label matrix
Y with the embedded label matrix instead of the original 0/1 label
matrix, and c is the dimensionality of the embedding space.

3.4 Semantic Alignment

Note that the transformed supervised knowledge from the oft-
the-shelf embedding space may potentially deviate from the under-
lying semantics of the image data due to the problems of domain
difference, semantic shift, semasiological variation, etc. This will
inevitably jeopardize the whole learning process in our proposed
model. In order to prevent this issue, we propose to a seman-
tic alignment strategy, which actively aligns the initial embedding
space with the distributional properties of low-level visual feature.
In particular, we seek for certain transformation R € R%°*¢ ma-
trix with orthogonal constraint RT R = I.. to rotate the embedding
space to RTY, where I is an identity matrix of size ¢ x ¢. Re-
call that our goal is to use the amendatory supervised knowledge to
guide the learning of high-quality hash codes and hash functions,
therefore, we minimize the following error:

HRTY—WTBH2 7 (1)

F

which W € R'*€ is the mapping matrix from binary codes to the
supervised information. B = [by, b, - -+ ,bn] € {—1,1}"*" de-
notes the binary codes of X, where b; € {—1,1}'** is the binary
codes of the ¢-th sample x;. [ is the code length. The above trans-
formation of semantics can help to effectively narrow down the se-
mantic gap between binary codes and the supervised knowledge.

3.5 Hashing Model

For convenience, we firstly recap some previous settings here.
Suppose we have n training samples X = [z1,z2, - ,Zn] €
R¥X"™_ For brevity, we denote the corresponding embedded label
knowledge as Y = [y1,y2, - ,yn] € R*™. Our ultimate target
is to learn a set of hash functions from “seen” training data X su-
pervised by Y, enabling generating high-quality binary codes for
data of “unseen” categories. Meanwhile, the quality of hash func-
tions may heavily rely on the reliability of the intermediate binary
codes of training data. In other words, the model is supposed to si-
multaneously well control both hash functions and hash codes. To
achieve the above goals, we propose the following model:

Tn practice, we find that by setting word vector to unit length,
retrieval performance can be augmented with no distortion of the
cosine similarities. Thus, we empirically normalize word vector to
be unit length.
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where R € R°*¢ is the semantic rotation matrix. W € R"*¢ is the
mapping matrix. B € {—1,1}"*" denotes the binary codes. || - || »
denotes the Frobenius norm of a matrix. A > 0,« > 0,8 > 0 and
4 > 0 are balancing parameters. f : R™*! — R"*! define a hash
function from a non-linear embedded feature space to the desired
Hamming space:

f(@) = P o(w), 3)
where f(X) = [f(z1), f(z2),..., f(zn)]. P € R™*is the
transformation matrix. Q(f) = || P||% is a regularizer P. Follow-

ing the successful practice for learning hash functions in [16], we
employ kernel mapping to handle the potential problem of linear
inseparability:

e !

0

_llz—am|?

#()= | exp( I

)y rexp( )
where {a;}|i~, are m anchors randomly sampled from X and 0 is
the bandwidth parameter.

Note that we keep the discrete constraint on the variable B to
prevent information loss of binary codes to the greatest extent. The
termy >5° D70 Sij || f (@) — f(x;)||% in Eq. (2) preserves lo-
cal structural information of training data, i.e., if two samples are
similar in the original feature space, then they are enforced to share
similar binary codes in the Hamming space. Here, S;; is the simi-
larity of ; and z; in the original visual feature space.

In the next part, we introduce an efficient algorithm to optimize
our zero-shot hashing model.

3.6 Optimization
We first rewrite the model in matrix form as follows:

. T T 2 2 T 2
min HR Y - W BH +>\||W||F+ozHP #(X)— B
P,W,B,R F F

+ BIIP|% +Tr(PT¢(X)Lo(X)" P)
st. Be {-1,1}*" ARTR = I,
(5)

where ¢(X) = [¢(z1), p(z2), ..., d(xn)]. Tr(-) is the trace of a
matrix. The Laplacian matrix L is computed as:

L=D-S§, 6)

where D is a diagonal matrix with its i-th diagonal element com-
puted as Dy = >°7 | Sij and S = {Si;}|ij=1.2,...,n is the simi-
larity matrix of X.

Next, we present an algorithm to optimize the model in Eq. (5)
by alternatingly updating P, W, B, R.

3.6.1 Update P

Fixing all variables except for P, we get the quadratic problem
as:

min | P*¢(X) = Bl[f+5 | Pl +1Tr(P" ¢(X)Lo(X) " P).
@)
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By setting its derivative with respect to P to 0, we have the follow-
ing solution:

Bt gaﬁ(X)chs(X)T)  G(x)B”,

P= (¢(X)¢(X)T +=
®)

where I,,, is an identity matrix of size m x m.

3.6.2 Update B

In this step, we fix all other variables and learn binary codes B
with discrete constraint. The objective function can be reduced to

2 2
min HRTY - WTBH ta HPTqﬁ(X) - BH
B F F

O]
st. Be {—1,1}"*".
The above formulation can be further written as
2
min HWTBH —orr(B"H)
B F (10)

st. B e {—1,1}"*",

where I = WRTY + aPT¢(X).

Inspired by [30], we apply the discrete coordinate descent (DCC)
algorithm to solve the problem (10). Let B = [¢{ ,q3 ,...,q] |,
H = [th, L, ,th] and W = [ulT,ug, e ,ulT], where g7,
hY and u! are the i-th row of B, H and W, respectively. Further-
more, for convenience, we denote

Bﬁi = I:qlTa "'aqiflTaqi+1T7 "'7qlT} )

Hoi=[h", o hiam hia” T, (11)
W-oi = [ulT, Ui T Ui T, ...,ulT} .
Then, we can have
HWTBHi = Tr(B"WW7”B)
= const + ||qiu] |+ + 2u; W Boiq; (12)

= const + 2uiTWﬁTiBﬂiq1'-

Here, ||qiul || = Tr(uiql gswi) = const. Following the same
rule, we also have the following conclusion

T’I“(BTH) = const + hl ¢;. (13)
The sub-problem can be transformed to
min (UZTWZ;Bﬂl — hz)qz
ai (14)
st hy € {—1,1}"°"
The optimal solution of above equation is
qi = sgn(hi — BzZvWﬂ-ui), (15)

where sgn(-) is the sign function. We can see that each bit of the
desired binary code B can be learned based on other [ — 1 bits.
Thus, we can use cyclic coordinate descent approach to generate
the optimal codes until the entire procedure converges.

3.6.3 Update R
With B, W, P fixed, we then have

2
min HRTY - WTBH
R F (16)
st RTR=1.,

which can efficiently solved by the algorithm in [28].



3.6.4 Update W

By fixing P, B, R, we arrive at a classic ridge regression prob-
lem:

2
min HRTY—WTBH F AW a7
w F
The above equation has a closed-form solution:
W = (BB" +AI,)"'BY"R, (18)

where I; is a diagonal matrix of size [ x [.

By iteratively updating P, W, B, R until convergence, we can
arrive at an optima. The overall algorithm is summarised in Algo-
rithm 1.

Algorithm 1 Algorithm for optimizing Zero-Shot Hashing

Input: Training data X and the embedded label matrix Y;
Output: Binary codes B, rotation matrix R, hash function P and
mapping matrix W;
Randomly initialize B, P and W
Randomly initialize R to be orthogonal;
Map X to ¢(X) using m anchors randomly selected from X;
Construct Laplacian matrix L;
repeat
Update P according to Eq. (8);
Update B iteratively by using the solution of (15);
Update R by solving the problem in Eq. (16);
Update W according to Eq. (18);
: until there is no change to P, W, B, R
: return P,W, B, R;

TV RN LE RN 2

——

3.7 Algorithm Analysis

In this section, we analyze the convergence and time complexity
of our algorithm.

3.7.1 Convergence Study

As shown in Algorithm 1, in each iteration, the updates of all
variables make the value of the objective function decreased. We
also conducted empirical study on the convergence property us-
ing ImageNet [3]. Specifically, we trained our zero-shot hashing
model with 30,000 seen images randomly sampled from the Im-
ageNet dataset, with label embedding as supervised information.
We selected 1,000 anchors and set the code length to 64. As
Figure 4 shows, our algorithm starts with cost function value at
roughly 30, 000, but descends dramatically within only 10 itera-
tions, and reaches a stable local minima at the 20-th iteration. This
phenomenon clearly indicates the efficiency of our algorithm.

3.0x10%

2.5x10*
2.0x10%

1.5x10%

1.0x10%

Objective Function Value

5.0x10°

0 10 20 30 40 50 60 70 80 90 100
#lteration

Figure 4: Convergence study on ImageNet.
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3.7.2  Computational Complexity

In each iteration (line 6-9), the time cost is analyzed as follows.
The computation of P in Eq. (8) is O(m?*n+nml4+m?>). The DCC
algorithm for updating B costs O(cl®4-1%n). As to the optimization
of the sub-problem in Eq. (16), the time cost is O(c®). Finally, the
computational cost of updating W is O (I*n+Inc+I1c?+1*). Given
that m < n, !l < n, ¢ < n and our algorithm converges within a
few iterations (less than 10), the overall time cost of our algorithm
is O(n). It is worth noting that the dominant operation of our algo-
rithm is matrix multiplication, which can be greatly speeded up by
using parallel and/or distributed algorithms.

4. EXPERIMENT

4.1 Experimental Settings

In our experiments, we employ three real-life image datasets,
including CIFAR-10?, ImageNet® and MIRFlickr*.

CIFAR-10 consists of 60,000 images which are manually la-
belled with 10 classes including airplane, automobile, bird, cat,
deer; dog, frog, horse, ship, truck, with 6,000 samples in each class.
The classes are completely mutually exclusive, i.e., no overlap be-
tween classes (e.g., automobiles and trucks).

ImageNet is an image dataset organized according to the Word-
Net [17] hierarchy. The subset of ImageNet for the Large Scale
Visual Recognition Challenge 2012 (ILSVRC2012) is used for our
experiments, consisting of over 1.2 million Web images, manually
labeled with 1, 000 object categories.

MIRFlickr comprises 25, 000 images collected from the social
photography site Flickr through its public API. Firstly introduced
in 2008, this dataset is wildly used in multimedia research. MIR-
Flickr is a multi-label dataset with every image associating with 24
popular tags such as sky, river, etc.

For all image data, we adopted the winning model for the 1000-
class ImageNet Large Scale Visual Recognition Challenge 2012
[13] to extract the fully connected layer fc-7 as visual feature.

Various metrics are employed for measuring performance of dif-
ferent evaluation tasks. For image retrieval, we used the two tradi-
tional metrics i.e., Precision and Mean Average Precision (MAP).
MAP focuses on the ranking of retrieval results and we reported
the results over the top 5, 000 retrieved samples. Precision mainly
concentrates on the retrieval accuracy and we reported the results
with Hamming radius r» < 2.

We compared our proposed ZSH with four state-of-the-art su-
pervised hashing approaches, including COSDISH [11], SDH [22],
KSH [16] and LFH [35]. For all anchor-based algorithms, we ran-
domly sampled 1, 000 anchors from the training dataset. Further-
more, we compared to one of the most representative unsupervised
hashing method, i.e., Inductive Hashing on Manifolds (IMH) [23].

For all comparing approaches, we followed their suggested pa-
rameter settings. For ZSH, we empirically set o to 10> and ~ to
10~°. For regularization parameters A and (3, we set them to 102
and 10~ %, respectively. The number of iterations is set to 10. We
define the similarity matrix S as follows:

g exp(—Hzg;ijo), if ; € Ni(z;) or z; € Ni(x;)
ij

0, otherwise,

Zhttps://www.cs.toronto.edu/ kriz/cifar.html
3http://image-net.org/
“http://press.liacs.nl/mirflickr/



where N, (+) is the function of searching k nearest neighbors. In
our experiment, we set o = 1.

4.2 Results on CIFAR-10

4.2.1 Overall Comparison of Zero-Shot Image Re-
trieval

To evaluate the efficacy of retrieving images in unseen categories,
we split CIFAR-10 into a “seen” training set and an “unseen” test-
ing set. In particular, we selected truck as unseen testing category
and left the rest 9 categories as seen training set. For all compar-
ing algorithms, we randomly sampled 10, 000 images for learning
hash functions. For testing purpose, we randomly selected 1, 000
images from the unseen category as query images, and the remain-
ing 5,000 test images together with the 54,000 images of seen
categories are combined to form the retrieval database.

The performance of all comparing approaches w.r.t. different
codes lengths (i.e., {16, 32, 64,96, 128}) is illustrated in Figure 5.
As we can see, the proposed ZSH outperforms all the other hash-
ing algorithms in terms of MAP at all code lengths. As to Preci-
sion, ZSH still shows superior image retrieval performance in most
cases. The underlying principle is that our method not only utilizes
inherent semantic relationship among labels to transfer supervised
knowledge, but also preserves discrete and structural properties of
data in the learning of hash codes and hash functions. An interest-
ing observation is that the performance of IMH, which is an unsu-
pervised method, gains competitive even better retrieval results in
terms of Precision as compared to some supervised methods such
as KSH, SDH. While unsupervised methods encode images solely
with the distributional properties in the feature space, the super-
vised ones may be misled by independent semantic labels in the
learning processing.

Besides, MAP increases rapidly for all methods when code length
varies from 16 to 64, and then reaches a slow-growth stage from 64
bits to 128 bits. When code length is short, more codes are required
to guarantee the descriptive and discriminative power. However,
after encoding space is large enough (e.g. 64 bits), with the ex-
pression ability saturated, providing more bits cannot significantly
improve the performance. As to Precision, hashing performance
significantly deteriorates as code length is larger than 64. Recall
that our searching radius is empirically set to 2, forming a hyper-
ball of radius 2 in Hamming space. When the code length increases
from 16 to 64, significant improvement in retrieval ability counter-
acts the searching difficulty. However, as Hamming space becomes
larger, searching difficulty grows linearly, thereby degrading the
Precision performance. Therefore, as a trade-off between efficiency
and effectiveness, an eclectic code length should be chosen.
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Figure 5: Performance (MAP and Precision) of different comparing
methods on zero-shot image retrieval over CIFAR-10 dataset.

4.2.2  Effect of Different Unseen Category

In this experiment, we aim to evaluate the performance of zero-
shot image retrieval on different unseen categories. The experimen-
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tal settings are the same as that in the previous subsection. Figure 6
illustrates the MAP and Precision performance of ZSH using each
individual label as unseen testing data.
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Figure 6: Performance (Precision and MAP) of zero-shot image
retrieval for each individual unseen category on CIFAR-10 dataset.

We can observe that zero-shot image retrieval performance varies
from one class to another, reaching peak at bird and bottom at au-
tomobile. Intuitively, if an unseen class is semantically closer to
other seen categories, more relevant supervised knowledge can be
transferred from word embedding space for boosting the retrieval
performance. To dig deeper about the reason behind the fluctuation
of performance on different unseen objects, we computed the aver-
age cosine similarity between each unseen category and other seen
categories, and list the corresponding MAP in Table 1.

Category  Average Cosine Similarity MAP
airplane 0.2191 0.2791
automobile 0.1567 0.2603
bird 0.3565 0.3751
cat 0.3661 0.3621
deer 0.2981 0.2912
dog 0.3826 0.3467
frog 0.3485 0.2991
horse 0.3015 0.3125
ship 0.1663 0.2987
truck 0.3358 0.3120

Table 1: Average cosine similarity of each category and all other
categories, together the corresponding MAP performance.

We observe that the MAP performance is positively related to
the average cosine similarity. For instance, those of larger cosine
similarity (e.g., dog, cat) performs relatively well, while those of
smaller similarity (e.g., airplane, automobile) gain relatively poor
performance. This observation implies that in order to achieve sat-
isfactory retrieval results, unseen classes should have sufficient cor-
relation with seen ones.

As we can see in Figure 6, we also compare the effects of em-
bedded labels and binary labels. The performance of embedded
labels is obviously better than that of binary labels. The underlying
reason is that the embedding space can help to capture the relation-
ship between seen and unseen categories for transferring supervised
knowledge. In contrast, binary labels neglect semantic correlations,
thereby leading to irregular fluctuations of retrieval performance.

4.2.3 Effect of Seen Category Ratio

In this experiment, we evaluate the performance of our proposed
ZSH w.rt. different numbers of seen categories. Specifically, we
varied the ratio of seen categories in the training set from 0.1 to
0.9. For each ratio, we randomly sampled 10, 000 images from the
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Figure 7: A demonstration of the zero-shot image retrieval exemplars using different comparing hashing algorithms on CIFAR-10, where top
15 retrieval images are reported. Pictures with green bounding box indicate the correct results while those with red outlines indicate failure
results. As can be seen, our proposed ZSH method returns the largest number of correct retrieved results with query from unseen category,

followed by COSDISH which returns four correct samples.

seen categories for training. Further, we randomly selected 1, 000
images from the unseen set as queries to search in the remaining
59,000 images. Note that when the ratio of seen categories de-
creases to 0.1, we use all 6,000 datums of that class as training
set.
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Figure 8: Effects of different ratios of seen categories on CIFAR-10
dataset.

We report the experimental results in Figure 8, from which we
have the following observations: (1) The performance of both MAP
and Precision boosts as the ratio of the seen categories grows; (2)
As the ratio increases from 0.1 to 0.3, we see a dramatic leap of
the retrieval performance, followed by a relatively slight perfor-
mance improvement from 0.3 to 0.9. We analyze that by observing
more “seen” categories, we have higher possibility to find relevant
supervision for the unseen class, which guides to learn better inter-
mediate hash codes, thereby simultaneously improving the quality
of hash functions.

4.2.4  Effect of Training Size

This part of experiment mainly focuses on evaluating the effect
of training size on the searching quality of ZSH. For simplicity,
we chose Precision as evaluation metric and selected fruck as the
unseen object and varied the size of training data in the range of
{1000, 2000, . .., 10000, 20000, . . ., 50000}.

The experimental results are demonstrated in Figure 9. As we
can see, when the size increases from 1,000 to 10,000, we ob-
serve a rapid rise of the Precision performance. Nonetheless, when
fed with more training data, ZSH does not gain noticeable perfor-
mance boost. For the balance of training efficiency and effective-
ness, in the rest experiments, we consistently set the training size
to 10, 000.
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Figure 9: Effects of training size on Precision performance over
CIFAR-10 dataset.

4.3 Results on ImageNet

4.3.1 Overall Comparison of Zero-Shot Image Re-
trieval

In this part, we evaluate our proposed ZSH on zero-shot image
retrieval as compared to other state-of-the-art methods using the
Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)
dataset. Recall that the ILSVRC2012 dataset contains more than
1.2 million images tagged with 1, 000 synsets without any overlap.
For evaluation purpose, we randomly chose 100 categories which
have corresponding word embedding learned from Wikipedia text
corpus. This gives us a set of roughly 130, 000 images. We split
the data into a training set (90 seen categories) and a testing set (10
unseen categories). For all comparing algorithms, we randomly
selected 10, 000 images of seen categories for training. As to im-
age queries, we randomly sampled 1, 000 images from the unseen
categories. We used the learned hash function to encode all the
remaining images to form the retrieval database.

The performance of our proposed ZSH and other four state-of-
the-art supervised hashing methods with different code lengths are
reported in Figure 10. As we can see, ZSH consistently outper-
forms all other competitors in most cases. As code length varies
from 16 to 128, we can observe the similar variation tendency of
performance on ImageNet to that on CIFAR-10. This phenomenon
again implies that we should choose a trade-off code length to guar-
antee the retrieval performance.
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Figure 10: Performance (MAP and Precision) of different compar-
ing methods on zero-shot image retrieval over ImageNet dataset.

4.3.2 Image Retrieval in Related Categories

In zero-shot image retrieval scenario, we expect that even though
we fail to retrieve relevant images of the same category, we can still
obtain semantically related images. For instance, if the query image
describes a cat, we may prefer to retrieve images of dog rather than
images of car. Our proposed ZSH utilizes semantic embedding
to set up connections between semantically similar labels in the
embedded space. In this way, the supervised knowledge of seen
categories can be transferred into the learning of hash functions,
which can effectively encode images of unseen categories.
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Figure 11: Comparison of ZSH and other hashing approaches on
the capability of retrieving semantically similar images from re-
lated categories.

Since we need to search more related categories, all remaining
images of both seen and unseen categories are used to form retrieval
database. All the other settings are the same as that in Section
4.3.1. In order to evaluate the performance of retrieving related
categories, we use two modified metrics, named MAP,.¢;qteq and
Precision,ciated, Which are defined as

K
APrelated@i
MAP; ciated = Z Ta (19)
1=1
.. Nrelated
Precision,ciated = — (20)
Nretrieved

where MAP,ciqteq 1s calculated based on the top K retrieved re-
sults, AP,ciqtea@i is the average precision based on the related
results, calculated by

(@)

APrclated@i = "rL_ated, @1

where ni?late 4 1s the number of related images in top i retrieved re-
sults. Nyejated and Nyetrieveq are the related retrieval under Ham-
ming radius 2 and total examples retrieved under Hamming radius
2, respectively. Using WordNet [17], which is a lexical database
for the English language, we define query A and retrieved object B
are related if: 1) A and B are not of the same category; and 2) A
can reach B on WordNet within 5 hops.
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In practice, we set K = 5, 000. Figure 11 shows the experimen-
tal results. We can see that in terms of MAP,.ciqteq, oOur method
always outperforms other methods at every code length. When
we look at Precision,eiqteq, our proposed ZSH achieves 0.3262,
0.2636, 0.2129 at 32 bits, 64 bits and 96 bits, respectively, which
significantly outperforms the second best method. This observation
indicates that ZSH is capable of detecting the semantically similar
images from the most related categories.

4.4 Results on MIRFlickr
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Figure 12: Performance (MAP and Precision) of different compar-
ing methods on zero-shot image retrieval over MIRFlickr dataset.

In real-world images, especially in user-generated photos, there
often exists multiple tags in each individual picture. To further ex-
amine the practical efficacy of our proposed ZSH, we conducted
an extra experiment on a real-life multi-label dataset, i.e., MIR-
Flickr, which contains 25, 000 images downloaded from the social
photography site Flickr. Each image is associated with 24 tags.
In multi-label image dataset, different categories share overlapping
images, which makes it difficult to divide the dataset into train-
ing set and testing set. Therefore, we employed ImageNet as an
auxiliary dataset to train our hash functions and evaluated the zero-
shot image retrieval performance on MIRFlickr. Specifically, from
the ILSVRC2012 dataset we selected 100 categories which does
not overlap with the 24 tags in MIRFlickr. For fair comparison,
all hashing approaches used 10, 000 randomly sampled images for
training. After the hash function was learned, we directly applied
them to transform the MIRFlickr images into binary codes. We
then sampled 1, 000 datums as query images and searched relevant
results in the remaining 24, 000 images. We regarded the retrieval
images sharing at least two tags with the query as the true neigh-
bors, and computed MAP on the top 5,000 retrieved results and
Precision under Hamming distance 2. Figure 12 illustrates the re-
sults of our ZSH and other comparing algorithms on MIRFlickr. In
the left sub-figure, we can see that with different code lengths, our
ZSH can consistently achieve the best MAP performance among all
the comparing algorithms. As the code length increases, the MAP
performance of each algorithm keeps increasing, reaching 0.2488
at 128 bits, which outperforms the second best hashing method
COSDISH by 19% at the same length. In terms of Precision, ZSH
exceeds all other methods in most cases. Similar to that of CIFAR-
10 and ImageNet, we can see a variation pattern with an increasing
trend from 16 to 64 and a performance drop from 64 to 128. The
promising performance on MIRFlickr demonstrates the potential of
ZSH in indexing and searching real-life image data.

5. CONCLUSION

With the explosion of newly-emerging concepts and multime-
dia data on the Web, it is impossible to supply existing supervised
hashing methods with sufficient labeled data in time. In this paper,
we studied the problem of how to map images of unseen categories
using hash functions learned from limited seen classes. We pro-



posed a novel hashing scheme, termed zero-shot hashing (ZSH),
which is capable of transmitting supervised knowledge from seen
categories to unseen categories. Independent 0/1-form labels were
projected into an off-the-shelf embedding space with abundant se-
mantics, where label semantic correlations can be fully character-
ized and quantified. Considering the issues of domain difference
and semantic shift, we further narrowed down the gap between bi-
nary codes and high-level semantics by a semantic alignment oper-
ation. Specifically, we intentionally rotated the embedding space to
adjust the supervised knowledge more suitable for learning high-
quality hash codes. Besides, we also preserved local structural
property and discrete nature of hash codes in the ZSH model. An
efficient algorithm was designed to optimize the model in an al-
ternating manner and the empirical study showed the convergency
and efficiency. We evaluated our proposed ZSH hashing approach
on three real-world image datasets, including CIFAR-10, ImageNet
and MIRFlickr. The experimental results demonstrated the superi-
ority of ZSH as compared to several state-of-the-art hashing ap-
proaches on zero-shot image retrieval task.

In the future, we plan to enhance the exploration of label seman-
tic correlations by integrating knowledge from multiple sources,
including textual corpus and visual clues. We expect this will com-
pensate the incomplete representation of each individual modality,
thereby solving the problem of domain difference and semantic
shift fundamentally.
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