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ABSTRACT
This paper proposes a novel deep framework of multi-networks
joint learning for large-scale cross-modal retrieval. For most ex-
isting cross-modal methods, the processes of training and testing
don’t care about the problem of memory requirement. Hence, they
are generally implemented on small-scale data. Moreover, they
take feature learning and latent space embedding as two separate
steps which cannot generate speci�c features to accord with the
cross-modal task. To alleviate the problems, we �rst disintegrate the
multiplication and inverse of some big matrices, usually involved in
existing methods, into that of many sub-matrices. Each sub-matrix
is targeted to dispose one pair of image-sentence, for which we
further design a novel sampling strategy to select the most repre-
sentative samples to construct the cross-modal ranking loss and
within-modal discriminant loss functions. By this way, the proposed
model consumes less memory each time such that it can scale to
large-scale data. Furthermore, we apply the proposed discrimina-
tive ranking loss to e�ectively unify two heterogenous networks,
deep residual network for images and long short-term memory for
sentences, into an end-to-end deep learning architecture. Finally,
we can simultaneously achieve speci�c features adapting to cross-
modal task and learn a shared latent space for images and sentences.
Extensive evaluations on two large-scale cross-modal datasets show
that the proposed method brings substantial improvements over
other state-of-the-art ranking methods.

KEYWORDS
Multi-modal analysis; Cross-modal retrieval; Learning to rank;
Deep feature representation

1 INTRODUCTION
Cross-modal retrieval has become a popular research topic in re-
cent years due to the increasing prevalence of multi-modal data in
search engines and social media. Subsequently, exploiting the cor-
relation across di�erent modalities is imperative to many practical

∗Corresponding author.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MM’17, October 23–27, 2017, Mountain View, CA, USA.
© 2017 ACM. 978-1-4503-4906-2/17/10. . . $15.00
DOI: https://doi.org/10.1145/3123266.3123317

applications. For example, when a web user types into a textual de-
scription, he usually expects to obtain a set of images that visually
best illustrate it. Considering the fact that heterogeneous samples
have di�erent feature dimensions and distinct data distribution,
a large number of methods focus on learning coupled transfor-
mations by which similarity search across di�erent modalities is
feasible. Generally, most of the traditional cross-modal methods
mainly adopt four di�erent techniques, i.e., maximizing correla-
tions [15, 17, 28–30, 32, 34], manifold learning [23, 25], learning to
rank [5, 16, 40, 43], and labeling approximation [20, 38, 42].

The above methods have achieved decent performance on var-
ious small-scale datasets. However, the cross-modal datasets are
becoming larger and larger in the big data era. Generally speaking,
the large number of samples can help to learn discriminative trans-
formations for more semantic association can be used to model
the correlations between di�erent modalities. However, the volume
and dimension of multimedia data will be growing signi�cantly
on large-scale datasets. For most of existing methods, their opti-
mizations usually involve multiplication, inverse and eigenvalue
decomposition of some big matrices. Computational e�ciency and
memory space are big challenges for these operations. Hence, it is
hard for these methods to be tested on the large-scale datasets.

Besides, traditional cross-modal methods usually take feature
learning and latent space embedding as two separate steps. As a
common practice, they �rst encode images and texts into vectors of
hand-crafted features. And then they generate a low-dimensional
joint embedding space where the heterogeneous similarity can be
calculated. Although the optimal results are ensured in the respec-
tive stages, it may produce sub-optimal results for the cross-modal
task because such visual and textual feature vectors may not be
optimally compatible with the embedding process. Furthermore,
feature extractions of di�erent modalities are independent to each
other such that the semantic correlation between heterogeneous
features is neglected.

To alleviate these problems, we propose a novel deep frame-
work named Multi-Networks joint Learning (MNiL) for large-scale
cross-modal retrieval. In this work, we take a step further to realize
e�cient retrieval of sentences in response to image query or vice
versa, as shown in Figure 1. Concretely, we design a discriminative
ranking loss function to easily meet the memory requirement when
we deal with large-scale dataset. For the problem that the multipli-
cation and inverse of some big matrices will consume huge memory
space, we �rst disintegrate the training process of large-scale data
into a set of sub-problems. Each time we dispose one pair of image-
sentence. Furthermore, based on a novel sampling strategy, we can
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Figure 1: Flowchart of the proposed deep cross-modal architecture. Images and sentences are �rst encoded into heterogenous
feature vectors. Then these vectors are embedded as low-dimensional representations via two di�erent feature-map layers.
After that, the discriminative ranking loss is intended to drive two heterogenous networks. Lastly, similar points are pushed
together while dissimilar points are separated as far as possible in the learned shared latent space.

select the most representative samples to de�ne the cross-modal
ranking loss function and within-modal discriminant loss function
for each image-sentence pair. By this way, we can utilize as few
samples as possible to explore the semantic association between
the di�erent modalities.

Furthermore, to simultaneously obtain the task-speci�c features
and a low-dimensional joint embedding space, we adopt the pro-
posed ranking loss to e�ectively unify the training of two heteroge-
nous networks, deep residual network (ResNet) [18] over images
and long short-term memory (LSTM) [1] over sentences. Through
an end-to-end training, on one hand, the learned low-dimensional
joint embedding can guide the learning of the visual and textual
features. On the other hand, the learned visual and textual features
can also give feedback to learn the better embedding. Finally, the
learned model can generate the discriminative semantic expressions
for images and sentences and explore the high quality correlations
between di�erent modalities.

Extensive experiments have been performed on two large-scale
cross-modal datasets: MSCOCO with 80K images paired with �ve
sentences each [22] and Flickr30K with 30K images paired with �ve
sentences each [41]. To the best knowledge of the authors, the two
datasets contain the most image-sentence pairs in the cross-modal
task till now. Experimental results demonstrate that the proposed
method outperforms the state-of-the-art ranking methods on the
large-scale image-to-sentence and sentence-to-image retrieval.

2 RELATEDWORK
Taking the applied technique into account, prior cross-modal meth-
ods model the correlations between di�erent modalities roughly
from four di�erent aspects.

One popular technique is to learn correlations between di�erent
modalities [3, 15, 17, 29, 30, 32, 34, 35]. The motivation of these
methods is to learn a joint embedding space for images and texts
by maximizing the correlations between the projected vectors of
di�erent modalities. An alternative technique is to rely on manifold
learning [23, 25]. These methods assume that high dimensional data

are embedded in a low dimensional intrinsic space. They achieve the
joint embedding representation by projecting the di�erent modali-
ties into a common manifold by learning an underlying manifold.
Another technique models heterogenous correlations via learn-
ing to rank. Single-directional ranking methods either project the
images into the text space so it cannot be applied to the task of
image query texts, e.g., [12, 16], or learn a joint semantic space for
texts and images but only consider the single-directional ranking
instances, e.g., [5, 19]. To project image and text spaces into a same
semantic space, several bi-directional ranking methods have been
developed in recent years [39, 40, 43]. These methods adopt the
bi-directional training samples to learn a semantic model which
integrates the merits of both directional retrieval such that the gen-
eralization performance is improved. Finally, to exploit valuable
class information [20, 38, 42], some methods directly optimize the
labeling approximation error between the given multi-labeled data
and the class labels. Generally, the direct linkage between di�er-
ent modalities is their class labels. Thus, class information can be
applied more likely to learn a discriminative latent space.

Besides, it’s worth mentioning that many deep models have
been widely developed to bridge the heterogeneous modalities
and achieved promising performance in many applications, such
as image captioning [2, 6, 10, 11, 37] and visual question answer-
ing [4, 13, 21, 24, 33]. These excellent works inspire us that it is
possible to exploit the intrinsic semantic association between dif-
ferent modalities by training deep networks.

In summary, there are two limitations for most traditional meth-
ods. On one hand, they cannot generate the speci�c features which
are suitable for the cross-modal task. On the other hand, they are
di�cult to scale to large and high-dimensional datasets because
their derivation processes usually involve multiplication, inverse
and eigenvalue decomposition of some big matrices. Considering
this, we propose a novel discriminative ranking loss which can
easily adapt to large-scale datasets. Furthermore, we seamlessly
integrate two di�erent networks, one for each modality. In the pro-
posed model, feature learning and semantic embedding depend on
each other, and each part gives feedback to the other part.
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3 THE PROPOSED APPROACH
In this section, we �rst describe the process of generating features
and then present the proposed loss function in detail. Finally, we
introduce the training mechanism to optimize the deep framework.
In Figure 1, we show MNiL’s �owchart of sentences in response to
image query or vice versa.

3.1 Generating features
In this paper, we deal with the matching problem between n pairs
of images and sentences {Ii , Si }ni=1. Each image-sentence pair is as-
sociated with one or more class labels. We adopt deep architectures
to learn optimal features which are suitable to the cross-modal task.
Specially, we utilize the architectures of ResNet [18] and LSTM [1]
as our basic image and sentence framework.

ResNet for images: ResNet promotes neural networks to a very
deeper architecture and gains the accuracy from the considerably
increased depth. Extensive works have validated that ResNet can
learn the most superior deep features for images [14, 18, 21]. There-
fore, we apply ResNet to deeply exploit the semantic information
implied in images. For ResNet, we directly use the raw image pixels
Ii as their input.

LSTM for Sentences: We use a 2-layer LSTM to learn the deep
representation of sentences [1, 9, 36]. Given new information, LSTM
can learn when to forget previous hidden states and when to update
hidden states by incorporating memory units. By this way, LSTM
solves the vanishing and exploding gradients problem of recurrent
neural networks. The structure of LSTM can be simply designed
such that it can be directly implemented end-to-end training to-
gether with current deep networks for images. Moreover, LSTM can
model sentences with varying lengths for they do not con�ne to the
�xed length inputs or outputs. This merit facilitates the cross-modal
datasets which contains a large number of sentences with varying
lengths. As to LSTM, the input of sentence Si is transformed into
a sequential one-hot-vectors Si =< si1, si2, · · · , siT >∈ RDs×T ,
where T denotes the number of words contained in sentence Si .
sit ∈ RDs is a one-hot vector denoting a word of time t in sentence
Si , and the nonzero entry of sit represents the index of the word in
the vocabulary of size Ds .

Through the above two deep networks, each input (Ii , Si ) is
encoded into a pair of intermediate features (xi , yi ), where xi ∈ RDx

denotes Dx -dimensional feature vector of the ith image Ii , and
< yi1, yi2, · · · , yiT >∈ RDy×T is a set of sequential word features
of the ith sentence Si . It needs to be emphasized that we take the
mean of < yi1, yi2, · · · , yiT > to obtain yi ∈ RDy×1 as the feature
vector of sentence Si .

3.2 Loss function
Note that xi and yi have di�erent feature dimensions, it is di�cult
to directly calculate their similarity. Hence, we insert a feature-
map layer to replace the fully-connected layer used in ResNet,
and add one to the 2-layer LSTM too. The feature-map layers are
regarded as linear transformations for the outputs of two di�erent
sub-networks. Then the intermediate features (xi , yi ) are delivered
through the feature-map layers and mapped into K-dimensional
embedding spacesHx andHy , where bimodal samples (Ii , Si ) can
be matched by similarity function f (xi , yi ) (dot product).

Given a training sample from one modality, web users usually
expect relevant samples from another modality appearing at the
top of the ranking list. Hence, it is important to explore the class
information in the learning stage. Classic methods jointly use all
inter-class and intra-class samples of all query samples to model the
class information. However, they are very di�cult to process large-
scale datasets because their calculations involve the multiplication,
inverse and eigenvalue decomposition of some large matrices. This
will lead to heavy computational complexity and large memory
space. In order to alleviate the problem, we disintegrate the task
of preserving class information into a set of sub-modules, each of
which only uses one pair of image-sentence to model the semantic
association. Furthermore, for each pair, we propose a novel sam-
pling strategy to select the most representative samples, which are
used to construct a discriminative ranking loss for image-query-
sentences and sentence-query-images. Speci�cally, each directional
loss includes cross-modal ranking constraint, along with within-
modal discriminant constraint which can be e�ectively realized and
easily meet the memory requirement.

Cross-modal ranking constraint: For each image xi , we im-
prove weighted approximate-rank pairwise loss (WARP) [19] to
select the most representative sentences, which are assigned with
higher discriminance to approximate the class information. Con-
cretely, we express the pairwise ranking loss for the ith image xi
with enforced margin ρ as:

max(0,L(bn − 1
vx
c) × (ρ + f (xi , yk ) − f (xi , yj )))

s .t . ∀yj ∈ Y+i , ∀yk ∈ Y−i , ρ < 1
(1)

where Y+i and Y−i represent the relevant and irrelevant sentence
sets of image xi , respectively, and yj has the same class labels with
xi . vx is the sampling number when we discover the �rst negative
sentence yk (called violator in this paper) satisfying ρ+ f (xi , yk ) >
f (xi , yj ). b·c denotes the �oor function. L(·) : Z+ → R+ is the
mapping function that transforms the rank (i.e., similarity relation
among multiple samples) into a loss:

L(k) =
k∑
i=1

αi ,α1 > α2 · · · ≥ 0 (2)

where αi = 1/i , which has shown good precision@k performance
in image retrieval and cross-modal retrieval [7, 43].

It shall be noted that we set the margin punishment ρ less than
1 unlike WARP, in which ρ is equal to 1. Generally, the similarity
of dot product between two samples is no bigger than 1. When
ρ = 1, the condition of 1 + f (xi , yk ) > f (xi , yj ) can be easily held
such that most of negative sentences can satisfy this condition. In
this case, each image only requires one random sampling to �nd
the violator so it cannot give consideration to the other samples.
Hence, the selected violator is not the representative sample for
constructing the ranking loss. This will degenerate the ranking loss
into a pairwise classi�cation.

Similarly, given a sentence yi , we have:

max(0,L(bn − 1
vy
c) × (ρ + f (xk , yi ) − f (xj , yi )))

s .t . ∀xj ∈ X+i ,∀xk ∈ X−i
(3)
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where X+i and X−i represent the relevant and irrelevant image sets
of the sentence yi , respectively.vy is the sampling number when we
�nd the �rst negative image xk satisfying ρ + f (xk , yi ) > f (xj , yi ).

Within-modal discriminant constraint: The ranking con-
straint e�ectively characterizes the discriminance for cross-modal
samples, while ignores the discriminance among samples within
the same modality. In fact, each image xi usually expresses the
same semantic meaning with many other images N (xi ), which
are called neighbors of xi in the original space. Undoubtedly, an
optimal embedding should ensure the neighboring points in the
original space close to each other in the embedded space. Likewise,
this discriminant information will make more samples constructing
semantic relationship with each other. Moreover, since more sam-
ples participate in modeling the semantic correlations each time,
the proposed model will obtain the optimal results through fewer
number of samplings.

Note that the similarities between samples from the same modal-
ity are usually much larger than those of samples from the di�er-
ent modalities. Hence, di�erent from [39], we set τ greater than
ρ to enlarge the distances among the di�erent classes, by which
each sample e�ectively preserves the discriminance. With these
ideas, we enforce a margin of τ between N (xi ) and any other non-
neighboring points:

max(0,τ + f (xi , xk ) − f (xi , xj )) ∀xj ∈ N (xi ),∀xk < N (xi ) (4)

Analogously to the image modality, we constrain each sentence
yi with the margin τ as:

max(0,τ + f (yi , yk ) − f (yi , yj )) ∀yj ∈ N (yi ),∀xk < N (yi ) (5)

where N (yi ) consists of the sentences describing the semantic con-
tent with yi , and yk belongs to di�erent classes with yi .

Sextuple sampling: For any one of image-sentence pair (xi , yi ),
the proposed single-directional ranking loss involves �ve elements,
which consist of a target sample, a positive and a negative matches
from another modality as well as a positive and a negative matches
within the same modality. Hence, bi-directional ranking loss needs
to optimize ten samples each time, which is computationally infea-
sible over all such combinations of ten samples like [39]. To reduce
the sampling number and improve usage of selected samples for
each image-sentence pair (xi , yi ), we search a cross-modal positive
sample yj and a violator yk for xi , and then (yj , yk ) directly serves
as the within-modal positive and negative samples for yi . Similarly,
yi seeks a cross-modal positive sample xj and a violator xk , which
are used as the within-modal positive and negative samples for xi .
In this way, the selected sextuple can approximate the result as the
ten samples for the most representative samples are left while some
redundant ones are removed.

Figure 2 provides an intuitive illustration of the sextuple ranking
mechanism for an image-sentence pair. Di�erent shapes denote
di�erent modalities (i.e., images and sentences). The same color
indicates the relevant semantics. The longer the length of a line
segment, the more dissimilar of two instances. The black line seg-
ments are enforced with the �xed values ρ or τ . The dotted lines
and dashed lines represent the distances which are adjustable by
our objective function. Before ranking, the red circle with penta-
gram (a query sample) is close to the blue square (violator) and
the green circle (within-modal negative sample) while is far away

Fixed margin Cross-modal margin

Before ranking After ranking

Within-modal margin

Figure 2: Demonstration on the working mechanism of the
proposed discriminative ranking loss. Di�erent shapes de-
note di�erent modalities (i.e., images and sentences). The
same color indicates the relevant semantics.

from shapes with the same color (positive instances). By enforcing
margins for both ranking constraint and discriminant constraint,
we force the query instance close to its within-class instances while
far away from the violator with a distance larger than ρ and from
the within-modal negative instance with a distance larger than
τ . Similarly, the red square with pentagram can also achieve the
discriminative result.

3.3 Joint training
MNiL is a hybrid deep architecture that consists of ResNet and
LSTM for learning the discriminative ranking with the accurate
semantic expression. It is very di�cult to directly train ResNet
and LSTM together since their network structures and parameters
settings are quite di�erent. To solve this problem, we design a novel
combination of ResNet and LSTM via the sextuple ranking loss. By
this way, our architecture e�ectively uni�es the joint multi-modal
embedding with cross-modal ranking which enable to learn the
discriminative semantic representation for images and sentences.

Concretely, we jointly train the two feature-map layers and �ne-
tune the two sub-networks by an end-to-end mechanism. Mean-
while,(1) we guarantee the precision@k by minimizing the cross-
modal ranking losses; (2) we enable the robust discriminant by
minimizing the within-modal hinge losses. We integrate these loss
functions into a joint optimization problem, which is taken over
the multi-networks and formulated as follows:

O (X , Y ) =
∑
i, j,k

max(0, L(bn − 1
vx
c) × (ρ + f (xi , yk ) − f (xi , yj )))

+
∑
i, j,k

max(0, L(bn − 1
vy
c) × (ρ + f (xk , yi ) − f (xj , yi )))

+β1
∑
i, j,k

max(0, τ + f (xi , xk ) − f (xi , xj ))

+β2
∑
i, j,k

max(0, τ + f (yi , yk ) − f (yi , yj ))

(6)

where the sum is over all sextuples de�ned in Eq. (1), (3), (4) and (5),
respectively. The cross-modal margin ρ and within-modal margin
τ could be di�erent for the di�erent forms of similarity or even
di�erent samples. But to make it easy to train, we �x ρ (0.3 in ex-
periments) for all the cross-modal training samples and τ (0.5 in

Session: Fast Forward 4 MM’17, October 23-27, 2017, Mountain View, CA, USA

910



experiments) for all the within-modal training samples. β1 and β2
are de�ned to control the importance of the discriminant terms,
which can also be acted as regularizers for the bi-directional re-
trieval tasks.

For clari�cation, we give the back-propagation for one sextuple,
and the remaining sextuples have the similar optimization proce-
dure. The gradients in the back-propagation of the sextuple ranking
loss are computed as:

∂O (X , Y )
∂p

=L(b
n − 1
vx
c) × (t− − t+) × If (xi ,yk )−f (xi ,yj )+ρ>0

+ β1(p− − p+) × If (xi ,xk )−f (xi ,xj )+τ >0

∂O (X , Y )
∂t+

= − L(b
n − 1
vx
c) × p × If (xi ,yk )−f (xi ,yj )+ρ>0

− β2t × If (yi ,yk )−f (yi ,yj )+τ >0

∂O (X , Y )
∂t−

=L(b
n − 1
vx
c) × p × If (xi ,yk )−f (xi ,yj )+ρ>0

+ β2t × If (yi ,yk )−f (yi ,yj )+τ >0

(7)

where p, t+ and t− are the low-dimensional embeddings of xi , yj
and yk , and the embedding is realized by the feature-map layers
from the proposed network. The indicator function Icondit ion = 1
if condition is true; otherwise Icondit ion = 0.

∂O(X ,Y )

∂t
=L(b

n − 1
vy
c) × (p− − p+) × If (xk ,yi )−f (xj ,yi )+ρ>0

+ β2(t− − t+) × If (yi ,yk )−f (yi ,yj )+τ >0
∂O(X ,Y )

∂p+
= − L(b

n − 1
vy
c) × t × If (xk ,yi )−f (xj ,yi )+ρ>0

− β1p × If (xi ,xk )−f (xi ,xj )+τ >0
∂O(X ,Y )

∂p−
=L(b

n − 1
vy
c) × t × If (xk ,yi )−f (xj ,yi )+ρ>0

+ β1p × If (xi ,xk )−f (xi ,xj )+τ >0

(8)

where t, p+ and p− are the low-dimensional embeddings of yi , xj
and xk , respectively.

With this modi�ed discriminative ranking loss function, the
inputs to the proposed deep architecture are sextuples of images and
sentences, i.e., {(Ii , Si , Ii , Ik , Sj , Sk )}ni=1, in which Ii is more similar
to Sj than Sk while Si is more similar to Sj than Sk . As shown in
Figure 1, we propose to use a shared sub-network to automatically
learn a uni�ed representation for the input images and sentences.
Through this sub-network, an input sextuple (Ii , Si , Ii , Ik , Sj , Sk ) is
encoded to a sextuple of intermediate features (xi , yi , xj , xk , yj , yk ).
In this sub-network, ResNet is shared by the three images and
the 2-layer LSTM is shared by the three sentences for each input
sextuple. Such a way of parameter sharing can signi�cantly reduce
the number of parameters in the whole architecture. Specially, the
sextuple loss can be optimized e�ciently through the standard
back-propagation and easily meet with the memory requirement.

4 EXPERIMENT
In this section, we conduct extensive experiments to evaluate the
e�cacy of the proposed method on the tasks of image-query-
sentences and sentence-query-images. We compare di�erent meth-
ods on two benchmark datasets: MSCOCO [22] and Flickr30K [41].

4.1 Experimental setting
Datasets: After pruning images without category information,
MSCOCO consists of 82,081 training images and 5,000 testing im-
ages, each of which is associated with �ve sentences. We randomly
select 82,081 image-sentence pairs as training set, 5,000 pairs as
validation set and 5,000 pairs as query set. The ground truth labels
come from 81 most frequent categories. Flickr30K contains 31,783
images which mainly focus on depicting people and animals. For
each image, there are 5 captions vividly describing it. Therefore,
this dataset has total 158,915 captions, and 158,915 image-caption
pairs can be generated for the task of training, validation and test-
ing. We randomly select 29,783 pairs as training set, 1,000 pairs as
validation set and 1,000 pairs as query set.

Compared methods: We compare MNiL with three state-of-
the-art cross-modal ranking methods, including two shallow rank-
ing methods: Bi-CMSRM [40] and PL-ranking [43], and one deep
ranking method: LDSP [39]. We also try to run the codes of GMA [34],
LCFS [38], LGCFL [20] and ml-CCA [29]. But our device cannot
meet their memory requirements, thus we do not report their re-
sults. Besides, We also report results of MNiL (I → T ) and MNiL
(T → I ), each of which only adopts single-directional ranking of
MNiL. MNiL (I → T ) learns the joint embedding space for images
and sentences by only ranking sentences for image queries, and
MNiL (T → I ) only ranking images for sentence queries.

Implementation details: On MSCOCO dataset, two heteroge-
nous samples are considered similar (dissimilar) if they share at
least one (none) semantic label. Note that on Flickr30K dataset,
we do not have direct ground truth labels for images. Hence, each
image-sentence pair is regarded as a category. When we construct
the within-modal discriminant loss, N (xi ) of each image xi is set
to the image itself. But the neighborhood of each sentence N (yi )
has four members for each image is paired with �ve captions.

For MNiL, we directly utilize the raw pixels of image as the input
of ResNet. As for sentences, sequential words of each sentence
are �rst transformed into one-hot vectors, which are the input of
LSTM. For all compared methods, we use the ResNet [18] to extract
a 2048-dimensional feature vector for each image. Each sentence
adopts LSTM module [22] pre-trained on the MSCOCO dataset to
achieve word vectors, and then we compute a mean vector of these
word vectors as its feature vector.

We implement the proposed deep architecture in Torch frame-
work. For training network, we employ the 50-layer ResNet [18]
and the 2-layer LSTM [1]. Back-propagation is applied to �ne-tune
the ResNet and the 2-layer LSTM and train the new feature-map
layers. Since the feature-map layer is trained from scratch, we set
its learning rate to be 10 times that of the lower layers. We use the
mini-batch stochastic gradient descent (SGD) with 0.9 momentum.
We adopt 20 and 15 as the maximum number of words in each
sentence for MSCOCO and Flickr30K, respectively.

Performance evaluation: We follow the same protocols as
other recent works [31, 32, 39, 40]. On MSCOCO dataset, the mean
average precision (MAP) [32] is used to evaluate the performance.
Especially, we adopt MAP@R [40] to measure the retrieval per-
formance at the �xed number of retrieved samples. R is set to 50
for the top 50 retrieved samples and to “all” for all retrieved sam-
ples. Besides, the precision-recall curve [32] and scope-precision
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(b) COCO Image-query-sentences

Figure 3: Precision-recall curves and precision-scope curves for the image-query-sentences and sentence-query-images exper-
iments on MSCOCO dataset.

Table 1: Performance comparison in terms of MAP@R scores on MSCOCO dataset.

R = 50 R = all
XXXXXXXXXMethods

Tasks Sentence query Image query Average MAP Sentence query Image query Average MAP

Bi-CMSRM [40] 0.3687 0.3653 0.3670 0.3458 0.3508 0.3483
PL-ranking [43] 0.4320 0.4020 0.4170 0.3369 0.3414 0.3392

LDSP [39] 0.5009 0.4430 0.4720 0.3471 0.3536 0.3504
MNiL (I → T ) 0.3654 0.3826 0.3740 0.3501 0.3617 0.3559
MNiL (T → I ) 0.4172 0.3643 0.3908 0.3521 0.3479 0.3500

MNiL 0.5341 0.4642 0.4992 0.3563 0.3875 0.3719

curve [31] are also displayed for all methods. The scope is speci�ed
by the number of top-ranked samples when the retrieved samples
are ranked according to the similarities between them and the query.
On Flickr30K dataset, consistent with [39], we report the Recall@K
(K = 1, 5, 10), i.e., the percentage of queries for which at least one
correct ground truth match is ranked among the top K matches.

For all methods, we adopt 5-fold cross validation process to de-
termine the values of parameters. The proposed method utilizes
the following parameter setting: β1 = 0.1 and β2 = 0.2. For fair
comparison, we conduct experiments 10 times by randomly select-
ing training/validation/testing combinations, and show the average
performance for all methods 1.

4.2 Image-sentence retrieval
Table 1 and 2 report the MAP@R and Recall@K of the di�erent
methods on the test set of MSCOCO and Flickr30K, respectively.
From these tables, we draw the following conclusions:

First, MNiL outperforms MNiL (I → T ) and MNiL (T → I ) by
4.5% and 6.3% on average MAP scores, respectively. One-directional
ranking cannot explore the latent structure of the retrieved modality.
Conversely, unifying bi-directional rankings can project texts and
sentences into the same semantic space so images and sentences
can easily construct semantic relation.

Second, the deep learning methods improves the performance of
traditional methods. For example, the average MAP score of MNiL
is improved by 13.2% compared to that of PL-ranking on R=50.
1https://github.com/liangzhang1407/Multi-Networks-Joint-Learning-for-Large-
Scale-Cross-Modal-Retrieval

This is because traditional methods design their loss functions
focusing on processing small-scale datasets. When they deal with
large-scale data, they very likely fall into the over-�tting problem.
MNiL develops a sampling strategy to de�ne its objective function
which can adapt to large-scale data. Therefore, it can exploit a large
amount of semantic association to improve retrieval performance.

Third, the performance of MNiL is superior to another deep
method LDSP. For example, the average MAP score of MNiL is
improved by 6.1% on R=all . LDSP learns the latent semantic space
by using hand-crafted features which are usually not suitable for
cross-modal task. However, MNiL can learn the suitable feature
representation according to its objective function, thus it captures
the more e�ective cross-modal correlations than LDSP.

Moreover, LDSP needs to optimize ten samples for each image-
sentence pair, and these samples are selected only considering the
pairwise relations of inter-class and intra-class. But MNiL makes
use of listwise relations of the ranking list to select six most repre-
sentative samples. The experimental results validate the selected
samples can estimate the result as ten samples in LDSP.

Finally, MNiL achieves the best results on Recall@1, Recall@5
and Recall@10 on Flickr30K. In within-modal constraint, we use
the sample itself as its neighborhood. These results prove that this
operation is reasonable. Since the similarity of sample to itself is
generally higher than the sample with its positive sample, the hinge
loss function will punish the negative sample severely.

The precision-recall and scope-precision curves on both direc-
tional retrieval are shown in Figure 3. The scope (i.e., the top K
retrieved samples) of precision-scope curve varies from 100 to 1000.
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Bi-CMSRM

PL-ranking

MNiL

LDSP

A man is crossing a
street near an ice-
cream truck

Sentence query Top retrieved images

Bi-CMSRM

PL-ranking

MNiL

LDSP

A person is riding a
skateboard on a picnic table
with a crowd watching

Figure 4: Two examples of image-query-sentences (in left half) and sentence-query-images (in right half) onMSCOCO dataset.
For sentence-query-images, we show the query sentence with its corresponding images. The query sentence describes the
semantic about“skateboard", “bench", and “person". For image-query-sentences, the top retrieved sentences are shown with
their corresponding images. The query image depicts the scene about “tra�clight", “car", “person", and “truck". The incorrect
retrieved results are shown in the red frame.

Table 2: Performance comparison in terms of Recall@K scores on Flickr30K dataset.

Image-query-sentences Sentence-query-images
XXXXXXXXXMethods

Tasks R@1 R@5 R@10 R@1 R@5 R@10

Bi-CMSRM [40] 0.263 0.509 0.602 0.197 0.459 0.485
PL-ranking [43] 0.299 0.554 0.621 0.214 0.470 0.548

LDSP [39] 0.357 0.629 0.744 0.251 0.539 0.665
MNiL (I → T ) 0.293 0.512 0.598 0.211 0.483 0.491
MNiL (T → I ) 0.229 0.449 0.516 0.237 0.474 0.525

MNiL 0.369 0.641 0.769 0.273 0.557 0.670

We observe that compared with the other methods, our method
achieves the better results on all the curves. Hence, the curves
further validate the superiority of MNiL for cross-modal retrieval.

To provide the intuitive judgement of the retrieval results, we
give two retrieved instances of image-query-sentences and sentence-
query-images in Figure 4. For each instance, the query and its paired
samples are shown at the left, and the top four retrieved results
are shown at columns 2-5. Note that MNiL �nds the most relevant
matches at semantic level, which is re�ected by class labels. For
image-query-sentences direction, we �nd that the top retrieved
sentences of the proposed method are clearly relevant to the query
images belonging to multiple classes “car", “truck", “person" and
“tra�clight". For the sentence-query-images direction, given textual
description about “skateboard", “bench" “person", the top retrieved
images of MNiL are also relevant to the query sentence. However,
the other methods produces some irrelevant results for both direc-
tional retrieval. It clearly validates that the proposed method can
retrieve more relevant results comparing with the other methods.

4.3 Low-dimensional embedding
In this section, we analyze the discriminative ability of low-dimensional
feature representation learned by di�erent ranking methods. Based
on MSCOCO, we construct a toy dataset using 500 image-sentence
pairs from ‘bicycle’ class and another 500 paired samples from
‘airplane’ class. In Figure 5, we adopt the t-SNE [8] algorithm

to project the intermediate features from the two di�erent sub-
networks and the embedded features of the di�erent methods into
a two-dimensional visualization spaces. The �rst column illustrates
that the two-dimensional distributions of intermediate image and
sentence features are mixed. Columns 2-5 show the embedded fea-
tures of di�erent methods. The red circles denote the distribution of
the ‘bicycle’ class, and green circles represents the ‘airplane’ class.

From Figure 5, we �rst conclude that the proposed MNiL simulta-
neously uni�es the same-class samples and separates the di�erent
classes for both directional retrieval, but the second best result
(i.e., LDSP) only uni�es the same-class samples and separates the
di�erent classes for sentence query. Moreover, both image and sen-
tence distributions of MNiL are in the same coordinate range, while
coordinate ranges of other methods are di�erent. These results
validate that MNiL ensures the consistent structures between im-
age and sentence spaces such that the low-dimensional embedding
is enhanced with stronger discrimination. Finally, the separation
between di�erent classes of sentences is more obvious than that
of images. In nature, class labels can be regarded as a special case
of textual features because they are also language descriptions like
sentences. Therefore, this observation is reasonable.

4.4 Quality of word vectors
To give more insight into the quality of learned word vectors, we
provide empirical analysis by showing the nearest neighbours for
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Figure 5: Low-dimensional embeddings of images and sentences from ‘bicycle’ and ‘airplane’ classes on MSCOCO dataset. The
top row shows the embedding for images, and the bottom shows the embedding for sentences.

Table 3: Examples of the closest entities on the given words.

Given word The most similar words
art museum artwork paintings portrait music story article exhibit gallery
sea lake water river ocean seashore shore boats rowboat horizon

sport players lacrosse cricket athletes rugby football teams volleyball match
music song jazz musicians band drummer guitars singers concert spotlight
people persons women men adults children kids teenagers guys individuals
animal goat alligator pony rabbit frog snail duck deer pet
bicycle bike motorbike bicyclist biker scooter wheels tricycle jockey handlebars

mountain mountainside mountaintop ridge hill landscape valley hillside hiker climbers

each given word in Table 3. The proposed deep architecture adopts
an end-to-end training mode, the outputs of second layer of LSTM
are word vectors. Then we adopt cosine distance to measure the
similarity between words, similar to word2vec model [26, 27].

From Table 3, we observe that the closest entities of each given
word are clearly relevant to each other. For example, when we
input the word “music", some relevant words like “song", “jazz" and
“musicians" appear at the top positions of the ranked list. We think
that this merit bene�t from the proposed end-to-end deep training
framework, which coherently combines ResNet with LSTM in an
uni�ed learning framework. It is well known that ResNet achieves
the most e�ective deep image features [21] and LSTM explicitly
takes the temporal structure starting from words of a sentence
into account. By unifying the two deep architectures, the semantic
information contained in images and sentences will be instructed
for each other. Therefore, the word vectors will be updated toward
to a more informative direction such that relevant words are more
likely to be close to each other in the vector space.

5 CONCLUSION
In this paper, we propose a novel deep framework of multi-networks
joint learning for large-scale cross-modal retrieval. It aims to match
data from di�erent modalities and alleviate two basic problems
existing in the era of big data: scaling to large-scale data and gen-
erating task-speci�c features. We �rst design a sampling strategy

to select the six most representative samples to de�ne the cross-
modal ranking loss and within-modal discriminant loss each time.
Optimizing the sextuple requires less memory space so that it can
easily adapt to large-scale data. Then, we apply the discriminative
ranking loss to drive two heterogenous networks, ResNet for im-
ages and LSTM for sentences, by which we can simultaneously
obtain task-speci�c features and discriminative embeddings. Exten-
sive evaluations on two large-scale cross-modal datasets show that
the proposed deep discriminative ranking model brings substantial
improvements over other state-of-the-art ranking methods. Our
future work will focus on improving network structure such that it
can deal with more practical problems, such as image captioning
and visual question and answer.
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