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ABSTRACT
We present a new method to classify human activities by
leveraging on the cues available from depth images alone.
Towards this end, we propose a descriptor which couples
depth and spatial information of the segmented body to de-
scribe a human pose. Unique poses (i.e. codewords) are
then identified by a spatial-based clustering step. Given a
video sequence of depth images, we segment humans from
the depth images and represent these segmented bodies as
a sequence of codewords. We exploit unique poses of an
activity and the temporal ordering of these poses to learn
subsequences of codewords which are strongly discriminative
for the activity. Each discriminative subsequence acts as a
classifier and we learn a boosted ensemble of discriminative
subsequences to assign a confidence score for the activity
label of the test sequence. Unlike existing methods which
demand accurate tracking of 3D joint locations or couple
depth with color image information as recognition cues, our
method requires only the segmentation masks from depth
images to recognize an activity. Experimental results on the
publicly available Human Activity Dataset (which comprises
12 challenging activities) demonstrate the validity of our
method, where we attain a precision/recall of 78.1%/75.4%
when the person was not seen before in the training set, and
94.6%/93.1% when the person was seen before.
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(a) (b) 

Figure 1: Silhouettes ambiguities in poses. Pose dif-

ferences (due to different hand positions) cannot be seen

from silhouettes in (a), but are readily visible from three-

dimensional shape information in (b).

1. INTRODUCTION
Human activities recognition is useful in many applica-

tions like surveillance, action/event centric video retrieval
and patient monitoring systems. A large majority of activity
recognition works focuses on gray or RGB video sequences,
and exploits spatio-temporal interest points or silhouettes as
recognition cues. Here, a significant challenge is to sieve out
image/video features that are representative of the activity
in which background clutter, illumination changes and cam-
era motion could easily corrupt these features. Also, given
that these features incorporate only spatial x-y and tempo-
ral information, they often fail to fully resolve the silhouette
ambiguity in poses under self occlusion [27].

There is an emerging consensus that depth information
is a more reliable recognition cue for classifying human ac-
tivities. It is color/texture/intensity invariant and hence
is robust towards appearance variations of the humans per-
forming the action. More importantly, recent depth cameras
(e.g. Kinect) offer substantial depth resolutions of a few
centimeters and thus provide very good estimation of the
three-dimensional geometry of the scene. Unlike gray/color
images acquired with traditional 2D cameras which provides
spatial x-y image information, depth images afford another
important spatial dimension (z-component) which can be
exploited to help resolve silhouettes ambiguities in poses.
For example, consider Fig. 1(a) which shows silhouettes of a
person lying on the ground and moving his arms. Due to self-
occlusion, the difference in poses is not evident. However, in
Fig. 1(b), which shows the corresponding depth images, the
outline of the hands is visible facilitating pose description.

In this paper, we present a method which harnesses only
depth images to recognize very complex human activities
such as brushing teeth, cooking - chopping and cooking -
stirring. Our method does not demand knowledge of body
joints locations, but only requires segmentation mask of the
human silhouette to be available. We propose an algorithm
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Figure 2: Block diagram of the proposed algorithm.

to extract the human silhouette from depth images. A scale
and depth invariant descriptor is developed to represent the
3D pose of a segmented silhouette. We extract the descrip-
tors from training images depicting a wide array of poses,
and cluster these descriptors to find a set of compact clus-
ters. Here, we propose a spatial based clustering step to
ensure cluster members are well represented by its medoids,
and consider each medoid as a codeword. Collectively, these
codewords represent the range of unique body poses that are
exhibited by the humans in the training images.

Fig. 2 shows the block diagram of the proposed algorithm.
For a given training depth video sequence (and its activ-
ity label), we segment the human from the video sequence,
and represent the sequence of segmented bodies as a se-
quence of codewords. Discriminative subsequence of code-
words that model unique poses and the distinguishing tem-
poral ordering of these poses are then learned with a boost-
ing framework. Each discriminative subsequence has a vari-
able number of codewords, and is termed in this paper as
x-subsequence-codewords or xSC. Both the xSC, its window
size and weight are learned automatically, and represent the
most discriminative subsequences for the activity class. At
test time, we adopt a sliding window approach to align each
xSC to overlapping windows of the test sequence. Each xSC
acts as a classifier and we learn a boosted ensemble of xSC
to give a confidence score for the activity label of the test
sequence. We evaluated our method on the Human Activity
Detection database [30] which comprises 12 challenging ac-
tivities, and obtain state-of-the-art recognition results. Ad-
ditionally, we also applied our method on the task of activity
detection where we localize all instances of a targeted activ-
ity from a test video sequence. Accurate localizations of
targeted activities are demonstrated.

2. RELATED WORK
Majority of human activity recognition works [2] exploit

gray/color cues, with the use of depth cues attracting inter-
est only in recent years. Here, we first discuss the more
representative recognition works which exploit gray/color
videos, before discussing those that exploit depth images.

Human activity recognition works mainly employ either
a holistic representation or a part-based representation. In
holistic representation methods, Bobick et al. [6] developed
the motion energy and motion history images to encode
short spans of motions efficiently. Hu moments [12] ex-
tracted from these images are then exploited as activity de-
scriptors. Efros et al. [9] exploited optical flow measure-
ments to compute spatio-temporal descriptors, and demon-

strated the power of these descriptors in recognizing activi-
ties seen in low resolution videos. Yilmaz et al. [32] tracked
moving 2D contours to generate a 3D spatio-temporal vol-
ume, and extracted differential geometry features from the
surfaces of the volumes to recognize various activities. Al-
though their method achieved very good activity recogni-
tion accuracy, it demands robust tracking of the contours
and fails when contours cannot be tracked (e.g. under self-
occlusion). Parameswaran et al. [23] used 3D joint locations
to model the geometry of an action, and represented an ac-
tivity in terms of its static canonical poses and dynamic tra-
jectories in 2D invariance space. A limitation of this work
is the need for accurate 3D joint locations.

Motivated by the success in the object classification do-
main, part based representations for activity recognition
have gained strong traction in the research community. The
majority of these methods employ sparse interest point de-
scriptors such as [15, 8, 20] to recognize human actions.
For example, Schuldt et al. [26] represented each video se-
quence by a bag-of-word representation, in which they em-
ployed STIP features [15] as the underlying features. A sup-
port vector machine is then learned for classifying test video
sequences. Very good results have been demonstrated on
videos depicting simple actions like running and walking.
Dollar et al. [8] applied separate linear filters in the spatial
and temporal dimensions to detect interest points that have
local maxima value in both dimensions. A classifier is then
learned in a similar way as [26] to recognize a test activity.
The above methods use a histogram representation of fea-
tures and ignore the temporal ordering between features. To
preserve the temporal ordering, Nowozin et al. [20] improved
on the histogram representation and proposed a sequential
representation to preserve the temporal ordering between
words. The PrefixSpan subsequence mining algorithm is ex-
ploited to find discriminative representation of an activity.
Their method does not model the global geometry of hu-
man body joints when performing an activity, and instead
considers them as a simple bag of features.

The above methods exploit appearance (color/texture) in-
formation as the key recognition cues and are often easily
corrupted by variations in illumination and appearance of
the human body. More importantly, such features encode
the spatial (x-y) information, and cannot fully resolve sil-
houette ambiguity seen in self-occlusion [27]. To overcome
these problems, recent works use depth cues to recognize
human activities. Ni et al. [19] and Zhao et al. [34] used
multi-modality sensor combination (e.g. color and depth)
to compute Depth-Layered Multi-Channel STIPs and three
dimensional motion history images for human activity recog-
nition. Hao and Parker [33] extended Dollar’s method [8]
using depth images and constructed a 4D hyper cuboid for
feature extraction. While these methods demonstrated im-
proved performance gained by these depth extended feature
representations, the use of color images affect the perfor-
mance of these algorithms due to the reasons discussed ear-
lier. Li et al. [17] proposed the first work that uses only
depth information to recognize human activities. Here, they
sampled a bag of 3D points from depth images, and project
these points into a 2D space. An action graph is constructed
from the training points to encode the actions to be recog-
nized. Although their method achieves good recognition ac-
curacy, the use of 2D projections of key poses can lead to
sub-optimal feature representations. To describe the pose of
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Figure 3: Depth image segmentation. (a) Depth image

where an object is very near to the background. (b) Edge

map extracted from (a). (c)-(d) Segmentation masks ob-

tained by applying background subtraction [35] on color

image and depth image respectively. (e) Mask obtained

with our method which is able to extract the object com-

pletely (similar to (c)) with depth image alone.

human, Shotton et al. [27] exploited decision trees and arti-
ficially rendered humans to estimate 3D joint locations from
a single depth image. This method was further extended by
Holzer et al. [11] in which regression trees were used to learn
interest points from depth images. Excellent joins/interest
point detection were shown in [27, 11], though application
of detected joints/points to human activity recognition tasks
were not demonstrated. Sung et al. [29, 30] directly used the
orientations and 3D joint locations to learn a model based
on maximum-entropy Markov model. To deal with inaccu-
rate joint locations, Wang et al. [31] used local occupancy
pattern around each joint location detected by the tracker.
While [29, 30, 31] yield very good classification of complex
activities, it require the detection of body joint locations.
This limits their applicability.

3. DEPTH IMAGE SEGMENTATION
The segmentation of moving objects from a depth image

is an important problem. While standard segmentation ap-
proaches [18, 35, 28] that are developed for RGB images can
also be used for depth images, these approaches often fail to
extract objects that are very close to the background (e.g.
person lying on the ground/bed, objects very near to wall)
and require additional information like color for proper seg-
mentation. Fig. 3 shows such an example where the person
is lying on the ground. Since the object is very near to the
background, the object boundaries become ambiguous in the
depth map. This is illustrated in Fig. 3(b), which shows the
edge map of Fig. 3(a) obtained by the Canny edge detector.
Fig. 3(c) and 3(d) show the segmentation results obtained af-
ter applying a popular background subtraction method [35]
on color and depth images, respectively, where segmentation
masks obtained from depth image is noticeably weaker. To
address this issue, we propose a method that computes the
spatiograms [5] of the depth image along with the projec-
tions of its surface normals in xy, yz and zx planes for both
images (background image and object+background image)
and then compares these spatiograms to compute the simi-
larity scores [21]. These similarity scores are used to segment
the foreground object as shown in Fig. 3(e).

3.1 Extraction of surface normals
We briefly review the method to extract surface normals

as described in [25]. Let the position vectors of points in
an image be given as a function of (s, t) coordinates of the

parametric space (image coordinates). We define ~Xs and ~Xt

           

(a) (b) 

Figure 4: Visualization of surface normals com-

puted on (a) background depth image and (b) the ob-

ject+background depth image (shown in Fig. 3(a)).

as the partial derivatives of ~X with respect to s and t,

~X =

(
x(s, t)
y(s, t)
z(s, t)

)
; ~Xs =

(
xs(s, t)
ys(s, t)
zs(s, t)

)
; ~Xt =

(
xt(s, t)
yt(s, t)
zt(s, t)

)
. (1)

For each of the functions x(s, t), y(s, t), and z(s, t) a local
least squares polynomial function fit is evaluated. This poly-
nomial function is then differentiated to compute the deriva-
tives ~Xs and ~Xt. Given a function f(s, t), the derivatives
are evaluated as [4]: fs = Ds∗S∗f and ft = Dt∗S∗f where
∗ denotes convolution and S is a smoothening operator. Ds

and Dt are given respectively as ~C0
~CT
1 and ~C1

~CT
0 , where

~C0 = 1
7

[1 1 1 1 1 1 1]T and ~C1 = 1
28

[−3 −2 −1 0 1 2 3]T .
The surface normal is then computed as the cross product
of the partial derivatives ~Xs and ~Xt,

n̂ =
~Xs × ~Xt

‖ ~Xs × ~Xt ‖
. (2)

Fig. 4(a) shows the surface normals computed for a back-
ground image, while Fig. 4(b) shows the surface normals
computed on Fig. 3(a), which contains both the foreground
object and the background. For each of these surface nor-
mals, the projections onto the xy-plane, the yz-plane, and
the zx-plane are used to compute the spatiograms [5].

3.2 Spatiogram computation and matching
A spatiogram [5] is a generalization of histogram in which

feature distribution information of a histogram is combined
with spatial layout information (mean and covariance of the
spatial position of all pixels that fall into each bin). This
allows spatiograms to capture higher-order spatial moments
of each attribute bin. To compute the histogram for an
image of N pixels, the histogram bin count nb of bin b can
be written as:

nb = C

N∑
i=1

δib, (3)

where C is a normalizing constant and

δib =

{
1 if ith pixel falls in bth bin

0 otherwise.
(4)

Let Xi = [xi, yi]
T be the spatial position of pixel i, in

which the spatial co-ordinates in the image are normalized
to [−1,+1]. For each bin, we compute the spatial mean (µb)
and covariance (Σb) as:

µb =
1∑N

j=1 δjb

N∑
i=1

Xiδib, (5)
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Figure 5: Illustration of similarity between spa-

tiograms obtained for background only image and ob-

ject+background image. The spatiograms are computed

for (a) depth image, and projections of surface normals

onto (b) xy, (c) yz and (d) zx planes. (e) Average similar-

ity score of surface normal projections. (f) Segmentation

mask obtained using similarity maps (a) and (e).

Σb =
1∑N

j=1 δjb

N∑
i=1

(Xi − µb)(Xi − µb)
T δib, (6)

Given a background image and an object+background im-
age, we compute spatiogram S = {n, µ,Σ} for their depth
images and for the projections of their surface normals in xy,
yz and zx planes. Let S = {n, µ,Σ} and S′ = {n′, µ′,Σ′} de-
note respectively the spatiograms for the background image
and object+background image respectively. The similarity
(ρ) between the two spatiograms is then computed as [21]

ρ =

B∑
b=1

√
nbn′b

[
8π|ΣbΣ

′
b|1/4N(µb;µ

′
b, 2(Σb + Σ′b))

]
, (7)

where N(X;µ,Σ) represents a normalized Gaussian evalu-
ated atX. The similarity is computed at every pixel between
spatiograms obtained for background depth image and ob-
ject+background depth image. Similarities are also com-
puted for the spatiograms obtained from the projections of
the surface normals onto the three planes with the simi-
larity computed, as before, between background only and
object+background cases. The similarity maps ρd, ρxy, ρyz
and ρzx for the depth image and all three projections of
its surface normals in xy, yz and zx planes are shown in
Fig. 5(a)-(d) respectively. Darker pixel represents higher
dissimilarity between a background only image and an ob-
ject+background image. These similarity maps are then
combined together to detect the object position as follows:

mask =

{
1 min(ρd, ρxyz) ≤ T

0 otherwise.
(8)

where T is a threshold and the value of ρxyz is

ρxyz = (ρxy + ρyz + ρzx) / 3, (9)

and is illustrated in Fig. 5(e). The final segmentation mask,
shown in Fig. 5(f), is obtained after morphological opera-
tions to fill holes and to smoothen object boundaries.

3.3 Segmentation results
In this section, we compare the performance of the pro-

posed algorithm with a popular background subtraction me-

          

          

                 

Figure 6: Results of depth image segmentation. First

column: Input depth image. Second and third columns:

Segmentation mask obtained after applying standard

background subtraction method [35] on color and depth

images respectively. Fourth column: Segmentation mask

obtained by our algorithm.

thod [35]. To compute the similarity score at pixel p, we
compute the spatiograms over a neighborhood of p for back-
ground and object+background images and then find the
similarity between these two spatiograms using Eq. (7). In
our experiments, we fix the neighborhood size and number
of bins to 15× 15 and 24, respectively. The threshold value
T (in Eq. 8) has been chosen empirically and was fixed to
0.86 in all our experiments.

Fig. 6 shows segmentation results obtained by our method
and by [35]. Here, we use depth images as input for the pro-
posed method while we apply [35] on both color and depth
images to demonstrate the effectiveness of the proposed al-
gorithm. Input depth images are shown in the first column
of Fig. 6. We show segmentation masks obtained by apply-
ing [35] on color and depth images in the second and third
columns of Fig. 6 respectively. The segmentation masks ob-
tained by our method are shown in the fourth column of
Fig. 6. It can be seen that the proposed method is able to
extract the complete objects from the depth images that are
very close to the background.

4. CODEBOOK OF HUMAN POSES
We build a codebook of body poses from training images,

and represent a human pose shown in a video frame by its
most similar codeword. Here, explicit effort is made to learn
codewords which not only have coherent appearances with
a large number of poses (i.e. can represent most poses well),
but also have substantial different appearances from other
codewords (i.e. effectively covers the range of poses seen
in the training set). To learn this codebook, we segment
the human body from training depth images, and represent
each segmented silhouette by a scale, depth and translation
invariant descriptor. We apply a spatial-based clustering
method to these descriptors, and consider the medoid of
each resulting clusters as a codeword.

4.1 Computing pose descriptors
We require a framework to compare poses. A naive method

is to consider a segmented depth image to be a 3D point
cloud and compare two poses by the alignment of their 3D
point clouds [24]. The alignment of 3D point clouds is a reg-
istration problem, which has high computational demands.
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Figure 7: Spatial-based clustering. (a) Division of

bounding box of a segmented body into 4 quadrants. (b)

Clustering proceeds in the form of a hierarchical tree, in

which we apply clustering on descriptor values of cells be-

longing to a quadrant at each tree level. Note that mem-

bers in each sub-cluster have similar sub-poses within the

processed quadrants (shown color coded in (b)).

For better efficiency, we extract descriptors from training im-
ages depicting a wide array of body poses, and exploit these
descriptors to compare between poses. To ensure a descrip-
tor is translation and scale invariant, we first segment the
human from the background using the method presented
in Sect. 3, and resize the segmented body to a canonical
size prior to computing the descriptor. To describe the seg-
mented body, a straightforward option would be a histogram
of normalized depth values computed over the body, which
is a simple bag of features representation. However, we can
empower the descriptor with greater discriminative poten-
tial by encoding the spatial layout of the normalized depth
values. Here, we define a dense grid over the bounding box
of the segmented body, and compute the average normalized
depth value for each cell in the grid. Additionally, we also
compute the fraction of the body that is within each cell in
the grid. The former incorporates depth information into
the descriptor, while the latter encodes the spatial layout of
the pose. The concatenation of these two values across all
cells yields the pose descriptor.

4.2 Spatial-based clustering to learn codewords
We cluster the set of descriptors that are extracted from

the training set, and compute the medoid of each cluster as
a codeword. Here, we seek codewords which are sufficiently
flexible such that each codeword can well represent poses
that have similar appearances, but yet are substantially dis-
tinct from each other to ensure they cover the possible vari-
ations of poses. One approach to clustering is to consider
each descriptor in its entirety during the the clustering step.
However, such an approach considers every dimension in
the descriptor simultaneously. Consequently, sharp differ-
ences between two descriptors in a few dimensions may be
mitigated by small differences in other dimensions, so that
dissimilar poses are grouped together into the same cluster.

To improve the quality of the clustering, we propose a
spatial-based clustering step which explicitly incorporates
pose information during clustering. We divide the bounding
box of the segmented body into four quadrants (see Fig. 7),
and cluster the descriptors based on their values within each
quadrant separately. Here, we first apply clustering on the
descriptor values of cells in the first quadrant to find sub-
clusters whose members have similar poses within the first
quadrant of the segmented body. The clustering step con-
tinues in the form of a hierarchical tree, in which each sub-
sequent node of the tree corresponds to a sub-cluster formed

from the previous clustering step, and we cluster on descrip-
tor values from cells of quadrant i at level i of the tree.
Consequently, each leaf node of the tree includes descriptors
which have similar values in every quadrant, and hence are
more likely to have similar poses. In our work, we apply the
robust mean-shift clustering to the set of descriptors. Given
that we apply mean-shift clustering on separate dimensions
of the descriptors (as opposed to the entire dimensions col-
lectively), and each application of mean-shift at a node of
the tree is evaluated on sub-clusters with fewer members
than its parent node, clusters can thus be efficiently found.

We apply the above method on the Human Action dataset
[29, 30], and plot a histogram of the Euclidean distances be-
tween the cluster medoids (i.e. codewords) and its members
(intra-cluster distances) in Fig. 8(a). For comparison, we
show the histogram obtained by direct application of mean-
shift clustering on the descriptor values in Fig. 8(b). Note
that while both possess the same number of clusters, the pro-
posed method finds much more compact clusters as shown
by the smaller mean value (a t-test shows that this smaller
mean value to be significant, p < 10−15). Fig. 8(c) shows
the histogram of the Euclidean distances between the clus-
ter medoids found by the spatial-clustering method (inter-
cluster distances), and Fig. 8(d) shows those obtained with
direct application of mean-shift clustering. The proposed
method finds codewords that are substantially distinct from
each other, as shown by the higher mean Euclidean distance
between codewords (p < 10−12). We show codewords se-
lected by our method in Fig. 9. As observed, salient and
unique poses exhibited by the human, e.g. sitting, standing
and drinking water are well represented.

5. DISCRIMINATIVE SUBSEQUENCES OF
CODEWORDS

In this section, we describe our method to learn discrimi-
native subsequences of video codewords (termed xSC in this
paper) that are unique to a targeted activity. Inference at
test time for the targeted activity is achieved by aligning
these xSC to the test video codeword sequence with a slid-
ing window approach, and computing the weighted sum of
the confidence score at each window. Here, we first detail the
learning of these activity-specific subsequence of codewords
before discussing how they are exploited at test time.

We seek a discriminative xSC which models the distin-
guishing poses of a human when performing an activity, and
the distinctive temporal ordering of these poses to reliably
recognize an activity. The former incorporates pose/appear-
ance features as recognition cues, while the latter encodes
important temporal information that are unique to the ac-
tivity. The alignment of these discriminative xSC to a win-
dow of a test sequence can thus be exploited to localize the
activity within the test sequence with a sliding window ap-
proach. A key challenge here is on the alignment of a xSC to
the test window. Specifically, a person may exhibit poses at
test time that are slightly different from those seen during
training, even when performing the same activity. Hence,
the test video will be represented by a codeword sequence
that is different from the xSC learned during training. More
importantly, a person may perform a same activity with dif-
ferent speeds during training and testing. Such temporal
variations are typically inconsistent across the activity (e.g.
faster actions in initial phase of the activity, and slower
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Figure 8: Comparison of clustering quality. Histogram of the Euclidean distances between codewords and its members

obtained by our method and by direct application of mean-shift are shown in (a) and (b) respectively. Histograms

of the Euclidean distances between codewords obtained by our method and by mean-shift are shown in (c) and (d)

respectively. Notice that the proposed method finds more compact clusters, while learning codewords which have more

diverse appearances. T-tests show the improvements to be statistically significant, (p = 10−15 for comparison between

(a) and (b), and p = 10−12 for comparison between (c) and (d)).

                                                                   

Figure 9: Codeword exemplars obtained for Human Ac-

tivities dataset [29].

actions thereafter). This makes temporal ordering of the
codewords in a xSC a potentially less reliable recognition
cue. Here, we first describe our alignment method which
addresses these two issues in a unified framework, before
discussing how an ensemble of boosted xSC are learned.

5.1 Aligning xSC to a test window codewords
Motivated by recent successes of DNA sequences align-

ment in the bioinformatics field [14], we formulate the prob-
lem of video codewords alignment as a DNA sequence align-
ment problem where we consider a codeword of a video se-
quence to be analogous to a codon in a DNA sequence. Cor-
respondingly, given a discriminative xSC and a test window
of codewords, we compute the optimum alignment between
the two sequences by the semi-global sequence alignment
method [3]. Unlike the global alignment method, the semi-
global alignment method ignores leading and trailing gaps
in the sequence alignment process and is well suited for our
problem in which a xSC may be longer than the test window
codewords. Additionally, unlike local sequence alignment
which finds subsequences of xSC within the test window,
semi-global alignment searches for the presence of the entire
xSC within the test window and hence fully exploits the dis-
criminative potential of the xSC. In the following, we first
describe the semi-global sequence alignment method, before
addressing how this method gives robust alignment under
pose and temporal variations in the video sequence.

Let P denotes a window of codewords, P = {p1, . . . , pm},
where pi is the ith codeword in the sequence, and let Q =
{q1, q2, . . . , qn} denote a discriminative xSC. The optimum
semi-global alignment between P and Q can be obtained by
first computing a (m+ 1)× (n+ 1) score matrix M , where

M(i+ 1, j + 1) = min


M(i, j) + d(pi, qj)

M(i, j + 1) + g

M(i+ 1, j) + g

. (10)

Here, d(pi, qj) denotes the Euclidean distance between the
pose descriptors of codewords pi and qj , and g is a gap
penalty which represents the cost of inserting a gap in the
alignment. In all experiments, we set g to be equal to the
standard deviation of the distances computed between every
codeword. Given matrix M , we identify the entry M(x, y) in
the last row/column which has the minimum value as φ. It
denotes the misalignment score between the two sequences.
The optimum alignment is then found by keeping track of
the elements that contribute the minimum distance at each
step i.e. backward transversal of a path from M(x, y) to
M(1, 1). As illustration, Fig. 10(a) shows an example xSC
that is learned for the open-bottle activity, and its alignment
to a positive window, where the xSC and window codewords
corresponds to different persons. Misalignment score φ ob-
tained is given in the same figure. We show the alignment of
the same xSC to a random negative window (drinking-water
activity) in Fig. 10(b). As observed, a higher misalignment
score is obtained when xSC is paired to a negative window.

The formulation of the sequence alignment in the above
share similarities to the classical time warping, but has an
important difference in that time warping considers the dis-
tances of vector pairs taken from a common k-dimensional
feature space, whereas sequence alignment considers the dis-
tances of codewords taken one each from each sequence [1].
Here, insertion and deletion of gaps in the alignment is simi-
lar to lengthening (slowing-down) and shortening (speeding-
up) of the activity in the video sequence, and empowers the
alignment procedure to be robust to temporal variations of
an activity. Additionally, we compute the optimum align-
ment based on the pose differences between the codewords
(rather than demanding the exact matching of codewords).
This affords us much flexibility when aligning sequences with
slight pose variations. In this aspect, we attempt to strike a
winning tradeoff: exploit the appearance and temporal or-
derings of the codewords encoded in a xSC to empower it
with strong discriminative potential to recognize an activity,
and leveraging on an alignment framework which affords an
xSC with sufficient flexibility to align to test sequences with
slight pose and temporal variations.

5.2 Learning discriminative xSC

We learn a boosted ensemble of xSC from positive and
negative training sequences for each target activity. These
xSC are aligned to test video codeword sequence with a slid-
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Figure 10: Alignment of example positive and negative window codewords on the same xSC that is learned for the

open-container activity. Vertical and horizontal lines between codewords denote the alignment of the codewords and

the gaps inserted to obtain the optimum alignment, respectively. Misalignment scores (φ) are show for each alignment.
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Figure 11: Aligning a candidate xSC to a video code-

word sequence. We show the window by the blue rect-

angle, and also depict the anchoring frame for the win-

dow. Candidate xSC assigns a misalignment score to

each image frame of the video codeword sequence at the

anchoring frame of the window.

ing window approach at inference, where weighted sum of
the confidence score at each window is used as the overall
confidence measure for the targeted activity at the window.
We first present our method to learn a single discriminative
xSC, before discussing how a boosted ensemble of discrimi-
native xSC is learned.

We require a discriminative xSC to align well to positive
window codewords but not to the negative. In this work, we
exploit validation video sequences for discriminative learn-
ing of xSC. Specifically, we select a random subsequence of
codewords from a positive training codeword sequence as a
candidate xSC, and align it to positive and negative valida-
tion codeword sequences with a sliding window approach.
Rather than assigning a fixed size window for every candi-
date xSC, we pair each candidate xSC with a window of
random size, and anchor each window to a video frame in
the validation sequence (see Fig. 11). The anchoring frame
provides the reference for the current window. The use of
sliding windows enables our method to not only recognize
human activities (i.e. classification task), but more impor-
tantly empower it with an ability to find a targeted activity
within a video sequence (i.e. localization task). We consider
the misalignment score (defined as φ above) for each win-
dow as a feature value of the window, where the class label
for the window is +1 if its corresponding anchoring image
frame is from a positive validation sequence, and -1 oth-
erwise. The set of feature values and class labels, together
with the weights of the windows (initialized according to the
number of positive and negative validation video frames) are

then used to learn a weak decision stump[13] which maxi-
mizes the weighted accuracy on the set of validation win-
dows. The prediction of the decision stump classifier based
on the learned xSC at a window w is,

xSC [w] =

{
+1 if φ < τ

−1 otherwise
, (11)

where τ is a learned parameter. We learn an ensemble of
discriminative xSC by AdaBoost [10], where each boosting
round outputs an xSC, its weight, window size, and a cor-
responding decision stump. All xSC learned by AdaBoost
are then combined to form a boosted ensemble, where the
overall confidence measure of an activity in a window w is

H
[
w
]

=
∑
j=1

αj × xSCj

[
w
]
, (12)

with αj as the weight of xSCj and is learned during boost-
ing. In this paper, we pick candidate xSC by selecting ran-
dom subsequences from positive training data, and assign its
window size a random value between 75% to 125% its length.
We sample windows of the validation sequences (both pos-
itive and negative) at every frame, and apply 300 boosting
rounds to learn the boosted ensemble.

6. HUMAN ACTIVITIES CLASSIFICATION
AND LOCALIZATION

In this section, we describe how the learned boosted en-
sembles are used to recognize human activities (i.e. clas-
sification task), and how they are exploited to find human
activities within a test video (i.e. localization task). The
only image information used by the ensemble is the depth
image information, obtained with the Kinect sensor.

To classify the activity depicted in a test video, we learn
a boosted ensemble for each activity, and capitalize on these
ensembles to recognize the activity-label of the test video.
Specifically, we apply the boosted ensemble Hi [·] which was
learned for the ith activity to the test video in a sliding win-
dow approach. The sliding step is the same as that used for
training. Each window in the test video is assigned a score
based on Eq. (12), and we consider the median score of all
windows within the test video for the classification confi-
dence of the video as activity i. To localize the ith activity,
we apply the boosted ensemble Hi [·] on all windows of the
test video, and employ the powerful mean shift mode esti-
mation technique [7] on the confidence measure of each win-
dow, similar to [16]. Mean shift models the non-parametric
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distribution with the kernel density estimator,

P (w) ∝
∑

wj∈W

Hi

[
wj

]
G
(w − wi

bw

)
(13)

where the Gaussian kernel G uses bandwidth bw. Mean
shift efficiently finds modes within the sequence which are
then used as the final set of detections. Here, we used the
density estimated at each mode as the confidence value of
the detection.

7. EXPERIMENTAL RESULTS

7.1 Classification results
We evaluate our technique on the challenging Human Ac-

tivity dataset [29] and compare against the best (to our
knowledge) classification results obtained so far on this data-
set. We used only depth information in our method and ad-
here to the same evaluation protocols as those used by other
methods. This dataset comprises 12 challenging activities
(see Table 1) performed by 4 persons. We note that humans
in the dataset are located away from the background. More-
over, since the background images are also not available with
the dataset, we can not use our proposed method for seg-
mentation. Hence, we apply a simple depth threshold value
to segment the human from the background. In our work,
we use the Otsu’s method [22] to learn an optimum depth
threshold value to extract the foreground human. Following
[29], we separate the 12 activities into five different envi-
ronments of office, kitchen, bedroom, bathroom, and living
room, and evaluate under two settings: ‘new-person’ and
‘person-seen-before’.

In the ‘new-person’ setting, we evaluate the boosted en-
semble learned for each activity on video sequences in which
the ensemble has not previously seen the person carrying out
the activity. We used leave-one-out cross validation to test
each person data whereby the ensemble was trained on the
data of three persons and tested on the fourth person. To
learn an ensemble for an activity-class, we pick the positive
sequence of one person (randomly chosen) as the training
sequence, and use the sequences (both positive and nega-
tive) of the other two persons for validation. To evaluate
the ensemble, we apply it on data of the person not used for
training/validation, in which all activities of the person are
used for testing. In this aspect, each activity is searched for
in video sequences of every activity class. In the ‘person-
seen-before’ setting, we evaluate the boosted ensemble on
video sequences for which the ensemble has previously seen
the person carrying out the activity. Here, we report two-
fold cross validation classification accuracy, in which we split
the video sequence of each person into two equal halves, used
one half for training/validation, and the other for testing.

We first discuss classification results for the ‘new-person’
setting. Fig. 12(a) reports the confusion matrix of the activ-
ities irrespective to different environments. Turning to in-
correct classifications, it can be seen that activities brushing-
teeth and talking-phone are often misclassified. This is due
to the similar body poses for both activities which is further
complicated by little hand motions in both activities. Conse-
quently, our method which exploit the appearance and tem-
poral cues fail to achieve accurate classification on these ac-
tivities. On the other hand, our method attain high accura-
cies for activities which have unique poses (e.g. working-on-

Table 1: Activities in Human Activity dataset [29].
ID Activity ID Activity
1. Brushing teeth 7. Talking on phone
2. Rinsing mouth 8. Drinking water
3. Wearing contact lenses 9. Opening container
4. Working on computer 10. Talking on couch
5. Cooking - Chopping 11. Relaxing on couch
6. Cooking - Stirring 12. Writing on whiteboard

(a) (b)

Figure 12: Confusion Matrices for each activity are

shown in (a) and (b) respectively. Results for ”new-

person” setting are shown in (a), and ”person-seen-

before” setting in (b) irrespective to different activity

environments. Indices in first row and column of each

table corresponds to those in Table 1.

              

Figure 13: Example sequence of training images used to

localize the left-leg-kicking activity from a test sequence.

computer) and unique temporal pose ordering (e.g. rinsing-
mouth). We compare results obtained by our method with
Naive Classifier (multi-class support vector machine), One-
level MEMM, two-level MEMM [29] in Table 2. Our method
is able to detect and classify the activities performed in dif-
ferent environments with an overall average precision/recall
measure of 78.1%/75.4% which is better than 67.9%/55.5%
obtained by Sung et al. [30] under this setting (bottom row
of Table 2). It has to be mentioned that [30] exploits the pose
information obtained with robust tracking of body joints lo-
cations, while our method uses silhouettes that are (crudely)
segmented from depth images. This demonstrates the power
of our learned ensemble to recognize complex activities.

Fig. 12(b) reports the confusion matrix for the ‘person-
seen-before’ setting. It can be seen that the boosted en-
semble has sharp improvement in performance. This is not
surprising, since this experiment setting allows the boosted
ensemble to directly exploit the unique characteristic of the
person performing the activity to learn the xSC, but does
highlight the capability of our method to hone in on these
characteristics. Here, our algorithm is able to detect and
classify the activities performed in different environments
with an overall average precision/recall measure of 94.6%/
93.1% which is better than 84.7%/83.2% obtained by Sung
et al. [30] for the same setting (bottom row of Table 2). To
our knowledge, this is the best result published so far for
this dataset.
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Figure 14: Activity localization. (a) Plot of detection

confidence against frame number, obtained by apply-

ing the boosted ensemble of the test video using the

sliding window approach. (b) Detections obtained by

our method, where each row correspond to a detection

and number indicate frame index. Red bounding boxes

within segmented body correspond to detected modes.

7.2 Localization results
In this section, we demonstrate our method to localize

a targeted activity from a test sequence. Here, a human is
very near to the background (lying on the ground) and hence
we use the proposed method to extract the foreground. We
define the targeted activity as the kicking motion of the left
leg, and show an example training sequence of the activity in
Fig. 13. We test our method on a test sequence which shows
a person performing the targeted activity at three separate
times within the sequence. Specifically, this activity were
performed at frames f175 to f280, f676 to f847 and f1120 to
f1325. Frames f1 to f174, f281 to f675, f848 to f1119 and f1326
to f1478 comprise random activities perform by the person.
We show example frames from each interval in Fig. 15. We
learn a boosted ensemble of xSC for the target activity, and
plot the detection confidence for each sliding window in Fig.
14(a). Detections obtained by mean shift mode estimation
corresponds to the three peaks in the graph. We show these
detections in Fig. 14(b), where the fourth frame in each de-
tection corresponds to the detected modes. These detections
accurately localize the left-leg-kicking activity, and demon-
strate the activity localization capability of our method.

8. CONCLUSION
We presented a method which uses only depth images for

activity classification and localization. Towards this end,
we proposed a descriptor to represent a human pose, and
exploited a spatial-based clustering method to find unique
human poses (i.e. codewords). Given a training video, we
represent the video as a sequence of codewords and learn
subsequences of codewords (termed xSC ) that model both
the discriminative poses of a human when performing an ac-
tivity, as well as the distinctive temporal ordering of these
poses. We identify such a discriminative xSC as one which

aligns well only in positive test videos. Here, we formulate
the problem of alignment of xSC with a test window code-
words as the DNA alignment problem, and exploit the semi-
global alignment method to find the optimum alignment.
The insertion/deletion of gaps in the alignment represents
the slowing-down/speeding-up of the targeted activity in the
videos, and affords the alignment to be robust towards tem-
poral variations in the activity. At the same time, robustness
to pose variations is achieved since the optimum alignment is
computed from the pose differences of the codewords (rather
than demanding the exact matching of codewords). Activity
classification and localization results on test videos demon-
strate the effectiveness of our approach, in which for the
Human Activity dataset, we achieved improvement over the
best results published so far for the dataset.
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rinsing mouth 77.7 49.3 71.8 63.2 51.1 51.4 100 100 73.3 49.7 70.7 53.1 61.4 70.9 100 100
brushing teeth 64.5 20.5 83.3 57.7 88.5 55.3 100 75.0 81.5 65.1 81.5 75.6 96.7 77.1 100 100

wearing contact lens 82.0 89.7 81.5 89.7 78.6 88.3 80.0 100 87.8 71.9 87.8 71.9 79.2 94.7 100 100
Average 74.7 53.1 78.9 70.2 72.7 65.0 93.3 91.6 80.9 62.2 80.0 66.9 79.1 90.9 100 100

bedroom

talking on phone 82.2 32.6 82.0 32.6 63.2 48.3 60.0 75.0 70.2 67.2 70.2 69.0 88.7 90.8 100 62.5
drinking water 19.2 12.1 19.1 12.1 70.0 71.7 50.0 50.0 64.1 31.6 64.1 39.6 83.3 81.7 80.0 100

opening container 95.6 65.9 95.6 65.9 95.0 57.4 100 75.0 48.7 52.3 48.7 54.8 93.3 77.4 88.8 100
Average 65.6 36.9 65.6 36.9 76.1 59.2 70.0 66.7 61.0 50.4 61.0 54.5 88.4 83.3 89.6 87.5

Kitchen

cooking (chopping) 33.3 56.9 33.2 57.4 45.6 43.3 60.0 75.0 78.9 28.9 78.9 29.0 70.3 85.7 100 100
cooking (stirring) 44.2 29.3 45.6 31.4 24.8 17.7 50.0 50.0 44.6 45.8 44.6 45.8 74.3 47.3 100 100

drinking water 72.5 21.3 71.6 23.9 95.4 75.3 75.0 75.0 52.2 51.5 52.2 52.4 88.8 86.8 100 100
opening container 76.9 6.20 75.8 6.20 91.9 55.2 100 75.0 17.9 62.4 17.9 62.4 91.0 77.4 100 100

Average 56.8 28.4 56.6 29.7 64.4 47.9 71.2 68.7 48.4 47.2 48.4 47.4 81.1 74.3 100 100

living room

talking on phone 69.7 0.90 83.3 25.0 51.5 48.5 50.0 75.0 34.1 67.7 34.1 67.7 88.8 90.6 100 75.0
drinking water 57.1 53.1 52.8 55.8 54.3 69.3 66.7 50.0 80.2 48.7 71.0 53.8 80.2 82.6 80.0 100
talking on couch 71.5 35.4 57.4 91.3 73.2 43.7 100 50.0 91.4 50.7 91.4 50.7 98.8 94.7 100 62.5
relaxing on couch 97.2 76.4 95.8 78.6 31.3 21.1 80.0 100 95.7 96.5 95.7 96.5 86.8 82.7 72.7 100

Average 73.9 41.5 72.3 62.7 52.6 45.7 74.2 68.7 75.4 65.9 73.1 67.2 88.7 87.7 88.2 84.4

office

talking on phone 60.5 31.0 60.6 31.5 69.4 48.2 60.0 75.0 80.4 52.2 80.4 52.2 87.6 92.0 100 75.0
writing on whiteboard 47.1 73.3 45.2 74.1 75.5 81.3 100 100 42.5 59.3 42.5 59.3 85.5 91.9 100 100

drinking water 41.1 12.4 51.2 23.2 67.1 68.8 66.7 50.0 53.4 36.7 53.4 36.7 82.3 81.5 80.0 100
working on computer 93.5 76.8 93.5 76.8 83.4 40.7 100 100 89.2 69.3 89.2 69.3 89.5 93.8 100 100

Average 60.5 48.4 62.6 51.4 73.8 59.8 81.7 81.2 66.4 54.4 66.4 54.4 86.2 89.8 95.0 93.7
Overall Average 66.3 41.7 67.2 50.2 67.9 55.5 78.1 75.4 66.4 56.0 65.8 58.1 84.7 83.2 94.6 93.1

[19] B. Ni, G. Wang, and P. Moulin. Rgbd-hudaact: A color-
depth video database for human daily activity recognition.
Int. Conf. on Comp. Vision Workshops, 2011.

[20] S. Nowozin, G. Bakir, and K. Tsuda. Discriminative
subsequence mining for action classification. ICCV, pages
1–8, 2007.

[21] C. O’Conaire, N. E. O’Connor, and A. F. Smeaton. An
improved spatiogram similarity measure for robust object
localisation. ICASSP, pages 15–20, 2007.

[22] N. Otsu. A threshold selection method from gray-level
histograms. Trans. on Sys., Man and Cyber., 9(1), 1975.

[23] V. Parameswaran and R. Chellappa. View invariance for
human action recognition. Int. J. on Comp. Vision,
66:83–101, 2006.

[24] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz.
Aligning point cloud views using persistent feature
histograms. Intelligent Robots and Systems, 2008.

[25] B. Sabata, F. Arman, and J. K. Aggarwal. Segmentation of
3d range images using pyramidal data structures. Int.
Conf. on Computer Vision, 1990.

[26] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: A local svm approach. ICPR, pages 32–36, 2004.

[27] J. Shotton, A. FItzgibbon, M. Cook, T. Sharp,
M. Finocchio, R. Moore, A. Kipman, and A. Blake.
Real-time human pose recognition in parts from single
depth images. CVPR, 2011.

[28] P. Spagnolo, T. Orazio, M. Leo, and A. Distante. Moving
object segmentation by background subtraction and
temporal analysis. Image and Vision Computing,
24(5):411–423, 2006.

[29] J. Sung, C. Ponce, B. Selman, and A. Saxena. Human
activity detection from rgbd images. AAAI workshop on
Pattern, Activity and Intent Recognition, 2011.

[30] J. Sung, C. Ponce, B. Selman, and A. Saxena.
Unstructured human activity detection from rgbd images.
Int. Conf. on Robotics and Automation, 2012.

[31] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet
ensemble for action recognition with depth cameras.
CVPR, 2012.

[32] A. Yilmaz and M. Shah. Actions sketch: A novel action
representation. CVPR, 1:984–989, 2005.

[33] H. Zhang and L. E. Parker. 4-dimensional local spatio-
temporal features for human activity recognition. Int.
Conf. on Intelligent Robots and Systems, 2011.

[34] Y. Zhao, Z. Liu, L. Yang, and H. Cheng. Combining rgb
and depth map features for human activity recognition.
APSIPA ASC, 2012.

[35] Z. Zivkovic. Improved adaptive gaussian mixture model for
background subtraction. ICPR, pages 28–31, 2004.

Area Chair: Shuicheng Yan 292




