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ABSTRACT
Existing methods of generative adversarial network (GAN) use
different criteria to distinguish between real and fake samples, such
as probability [9], energy [44] or other losses [30]. In this paper, by
employing the merits of deep metric learning, we propose a novel
metric-based generative adversarial network (MBGAN), which uses
the distance-criteria to distinguish between real and fake samples.
Specifically, the discriminator of MBGAN adopts a triplet structure
and learns a deep nonlinear transformation, which maps input
samples into a new feature space. In the transformed space, the
distance between real samples is minimized, while the distance
between real sample and fake sample is maximized. Similar to the
adversarial procedure of existing GANs, a generator is trained to
produce synthesized examples, which are close to real examples,
while a discriminator is trained to maximize the distance between
real and fake samples to a large margin. Meanwhile, instead of using
a fixed margin, we adopt a data-dependent margin [30], so that the
generator could focus on improving the synthesized samples with
poor quality, instead of wasting energy on well-produce samples.
Our proposed method is verified on various benchmarks, such as
CIFAR-10, SVHN and CelebA, and generates high-quality samples.

CCS CONCEPTS
• Computing methodologies → Computer vision; Unsuper-
vised learning; Neural networks; Adversarial learning;

KEYWORDS
deepmetric learning, generative adversarial network, data-dependent
margin

1 INTRODUCTION
Deep learning has shown dominant superiority over various com-
puter vision tasks, such as image classification [12, 35, 38], object
detection [8, 33]. However, most of the existing deep learning meth-
ods are supervised, which heavily rely on large amounts of labeled
data. And it is quite time-consuming and costs too much to achieve
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such massive amounts of labeled data. Recently, the unsupervised
models, especially, generative adversarial network (GAN) [9] and
variational autoencoder [17], have attracted more and more atten-
tions from researchers. A traditional GAN generally consists of
two components, a generator and a discriminator. The generator
is trained to generate high-quality synthesized data from random
noise, so that those synthesized data could fool the discrimina-
tor. The discriminator is trained to distinguish between real data
and synthesized data. The two components keep competing each
other and reach an equilibrium until the discriminator could not
distinguish between real data and synthesized data.

The idea of GAN [9] is straightforward and nice, however, the
training process of GAN is quite tricky, which is very vulnerable to
collapse. Generally, it would be much easier to distinguish between
real and synthesized data than generating high quality data to fool
the discriminator. When the discriminator is so strong and the gen-
erator is soweak, the discriminator could easily distinguish between
real data and synthesized data. Under such condition, the gradient
from the discriminator would be almost 0, which could hardly help
improve the generator, and the training process is collapsed. Vari-
ous types of GAN are proposed to improve the performance, such
as DCGAN [31], EBGAN [44], WGAN [1] and LSGAN [30]. DC-
GAN [31] proposed a series of architectural guidelines to construct
stable deep convolutional GAN, such as batch normalization and
leaky relu. Instead of outputting probabilities, the discriminator
of EBGAN [44] adopted an autoencoder as an energy function to
distinguish between real and fake data. WGAN [1] adopted wasser-
stein metric to improve the stability of GAN, while LSGAN [30]
proposed a loss-sensitive model so that the network could focus on
improving the synthesized data with poor quality.

In this work, we propose a novel metric-based generative adver-
sarial network (MBGAN). Instead of using probability [9], energy
[44] or other losses [30] to distinguish between real data and fake
data, we view the discriminator as a deep nonlinear transforma-
tion, which maps input samples into a new feature space. In the
transformed space, the distance between real samples is minimized,
while the distance between real and fake samples is maximized to
a large margin. In addition, instead of being fixed, the marginal
distance between real data and fake data is adaptive to the quality
of synthesized data, so that the generator could focus on improving
the poor produced samples. The adversarial training procedure is
similar to existing GANs, a generator is trained to produce samples
close to the real data in the transformed space, while the discrim-
inator is trained to maximize the distance between real data and
fake data. Compared to existing GANs, our proposed MBGAN is
more straightforward, jointly learning with real samples and fake
samples together to guide the adversarial training process. For the
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discriminator, we adopt triplet-wise examples to distinguish be-
tween real data and fake data; for the generator, we adopt pairwise
examples to minimize the distance between real and fake examples.

The main contribution of this paper is to use the idea of deep
metric learning to train GAN. Instead of outputting probability or
energy, the discriminator of our proposed MBGAN simply outputs
a feature vector as the representation of input examples in the
transformed space. The distance of the representations for the real
examples should be close to each other, while being away from
those fake examples. The existing methods of GAN treat real data
and fake data individually, either assigning different probabilities
[9], different energies [44], or different losses [30]. However, our
proposed method jointly considers real and fake data with triplet-
wise and pairwise examples for training discriminator and genera-
tor respectively. Compared to traditional methods, our proposed
MBGAN is more straightforward to directly use the real data to
help improve the data with poor quality produced by the generator,
meanwhile help the discriminator to distinguish between real data
and fake data.

The rest of the paper is organized as follows. In Section 2, we
introduce the related works. In Section 3, we present our proposed
method, metric-based generative adversarial network. In Section 4,
we verify the proposed MBGAN on various benchmarks. In Section
5, we conclude our paper.

2 RELATEDWORK
The related works are introduced from two aspects, one is about
generative adversarial network and the other is about deep metric
learning. Next we will discuss the representative works for the
above two aspects.

Generative adversarial network. Generative adversarial network
was first proposed by Goodfellow et al. [9], which simultaneously
trains a generator and a discriminator via an adversarial procedure.
The idea of GAN is actually a minmax problem in game theory.
Through the adversarial competition, the generator could produce
contrast data from random noise, which follows similar distribu-
tion as real data. The idea of GAN is straightforward, however, the
training procedure is not stable, and vulnerable to collapse. Rad-
ford et al. [31] extended the idea of GAN with deep convolutional
neural network by employing a set of architectural guidelines on
the structure of current CNN model, such as replacing pooling with
strided-convolution, replacing ReLU with leaky ReLU. Denton et al.
[7] stacked multiple-stage GANs in a laplacian pyramid framework
to generate high quality images. Im et al. [16] proposed genera-
tive recurrent adversarial network, in which the generator consists
of a recurrent loop to improve the quality of produced samples.
Reed et al. [32] proposed a new GAN model, which could provide
more detailed control over the synthesized images, such as the
content and its location. In addition, Mathieu et al. [25] employed
the adversarial training for video prediction. Except for synthesiz-
ing 2D images, Wu et al. [40] apply GAN with 3D convolution to
synthesize high-quality 3D objects.

Traditional GANs use the probability criteria to distinguish be-
tween real samples and fake samples, which is vulnerable to collapse.
Therefore, lots of other GAN models are proposed to increase its
stabilities. Zhao et al. [44] proposed an energy-based GAN, which

views the discriminator as an energy function, specifically, the re-
construction error of autoencoder. Arjovsky et al. [1] proposed
a Wasserstein-GAN through minimizing the approximated earth
mover distance, which shows more stable behavior compared to the
traditional GAN. In addition, Qi et al. [30] proposed a loss-sensitive
GAN, which allows the generator to focus on improving samples
with poor quality. Through combining variational autoencoder [17]
and GAN, Larsen et al. [20] proposed a VAE-GAN, which simul-
taneously learns to encode and decoder generator/discriminator.
Similarly, Warde-Farley et al. [39] adopted denoising autoencoder
to improve the performance of GAN. Nowozin et al. [27] demon-
strated that any f -divergence can be used to train GAN, moreover
[9] is just a special case. In addition, Chen et al. [3] proposed an
InfoGAN, which aims to maximize the mutual information between
latent variables and observations in addition to adversarial loss.

Deep metric learning. In spired by the great success of deep learn-
ing [12, 19, 35, 38], deep metric learning with the siamese struc-
ture [2] was proposed recently. Compared to traditional metric
learning [5, 6, 10] with a linear transformation, the deep metric
learning could learn a more powerful deep nonlinear transforma-
tion to minimize the distance of positive pairs and maximize the
distance of negative pairs. Deep metric learning has been applied
to various computer vision tasks, such as face verification [4, 14],
visual tracking [15], image retrieval [22], person re-identification
[41] and dimensionality reduction [11]. Different from the above
methods with randomly selecting training pairs, Song et al. [28]
considered all the possible pairs in a minibatch for metric learning.
Apart from the siamese architecture, Hoffer et al. [13] proposed
to use a triplet structure with triplet-wise examples, one anchor,
one positive and one negative examples. Similarly, Sohn et al. [36]
adopted a multi-class N-pair loss to enable faster convergence and
achieve better performance. In addition, the contrastive loss is often
combined with the classification loss to jointly train the network
[23, 29, 37, 42] for further improving performance. Parkhi et al. [29]
proposed a deep face model, which adopted softmax loss for face
classification and triplet loss for face embedding. Similarly, Zhang
et al. [43] jointly combined the classification loss and contrastive
loss for learning fine-grained features.

3 PROPOSED METHOD
In this paper, we propose a novel metric-based generative adversar-
ial network as shown Fig. 1. Instead of outputting probability [9],
energy [44] or other losses [1, 30], we view the discriminator as a
deep nonlinear transformation, which maps input samples into a
new feature space. In the transformed space, the Euclidean distance
between real samples should be encouraged as small as possible,
meanwhile away from fake examples. Specifically, we adopt a triplet
structure for feature embedding. The adversarial procedure is that
the discriminator is trained to minimize the distance between real
samples and maximize the distance between real and fake sam-
ples to a data-dependent margin, while the generator is trained to
minimize the distance between real samples and fake samples.

Let X = {x1,x2, · · · ,xN } denote the set of training samples,
pdata denote the distribution of real samples, while z is sampled
from uniform distributionU (0, 1). The generator is trained to map
input noise z into a sample G (z). The discriminator learns a deep
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Figure 1: Detailed framework of our proposedmethod. z is sampled from uniform distributionU (0, 1).G, D denote the transfer
functions for the generator and discriminator respectively, which have the similar structures as DCGAN [31]. We view the
discriminator as a deep nonlinear transformation, mapping input samples into a new feature space. In the transformed space,
we use the Euclidean distances between the representations of different samples to distinguish real and fake samples. The
adversarial procedure is that the discriminator is trained to minimize the pairwise distance among real samples, and maxi-
mize the pairwise distance between real data and fake data to a data-dependent margin. Meawhile the generator is trained to
minimize the Euclidean distance between real data and fake data.

Figure 2: Illustration of the proposed MBGAN. In the trans-
formed space, the distance between real samples, D (xi ) and
D (x j ) is pushed to be close to each other, while the distance
between real sample D (xi ) and fake sample D (G (z)) is push
away from each other to a data-dependent margin.

nonlinear transformation D : x → D (x ), D (x ) ∈ RK , mapping
input samples into a new feature space, where K is dimensionality
of the new feature space.

3.1 Objective function
Our proposed method views the discriminator as a deep nonlinear
transformation, as illustrated in Fig. 2. The adversarial procedure
is actually adversarial distance-metric learning. The generator is
trained to produce samples that are close to real samples in the new
feature space, while the discriminator is trained to maximize the
distance between real data and fake data to a data-dependent mar-
gin. To this end, the proposed generator loss LG and discriminator
loss LD are defined as follows,
LD (xi ,x j , z) = max{0,h(z,x j ) + d (xi ,x j ) − d (xi ,G (z))} (1)

LG (x j , z) = d (x j ,G (z)) (2)

whered denotes the pairwise distance of samples in the transformed
space, as shown in Eq. 3, h denotes the data-dependent margin,

d (xi ,x j ) = ∥D (xi ) − D (x j )∥2

d (xi ,G (z)) = ∥D (xi ) − D (G (z))∥2

d (x j ,G (z)) = ∥D (x j ) − D (G (z))∥2

(3)

Instead of using a fixed margin h for LD in Eq. 1, we adopt
a data-dependent margin [30]. The data-dependent margin could
allow the generator to focus on improving poor-produced samples,
instead of wasting effects on well-produced samples. Specifically,
we use the L1 distance between pairwise input samples, pixel-wise
difference, which is balanced by weight parameter α , shown as
follows:

h(x j ,G (z)) = α ∥x j −G (z)∥1 (4)
Overall, the proposed method could be optimized with back-

propagation, by alternatively updating generator and discriminator,
as shown in Algorithm 1.

Algorithm 1 Training algorithm for MBGAN
Input: Training set X = {x1,x2, · · · }; weight parameter α .
for iteration = 0 toM do

Sample a minibatch {(xi ,x j , z) |xi ∈ X ,x j ∈ X , z ∼ U (0, 1)}
Update discriminator loss LD by descending the gradient of
Eq. 1
for step = 0 to N do

Sample a minibatch from U (0, 1).
Update generator loss LG by descending the gradient of Eq.
2

end for
end for
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3.2 Comparison with existing GANs
In this section, we will give a brief comparison between our pro-
posed MBGAN with existing GANs, including GAN [9], EBGAN
[44] and LSGAN [30]. The main difference lies with discriminator
which adopts different criteria to distinguish between real samples
and fake samples. The traditional GAN [9] adopts the probability
criteria, thus the discriminator is trained to output high probability
for real samples and low probability for fake data. The EBGAN
[44] adopted a energy criteria, which views the discriminator as
an energy function, and the discriminator is trained to output low
energy for real data, and high energy for fake samples. The LSGAN
[30] adopted a loss criteria, and arbitrary loss function could be
applied, and the discriminator is trained to produce low loss for real
data, and high loss for fake data. In addition, the margin between
losses of real samples and fake samples is data-dependent, allowing
the generator to focus on improving poor-produced data.

Different from the above methods, our proposed method adopts
a distance-metric criteria to distinguish between real samples and
fake samples. And we view the discriminator as a deep nonlinear
transformation. In the transformed space, the representations of
real samples should be close to each other, meanwhile away from
fake data. The discriminator is trained to minimize the distance
between real samples and maximize the distance between real data
and fake data to data-dependent margin, similar as [30], while the
generator is trained to minimize the distance between real data and
fake data.

3.3 Conditional MBGAN
Our proposed MBGAN could be easily extended to conditional
model by inputting extra information y. The extra information y
could be the class label, or text description, etc. And the generator is
trained to produce desired images based on the prior information y.
For our experiments, y is the class label, which is a one-hot vector,
along with the input noise vector z. The updated generator loss
LG and discriminator loss LD are defined as follows:

LD (xi ,x j , z |y) =max{0,h(z,x j |y) + d (xi ,x j |y)
− d (xi ,G (z) |y)}

(5)

LG (x j , z |y) = d (x j ,G (z) |y) (6)
The conditional model could provide more control of the pro-

duced samples for GAN.

4 EXPERIMENTAL RESULTS
Our proposed MBGAN is verified on various datasets, such as
CIFAR-10 [18], street view house number (SVHN) [26] and CelebA
[24]. And our proposed MBGAN could generate samples with high
quality, compared with other GAN models. Except for visual com-
parisons, we also provide quantitative comparison by extracting
features from discriminator and applying them with a supervised
image classification task.

4.1 Implementation details
In this subsection, we briefly introduce the implementation details.
We adopt similar structure as DCGAN [31]. The main difference
is that the discriminator of MBGAN outputs a high-dimensional

feature vector, while the discriminator of DCGAN produces the
probability.

Table 1: Structure of generator.

Input 100-D random noise
5c2s512o UpConv. BN LeakyReLU
5c2s256o UpConv. BN LeakyReLU
5c2s128o UpConv. BN LeakyReLU
5c2s64o UpConv. BN LeakyReLU
5c2s3o UpConv. BN LeakyReLU

Elementwise Tanh
Output 64 × 64 × 64 × 3

Table 2: Structure of discriminator.

Input 64 × 64 × 64 × 3
5c2s64o Conv. BN LeakyReLU
5c2s128o Conv. BN LeakyReLU
5c2s256o Conv. BN LeakyReLU
5c2s512o Conv. BN LeakyReLU

500o FC.
Output 500-D feature vector

Tables. 1 and 2 show the detail structures of MBGAN for training
on CelebA dataset, where BN stands for batch normalization, Up-
Conv. for fractionally-strided convolution, FC for fully connected,
and “5c2s512o” for 5×5 kernel with stride 2 and 512 outputs. All the
faces from CelebA are cropped and resized to 64 × 64. In addition,
the learning rate is set to 0.0002, β1 for adam optimizer is set to 0.5
and batch size is set to 128.

As for CIFAR-10 and SVHN, the images are 32 × 32. We just
make a slight change of structure in Tables. 1 and 2. The stride
was changed from 2 to 1 for both the last convolution layer in the
generator and first convolution layer in discriminator.

4.2 CIFAR-10
CIFAR-10 [18] contains 60000 32×32 images, which are divided into
10 classes. For each class, there are 6000 images, 5000 for training
and 1000 for testing. All the training data are used to train the
proposed MBGAN.

Fig. 3 shows the generated images from both DCGAN and MB-
GAN on CIFAR-10 dataset. As we can see from Fig. 3, there are no
visual differences between images generated from both DCGAN
and MBGAN. Except for visual comparison, we also conduct quan-
titative comparison between DCGAN and MBGAN to evaluate the
deep learned features of MBGAN. Specifically, we follow the same
experimental setting in DCGAN [31], the activations from all the
convolution layers of the discriminator are extracted. The extracted
features are passed through an max-pooling operator to form a
4× 4 grid, and they are concatenated to form one high-dimensional
vector, with size of 18432. Finally, we train a regularized L2-SVM
with the extracted high-dimensional representation. The perfor-
mance comparison is listed in Table. 3. Our proposed MBGAN could
slightly outperform DCGAN with the gain of 0.01.
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(a) DCGAN (b) MBGAN

Figure 3: Images generated by DCGAN and MBGAN on CIFAR-10 dataset.

Table 3: Performance comparison between DCGAN andMB-
GAN on CIFAR-10 dataset.

Methods Accuracy
DCGAN [31] 0.758
MBGAN 0.768

It is noted that the reported classification accuracy of DCGAN on
CIFAR-10 in [31] is 0.828, which is trained on ImageNet [34] while
tested on CIFAR-10 dataset. The ImageNet [34] contains more than
1M images with 1K classes, which is much larger than CIFAR10
with 60K images of 10 classes. Thus the model trained on ImageNet
tends to have much more powerful generalization capability than
the model trained on CIFAR-10. Therefore, as a fair comparison,
we retrain DCGAN on CIFAR-10, and extract features from the
discriminator of DCGAN. The extracted features are used to train
a linear L2-SVM, and the reimplemented classification accuracy on
CIFAR-10 is only 0.758.

Compared to traditional DCGAN [31], our proposed MBGAN
has two additional parameters α and K , where α is used to control
the magnitude of the data-dependent margin h, while K is dimen-
sionality of the output feature space. To fully explore our proposed
MBGAN, we verify the effects of both α and K to the training pro-
cess. For verifying the effects of α , we fix K = 500 and choose 4
different α for comparison, namely 0.2, 2, 20, 200. The generated
images are listed as shown in Fig. 4. As we can see in Fig. 4, when
α is small, namely 0.2, 2, the model collapses and the generated
images are just noise. When α is larger, namely 20, 200, the model
is much more stable, and generates nice images. The experimental
results are reasonable since a larger margin makes it easier for the
discriminator to distinguish between real and fake samples, and
vice versa. For verifying the effects of K , we fix α = 20, and choose
four different K , namely 5, 50, 500, 5000. The generated images are

listed as follows in Fig. 5. As we can see in Fig. 5, when the output
feature dimensionality K is small, namely 5, 50, the model collapses
and the generated images are just noise. When K is larger, namely
500, 5000, the model is much more stable, and generates nice images.
The experimental results are reasonable since features with larger
dimensions are easier for the discriminator to distinguish between
real and fake samples, and vice versa.

In addition, we also analyze the magnitude (l2 norm) of the gra-
dients for the generator during training. Generally, the traditional
GAN is vulnerable to collapse, and the gradients of the generator
tend to vanish, which is the main problem for GAN training. Fig.
6 shows the magnitude of the gradients for the generator of MB-
GAN over interations. As we can see in Fig. 6, the magnitude of the
generator’s gradients steadily remains above 0 with a large margin.
During training, our proposed MBGAN quickly reaches equilib-
rium after a few epochs. Even if the model reaches an equilibrium,
it can still provide sufficient gradient to continuously update the
generator of MBGAN.

4.3 Street view house number dataset
Street view house number (SVHN) dataset [26] is obtained from
Google street view images. Similar to MNIST [21], there are 10
classes in SVHN dataset, including digits ‘0-9’. There are 73257
digits for training, 26032 digits for testing and 531131 digits as extra
training data for future improving performance. All the images are
cropped and resized to a fixed resolution of 32 × 32 pixels. All the
training data are used to train the proposed MBGAN.

Fig. 7 shows the images generated by both DCGAN and MBGAN
on SVHN dataset. As we can see from Fig. 7, there is no distinct
visual difference between the images generated by both types of
GANs. To quantitatively measure the performance of the proposed
MBGAN, we use the same experiment setup as CIFAR-10. We first
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(a) α = 0.2 (b) α = 2 (c) α = 20 (d) α = 200

Figure 4: The effects of different margins to the images generated by MBGAN on CIFAR-10 dataset.

(a) K = 5 (b) K = 50 (c) K = 500 (d) K = 5000

Figure 5: The effects of different dimensions for output features to the images generated by MBGAN on CIFAR-10 dataset.

Figure 6: The gradient norm of MBGAN’s generator over it-
erations.

extract deep features from the convolutional layers of discrimi-
nator and then train a linear L2-SVM for classification on SVHN
dataset. Table. 4 shows the performance comparison between DC-
GAN and MBGAN on SVHN dataset. As we can see from Table. 4,

the proposed MBGAN could achieve comparable performance with
DCGAN.

Table 4: Performance comparison between DCGAN andMB-
GAN on SVHN dataset.

Methods Accuracy
DCGAN [31] 0.890
MBGAN 0.877

4.4 CelebA dataset
CelebFaces Attribute Dataset (CelebA) [24] is a large scale face
attributes dataset. The CelebA contains 202599 number of face
images, which are from 10177 celebrity identities. For each image,
there are 5 landmark locations and 40 binary attributes. Fig. 8
shows the images generated by both DCGAN and MBGAN on
CelebA dataset. There is no significant difference between images
generated from both models.

To demonstrate the generalization capability of the proposed
MBGAN, instead of simply memorizing the training images, we
interpolate the random noise z and map it to the synthesized image
as shown in Fig. 9. The images of both the leftmost and rightmost
columns are generated from random noises zl and zr , while the
images between them are generated from the linear interpolations
of their corresponding noise vectors, zm = λzl + (1 − λ)zr , where
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(a) DCGAN (b) MBGAN

Figure 7: Images generated by DCGAN and MBGAN on SVHN dataset.

(a) DCGAN (b) MBGAN

Figure 8: Images generated by DCGAN and MBGAN on CelebA dataset.

λ ∈ [0, 1]. As we can see from Fig. 9, the generated images slowly
transition between leftmost and rightmost column. For example, on
the first row, the color of the hair slowly transitions from black to
gold, in addition, the hair style and face color also change smoothly.
On the third row, a woman’s face with long hair and open mouth
slowly transitions into a man’s face with short hair and closed
mouth. On the last row, a women without sunglass slowly transi-
tions into wearing sunglass. During transition, the region around
eyes become darker and darker smoothly. The interpolated images
demonstrate the smooth continuity of the proposed MBGAN.

5 CONCLUSION
In this work, by employing deep metric learning, we proposed a
novel metric-based generative adversarial network. Different from
existing methods using probability criteria, energy criteria or other
loss criteria, we adopted distance-criteria for the discriminator to
distinguish between real samples and fake samples. Specifically,
the discriminator adopts a triplet structure with triplet-wise input
examples and learns a deep nonlinear transformation, which maps
input samples from the original space into a new feature space.
In the transformed space, a generator is trained to minimize the
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Figure 9: The images generated by the linear interpolation.

distance between real sample and fake sample, while a discriminator
is trained to maximize the distance between real sample and fake
sample to a data-dependent margin. The data-dependent margin
could allow the generator to focus on improving images with poor
quality, instead of wasting energy on images with high quality.
Finally, our proposed method is verified on various datasets and
generates high-quality images.
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