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ABSTRACT
Strategies exploiting crowdsourcing are increasingly being
applied in the area of Quality of Experience (QoE) for mul-
timedia. They enable researchers to conduct experiments
with a more diverse set of participants and at a lower eco-
nomic cost than conventional laboratory studies. However,
a major challenge for crowdsourcing tests is the detection
and control of outliers, which may arise due to different test
conditions, human errors or abnormal variations in context.
For this purpose, it is desired to develop a robust evalua-
tion methodology to deal with crowdsourceable data, which
are possibly incomplete, imbalanced, and distributed on a
graph. In this paper, we propose a robust rating scheme
based on robust regression and Hodge Decomposition on
graphs, to assess QoE using crowdsourcing. The scheme
shows that the removal of outliers in crowdsourcing experi-
ments would be helpful for purifying data and could provide
us with more reliable results. The effectiveness of the pro-
posed scheme is further confirmed by experimental studies
on both simulated examples and real-world data.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—Evaluation/methodology ; H.1.2
[Models and Principles]: User/Machine Systems—Human
factors
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1. INTRODUCTION
Quality of Experience (QoE), which reflects the degree of

a user’s subjective satisfaction, has drawn increasing atten-
tion from multimedia researchers during recent years. The
ultimate goal is to provide a satisfying end-user experience.
Reaching this goal requires a technique that can measure the
quality of multimedia content efficiently, reliably, and that
is easy to implement in reality.

Among various subjective approaches for multimedia QoE
evaluation, paired comparison is expected to yield more re-
liable results. This enables an easy and scalable imple-
mentation suitable for the purpose of calling on an Inter-
net crowd [6] to participate in experiments using their per-
sonal computers (i.e., crowdsourcing [15]). Such a scheme
uses mass collaboration and the wisdom of the crowd, and
is more economical compared with conventional laboratory
studies. A general framework for crowdsourcing scheme,
called HodgeRank on Random Graphs (HRRG), is proposed
in our previous work [33, 31]. The framework exploits var-
ious randomized paired comparison methods based on ran-
dom graph theory to infer a global ranking from incomplete
and imbalanced samples. It can be used to control incon-
sistency in paired comparison data, derive the constraints
on sampling complexity to which the random selection must
adhere, and allow an extension to online sampling settings
[32].

Crowdsourcing subjective multimedia assessment, how-
ever, is not without pitfalls — The Crowd Is Not All Trust-
worthy [6]. In other words, since participants perform ex-
periments without supervision, when the testing time for
a single participant lasts too long, the participant may be-
come impatient and may input random decisions. Such ran-
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dom decisions are useless and may deviate significantly from
other raters’ decisions. Such outliers have to be identified
for QoE evaluation.

In [6], Transitivity Satisfaction Rate (TSR) is proposed
for outlier detection, which checks all the intransitive trian-
gles, e.g., A � B � C � A. In this way, we can identify
and discard inconsistent (noisy) data provided by unreliable
assessors. However, TSR can only be applied for complete
and balanced paired comparison data. When the paired
data are incomplete, i.e., have missing edges, the question
remains open of how to detect the noisy pairs.

In this paper, we fill in this gap by presenting a robust
outlier detection method for crowdsourcing QoE evaluation
with incomplete and imbalanced data. Our algorithm is
based on a linear model that has been exploited in HodgeR-
ank [31]. Equipped with Hodge Decomposition theory, out-
lier detection can be solved via sparse approximation of
cyclic rankings, which consists of both harmonic and tri-
angular cyclic rankings. Such a scheme enables us to de-
tect outliers by solving an L1-norm regularized least squares
problem and recover the global ratings simultaneously.

We demonstrate the effectiveness and generality of the
proposed method on both simulated examples and real-world
data. Two real datasets are considered: PC-VQA (Paired
Comparison based Video Quality Assessment, complete and
balanced data) and PC-IQA (Paired Comparison based Im-
age Quality Assessment, incomplete and imbalanced data),
which include 38,400 and 23,097 paired comparisons, respec-
tively. Experimental results show that the proposed outlier
detection algorithm is a promising and robust assessment
method suitable for crowdsourcing QoE evaluation.

Our contributions in this work are threefold:
1. A novel method for robust evaluation of QoE is pro-

posed to deal with incomplete and imbalanced data in crowd-
sourcing experiments. As in robust regression, the frame-
work provides the possibility of carrying out the assessment
procedure with automatic detection of sparse outliers.

2. In the core of the framework lies the outlier detection,
formulated as a LASSO problem based on sparse approx-
imations of cyclic ranking projection of paired comparison
data. Regularization paths of LASSO provide us an order
on samples suspected to be outliers.

3. Global ranking after successful outlier removal pro-
vides us a robust evaluation score with more reliable re-
sults. Through experiments on both simulated and real-
world data, we show that our algorithm works effectively in
practice.

The remainder of this paper is organized as follows. Sec-
tion 2 contains a review of related work. Then we describe
the proposed framework in Section 3, which establishes the
outlier detection model based on statistical linear model.
Detailed experiments are presented in Section 4, followed
by the conclusions in Section 5.

2. RELATED WORK

2.1 Crowdsourcing QoE
Existing methods of QoE evaluation can be divided into

two categories: subjective assessment and objective assess-
ment. Objective assessment builds objective quality mea-
surement models (see [21], a survey paper, and its refer-
ences) to predict perceived quality automatically and in-
telligently. It may or may not reflect humans’ perceptual

experiences. On the other hand, subjective assessment can
provide ground-truth and verification for objective models.
It is, however, labor-intensive and time-consuming.

In subjective viewing tests, stimuli are shown to a group
of viewers, and then their opinions are recorded and aver-
aged to evaluate the quality of the stimuli. Among various
approaches to conducting subjective tests, Mean Opinion
Score (MOS) [1] and paired comparison are the two most
popular ones. In the MOS test, individuals are asked to
specify a rating from Bad to Excellent (e.g., Bad-1, Poor-2,
Fair-3, Good-4, and Excellent-5) to grade the quality of a
stimulus. However, such a test may suffer from various prob-
lems such as ambiguity in definition of scales and dissimilar
interpretations of the scale among users [6]. For this reason,
the paired comparison method is currently gaining growing
attention. In this approach, raters are asked to compare
two stimuli simultaneously and vote on which one has the
better quality based on their perceptions. The paired com-
parison method is an easier, less demanding task for raters,
and yields more reliable data with less personal scale bias
in practice. A shortcoming of paired comparison is its more
expensive sampling complexity compared to the MOS test.

To tackle the cost problem, with the growth of crowd-
sourcing platforms, e.g., Amazon Mechanical Turk (MTurk)
[20], more and more researchers tend to seek help from the
Internet crowd to conduct user studies for QoE evaluation
[6, 33, 31, 32, 11, 18]. However, a major challenge of crowd-
sourcing QoE evaluation is that not every Internet user is
trustworthy. Therefore, it is necessary to detect unreliable
input and remove them since they may cause inaccuracy
in the estimation of QoE scores. For example, with com-
plete and balanced data, the method in [6] proposes TSR to
measure the consistency of participants’ judgments. In con-
trast, the outlier detection method proposed in this paper
provides a general framework for outlier detection when the
paired comparison data are incomplete and imbalanced.

2.2 Statistical Ranking
QoE based on paired comparisons can be recast as a sta-

tistical ranking or rating problem with paired comparison
data. This problem has been widely studied in various fields
including decision science [24], machine learning [13], social
choice [4], and statistics [19].

In particular, recent work in [17] takes a graph theoretic
view, which maps paired comparison data to edge flows on
a graph, possibly imbalanced (where different pairs may
receive different number of comparisons) and incomplete
(where each participant may only provide partial compar-
isons). It then applies the combinatorial Hodge Theory to
achieve an orthogonal decomposition of such edge flows into
three components: gradient flow for global rating (optimal
in the L2-norm sense), triangular curl flow for local incon-
sistency, and harmonic flow for global inconsistency. Such
a perspective provides us with a universal geometric de-
scription of the structure of paired comparison data, which
may help understand various models, in particular the linear
models with sparse outliers used in this paper.

2.3 Outlier Detection and Robust Statistics
Outliers, also called anomalies, are typically defined to be

data samples that have an unusual deviation from the most
common or expected pattern. Outliers are rare events, but
once they have occurred, they may lead to a large instability
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of models estimated from the data. Outlier detection is a
critical task in many fields and has been explored for a long
time, especially in statistics [16]. In subjective quality eval-
uation in multimedia, outliers may arise due to different test
conditions, human errors, or abnormal deviations in context
factors such as those involving raters or systems. Various
methods have been developed in literature for outlier detec-
tion and robust statistics. Among these studies, perhaps the
most well-known one is robust regression with Huber’s loss
[16], which combines the least squares and the least absolute
deviation problems. Recently, [10] discovered that robust
regression with Huber’s loss is equivalent to a LASSO prob-
lem, which leads to a new understanding of outlier detection
based on modern variable selection techniques, e.g., [25].
There are also clustering-based, supervised learning-based,
and semi-supervised learning-based procedures used in the
artificial intelligence community [14]. However, there is no
universal approach that is applicable in all settings. In this
paper, we adopt a statistical linear model for the paired com-
parison data collected from an Internet-based crowd, namely
HodgeRank model [31], and consider additive sparse outliers
as they are defined in recent studies [30].

2.4 Random Graphs
Among various random graphs (i.e., Erdös-Rényi random

graph [8], random regular graph [29], preferential attach-
ment random graph [5], small world random graph [28], and
geometric random graph [23]), Erdös-Rényi random graphs
can be viewed as a random sampling process of pairs or edges
independently and identically distributed (I.I.D.), hence they
are well suited for the crowdsourcing scenario. In [33, 31],
a random design principle based on Erdös-Rényi random
graph theory is investigated to conduct crowdsourcing tests.
Experimental results show that for a large Erdös-Rényi ran-
dom graph G(n, q) with n nodes and every edge sampled
with probability q, it is necessary to have q � n−1 log n such
that the graph is connected and global ranking is thus pos-
sible. To avoid global inconsistency from Hodge Decompo-
sition, it suffices to have larger sampling rates at q � n−1/2.
In this paper, we also focus on this simple yet powerful ran-
dom graph model particularly in the scenarios where outliers
are present. We call it robust QoE evaluation in the setting
of Erdös-Rényi random graph.

3. ROBUST HODGERANK
In this section, we propose a robust rating method based

on Huber’s robust regression and HodgeRank on graphs for
multimedia quality assessment, thus is called robust HodgeR-
ank here. Specifically, we first start from the linear model
in HodgeRank and describe robust regression with Huber’s
loss. Then, we present how to detect outliers using Huber-
LASSO, followed by an interpretation via Hodge Theory.
Specific discussions are made with dichotomous choices. Fi-
nally, we discuss how to tune the regularization parameter
in applications.

Let ∧ = {1, ..., m} be a set of participants and V = {1, ..., n}
be the set of videos to be ranked. Paired comparison data is
collected as a function on ∧×V ×V , which is skew-symmetric
for each α, i.e., Y α

ij = −Y α
ji representing the degree that α

prefers i to j. Without loss of generality, one assumes that
Y α
ij > 0 if α prefers i to j and Y α

ij ≤ 0 otherwise. How
to choose Y α

ij can be seen in [33]. The strategy often used
in QoE evaluation is dichotomous choice or a k-point Lik-

ert scale, k = 3, 4, 5. In this paper, we shall focus on the
simplest case — dichotomous choice, in which Y α

ij can be
taken as {±1}. However, the theory can be applied to more
general case with multiple choices mentioned above.

In subjective multimedia assessment, it is natural to as-
sume

Y α
ij = s∗i − s∗j + zαij , (1)

where s∗ ∈ R
V is some true scaling score on V and zαij are

noise. Define the gradient operator (finite difference opera-
tor) [17, 33] by δ0 : RV → R

E such that (δ0s)(i, j) = si− sj ,
then one can rewrite (1) as

Y = Xs∗ + z, (2)

where the design matrix X = δ0.
If zαij = εαij represents independent noise with mean zero

and fixed variance, the Gauss-Markov theorem tells us that
the unbiased estimator with minimal variance is given by
the following least squares problem (L2),

min∑
i∈V si=0

∑
i,j,α

(si − sj − Y α
ij )

2. (3)

Such an algorithm has been used in [33, 31, 32] to derive
scaling scores in subjective multimedia assessment.

However, not all comparisons are trustworthy and there
may be sparse outliers due to different test conditions, hu-
man errors, or abnormal variations in context. Putting in a
mathematical way, here we consider

zαij = γα
ij + εαij , (4)

where outlier γα
ij has a much larger magnitude than εαij and

is sparse as zero with probability p ∈ (0, 1]. When sparse
outliers exist, (3) becomes unstable and may give bad es-
timation. How can one modify least squares problem to
achieve a robust estimator against sparse outliers?

3.1 Robust Regression with Huber’s Loss
Among various choices, Huber [16] proposes the following

robust regression with Huber’s loss function,

min∑
i∈V si=0

∑
i,j,α

ρλ(si − sj − Y α
ij ), (5)

where Huber’s loss function ρλ(x) is defined by

ρλ(x) =

{
x2/2, if |x| ≤ λ
λ|x| − λ2/2, if |x| > λ.

When |si − sj − Y α
ij | < λ, the comparison is regarded as a

“good” one with Gaussian noise and L2-norm penalty can
be used on the residual. Otherwise, it is regarded as a “bad”
one contaminated by outliers and L1-norm penalty should
be used which is less sensitive to the amount of deviation. So
when λ = 0, it reduces to a least absolute deviation (LAD)
problem or L1-norm ranking [22].

A crucial question here is how to choose λ, which is equiv-
alent to estimating the variance of εαij properly. For this
purpose, Huber [16] proposes concomitant scale estimation,
which jointly estimates s and λ as follows:

min∑
i∈V si=0,σ

∑
i,j,α

ρλ0

(
si − sj − Y α

ij

σ

)
σ +mσ, (6)

where m is the total number of paired comparisons, σ > 0
is a scale parameter which estimates the standard deviation
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of εαij , and λ0 controls the shape of Huber’s loss where the
transition from quadratic to linear takes place. A larger
λ0 implies the Huber’s loss becomes more similar to least
squares regression, more efficient for normally distributed
data but less robust; while smaller λ0 makes it closer to least
absolute deviation regression, more robust against outliers
but less efficient for normally distributed data. [16] suggests
to fix λ0 = 1.35 in order to be robust as much as possible
while retaining 95% statistical efficiency for normally dis-
tributed data. Note that for fixed σ, minimization problem
(6) is equivalent to minimize (5) with λ = λ0σ. Problem (6)
becomes a convex optimization problem jointly in s and σ,
which can be solved efficiently.

However, we find that in our applications the concomi-
tant scale estimation (6) only works when outliers are sparse
enough. To avoid this issue, we turn to a LASSO formula-
tion of (5).

3.2 Huber-LASSO
It’s not hard to see [10] the robust regression with Huber’s

loss (5) is equivalent to the following optimization problem:

min∑
i∈V si=0,γ

1

2
‖Y −Xs− γ‖22 + λ‖γ‖1 (7)

:=
∑
i,j,α

[
1

2
(si − sj + γα

ij − Y α
ij )

2 + λ|γα
ij |].

where X = δ0. Assume (7) has solution (ŝlasso, γ̂lasso). Here
we introduce a new variable γα

ij for each comparison Y α
ij such

that |γα
ij | > 0 is equivalent to |ŝlassoi − ŝlassoj − Y α

ij | > λ,
i.e., an outlier. To be less sensitive to outliers, an L1-norm
penalty of γα

ij = ŝlassoi − ŝlassoj − Y α
ij is added as in Huber’s

loss. Otherwise, an L2-norm is used to attenuate the Gaus-
sian noise. This optimization problem is a partially penal-
ized LASSO [26], and is called Huber-LASSO (or HLASSO)
in this paper.

A precise equivalence between (7) and (5) is given in the
following proposition.

Proposition. Assume (5) has solution ŝhuber. Then

ŝlasso = ŝhuber

and

γ̂lasso = Θλ(Y
α
ij − (ŝlassoi − ŝlassoj )), (8)

where Θλ(t) = sign(t)(|t|−λ)+ is the soft-thresholding func-
tion.

HLASSO shares the same piecewise-linear regularization
paths λ 
→ ŝλ as classical LASSO, and thus can be solved
efficiently, e.g., by the LARS algorithm [7].

However, HLASSO still suffers the following issues.

• HLASSO gives a biased estimation [9], γ̂ and ŝ.

• Cross-validation to find optimal λ, turns out to be
highly unstable here. Since every sample is associated
with an outlier variable, leaving out samples thus loses
all information about the associated outlier variables.

These issues can be alleviated using the following method.

3.3 Outlier Detection
There are two groups of variables in HLASSO (7), the

score s and outlier γ, and the L1-norm penalty is only ap-
plied to γ. Therefore, via orthogonal projections of data Y

onto the column space of X and its complement, one can
split HLASSO into two subproblems with the two groups
of variables decoupled. In particular, the outlier γ is in-
volved in a standard LASSO problem, whose design ma-
trix comes from random projections onto the complement
of the column space of X. Thanks to the exploitation of
Erdös-Rényi random graphs in crowdsoucring experiments
[33, 31], positions of outliers can be consistently identified
with cross-validation. After locating the outliers, one can
drop those comparisons contaminated by outliers and use
the least squares estimation to achieve an unbiased estima-
tion.

To see this, let X has a full SVD decomposition X =
UΣV T and U = [U1, U2] where U1 is an orthonormal basis
of the column space col(X) and U2 becomes an orthonormal
basis for ker(XT ). Then the following result gives a precise
statement of the split of HLASSO.

Proposition. The HLASSO solution (ŝ, γ̂) can be ob-
tained by the following two problems

min
γ

1

2
‖UT

2 Y − UT
2 γ‖22 + λ‖γ‖1 (9)

min∑
i∈V si=0

1

2
‖UT

1 Xs − UT
1 (Y − γ̂)‖22. (10)

It can be seen that the original HLASSO is split into
two separate optimization problems: the first is a standard
LASSO problem and the second is a least squares problem.
Equation (9) detects outliers and (10) modifies Y using the
result of (9) and calculates scores. This score is the solution
of robust regression with Huber’s loss.

To solve the two issues in the last subsection, we make the
following notes.

• Even though the estimator of (9) is biased [9] in the
estimation of the magnitudes of γ, it can consistently
identify locations of outliers under mild conditions.
Such conditions, roughly speaking, require that the
projection matrix U2 satisfies an incoherence (irrepre-
sentable) condition and the sparse outliers have large
enough magnitudes, which can be found precisely as in
[30], and have been widely used in sign consistency of
LASSO [27]. Therefore, to avoid a biased score estima-
tion (10), we suggest to discard the outliers picked out
in (9) and run L2 on the rest of data (see Algorithm
1).

• For Erdös-Rényi random graph G(n, q) in crowdsourc-
ing experiments [31], the dimension of col(X) equals
to n − 1 and the dimension of ker(XT ) thus equals
to m − n + 1 with m ∼ n2q. To ensure connectivity
of G(n, q), one needs nq � log n which implies that
asymptotically (m−n+1)/m → 1. Therefore, for large
n, UT

2 is arbitrarily close to a random projection ma-
trix, which satisfies the incoherence condition for the
consistency of outlier detection. Moreover, for cross-
validation with sparse outliers, one can use a subset
of random projections as the training set and the re-
maining orthogonal random projections as the valida-
tion set. This increases the stability of cross-validation
in applications.

These observations suggest the following algorithm for out-
lier detection and robust ranking, denoted by LASSO+L2
for short.
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Algorithm 1: Outlier Detection and Robust Ranking.

1 Initialization: Compute the SVD of X and obtain U2;
2 Solve the spilt problem (9);
3 Tuning parameter. Determine an optimal λ∗ by

cross-validation with random projections;

4 Rule out outliers and perform least squares (L2) to

get an unbiased score estimation ŝ.

3.4 Interpretation via Hodge Theory
The algorithm proposed above admits a neat interpre-

tation from Hodge Decomposition for pairwise ranking on
graphs [17]. Such a theory, referred to HodgeRank, was in-
troduced by [33, 31] to multimedia QoE assessment. Roughly
speaking, it says that all paired comparison data Y on graph
G admits the following orthogonal decomposition:

aggregate paired comparisons =

global ranking⊕ harmonic cyclic⊕ triangular cyclic.

In particular, the latter two subspaces, harmonic and tri-
angular cyclic rankings, are both called cyclic ranking here
(i.e., subspace ker(XT )).

Note that in (9), the unitary matrix UT
2 is an orthogonal

projection onto the subspace of cyclic ranking. Therefore,
it enables the following interpretation of outlier detection
LASSO via Hodge Decomposition. The outlier γ in (9) is
a sparse approximation of the projection of paired compari-
son data onto cyclic ranking subspace. This leads us to an
extension of outlier detection by TSR in complete case to
incomplete settings.

3.5 Dichotomous Choice
In our crowdsourcing experiments on Internet, we often

meet paired comparison data with dichotomous choices, i.e.,

Y α
ij =

{
1 if participant α prefers i to j,
−1 otherwise.

(11)

In [33], four general linear models are compared in terms
of their total inconsistency in explaining the data, and we
find that the uniform model in (1) is nearly the best. Below
we present an equivalent form of (7), which groups outlier
variables and solves the problem in a more efficient way.

Proposition. If Y α
ij ∈ {1,−1}, and let w±

ij = |{α : Y α
ij =

±1}|, then the solution of (7) is equivalent to:

min
∑

i∈V si=0,γ±
ij

∑
i,j [

1

2
w+

ij(si − sj + γ+

ij − 1)2 + λw+

ij |γ
+

ij |

+ 1

2
w−

ij(si − sj + γ−

ij − 1)2 + λw−

ij |γ
−

ij |].(12)

Here, we group all the outlier variables with the same pref-
erence on pair (i, j). This leads to a weighted LASSO with
much smaller number of variables. Such a new formulation
greatly improves the efficiency of the algorithm, which has
been adopted in our experiments below. Similar tricks can
be applied when paired comparisons have k discrete values.

Proof. We are going to prove the property for the situ-
ation when paired comparisons have k discrete values.

Suppose Y α
ij ∈ K, |K| = k. Let Ai,j,u = {(i, j, α) : Y α

ij =
u}, u ∈ K, be the group of comparisons with same preference
u on pair (i, j), wu

ij = |Ai,j,u| is the number of comparisons
in this group and γu

ij = 1

wu
ij

∑
Ai,j,u

γα
ij is the average of γα

ij

in this group. Then for (i, j, α) ∈ Ai,j,u, (7) becomes

∑
Ai,j,u

[
1

2
(si − sj + γα

ij − u)2 + λ|γα
ij |

]

=
∑

Ai,j,u

{
1

2
[(si − sj + γu

ij − u)2 + (γα
ij − γu

ij)
2

+2(si − sj + γu
ij − u)(γα

ij − γu
ij)] + λ|γα

ij |
}

=
wu

ij

2
(si − sj + γu

ij − u)2 +
∑

Ai,j,u

{
1

2
[(γα

ij − γu
ij)

2

+2(si − sj + γu
ij − u)(γα

ij − γu
ij)] + λ|γα

ij |}

=
wu

ij

2
(si − sj + γu

ij − u)2 +
∑

Ai,j,u

[
1

2
(γα

ij − γu
ij)

2 + λ|γα
ij |

]
,

since γu
ij =

1

wu
ij

∑
Ai,j,u

γα
ij ,

≥
wu

ij

2
(si − sj + γu

ij − u)2 +
∑

Ai,j,u

λ|γα
ij |,

where equality holds iff γα
ij = γu

ij , hence (7) becomes

wu
ij

2
(si − sj + γu

ij − u)2 + wu
ijλ|γ

u
ij |.

The result follows from the sum over all the pair (i, j) and
u ∈ K.

Moreover, we would like to point out that the outlier
detection LASSO above can be applied to the scenario of
subject-based outlier detection. A simple way is to compute
the percentage of outliers for an assessor, based on which
one can evaluate the reliability of each assessor subject. For
example, one can drop those unreliable assessors whose in-
put data involve a large number of outliers beyond certain
threshold. In other words, subject-based outlier detection
can be a straightforward extension from our proposed frame-
work on paired comparison judgment outliers.

3.6 Parameter Tuning
We have suggested cross-validation on (9) to tune param-

eter λ based on random projections, rather than traditional
cross-validation on the origin problem (7) by leaving-out
samples. This is because of a special feature in outlier detec-
tion LASSO. Since each variable is associated with a sample,
sample leaving-out will lose all the information about the
associated variable. Therefore, traditional cross-validation
with leaving-out samples is expected to be highly unsta-
ble. To achieve a cross-validation based on random projec-
tions, one can randomly draw l-rows from projection matrix
UT

2 , which can be regarded as l-random projections onto the
ker(XT ), as the training set. The remaining rows of UT

2 are
used for validation set. Cross-validation is then applied to
such random projection based measurements using training
and validation sets.

In practice, although cross-validation works for sparse and
large enough outliers, we find it might fail when outliers be-
come dense and small in magnitudes. However, when cross-
validation fails, we still find it informative to look at the
regularization paths of (9) directly. From the order that
variables γα

ij become nonzero as regularization parameter λ
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Figure 1: Reference videos in LIVE database.

changes from ∞ to small, one can faithfully identify the ten-
dency that a measurement Y α

ij is contaminated by outliers,
even when cross-validation fails. Therefore, we suggest to
use regularization paths to inspect the outliers in applica-
tions.

Prior knowledge can also be used to tune the regulariza-
tion parameter. For example, if one would like to drop a
certain percentage of outliers, say 5%, then the top 5% vari-
ables appeared on regularization paths can be regarded as
outliers and dropped. Moreover, the deviation magnitudes
sometimes can be used to determine outliers. For example
in dichotomous choice, we can just set λ = 1. If si − sj > 0,
and Y α

ij = −1 so the residual |γα
ij | = |si− sj −Y α

ij | > 1, then
this comparison is easy to pick out. On the other hand, if
Y α
ij = 1, |γα

ij | > 1 iff si − sj > 2, the sample can reasonably
be selected as an outlier.

4. EXPERIMENTS
In this section, we systematically evaluate the performance

of the proposed outlier detection algorithm for QoE assess-
ment. First, we describe the datasets used for the exper-
iments, which include both simulated and real-world data.
Then, Algorithm 1 is applied to both datasets. To avoid
the situations in which the optimal choice of λ∗ by cross-
validation is too conservative to detect outliers when they
are dense and of small magnitudes (as discussed in Section
3.6), we look at the whole regularization path γ̂λ by varying
λ from ∞ to 0. AUC for ROC curves is used in the exper-
iments to measure if the true outliers are detected by early
appearance on regularization paths. The higher the AUC,
the better the performance. Finally, some further discus-
sions are provided.

4.1 Datasets
Three datasets are used in this work. The datasets in-

clude simulated data, PC-VQA (Paired Comparison based
Video Quality Assessment) data [33], and PC-IQA (Paired
Comparison based Image Quality Assessment) data [32].

In simulated data, we first create a random total order on
n candidates V as the ground-truth and add paired compari-
son edges (i, j) ∈ E to graph G = (V,E) randomly, with the
preference direction following the ground-truth order. To
create sparse outliers, a random subset of E is reversed in
preference direction. In this way, we simulate a paired com-
parison graph, possibly incomplete and imbalanced, with
outliers.

The second dataset, PC-VQA, collected by [33], contains
38400 paired comparisons for LIVE dataset [3] (Figure 1)
from 209 observers. One of the advantageous properties of
this dataset is that the paired comparison data is complete
and balanced.

The third dataset, PC-IQA, contains 15 reference images
and 15 distorted versions of each reference, for a total of
240 images which come from two publicly available datasets,
LIVE [3] and IVC [2] (Figure 2). Totally, 186 observers,
each of whom performs a varied number of comparisons via

Figure 2: Reference images in LIVE and IVC databases. (The
first six are from LIVE and the remaining nine are from IVC.)

Figure 3: ROC curve of (2000,5%) for simulated data.

Internet, provide 23,097 paired comparisons (the resulting
graph is incomplete and imbalanced) for subjective IQA.

These three datasets provide us both simulated and real-
world paired data and hence can all be used for the exper-
iments of QoE task. In the following, we first show the ef-
fectiveness of the proposed method on simulated data, then
further confirm the effectiveness on real-world datasets.

4.2 Simulated Data
We choose |V | = n = 16 in the simulated graph G =

(V,E), which is consistent with the other real-world datasets.
We make the following definitions of experimental parame-
ters. The total number of paired comparisons occurred on
this graph is SN (Sample Number), and the number of out-
liers is ON (Outlier Number). Finally, we define the outlier
percentage OP = ON/SN.

In order to evaluate the performance of LASSO in outlier
detection, for each pair of (SN,OP), we compute the regular-
ization path γ̂λ of LASSO by varying regularization param-
eter λ from ∞ to 0, which is solved by R-package quadrupen
[12]. The order in which γ̂λ

ij becomes nonzero gives a rank-
ing of the edges according to their tendency to be outliers.
Since we have the ground-truth outliers, the ROC curve can
be plotted by thresholding the regularization parameter λ
at different levels which creates different true positive rates
(TPR) and false positive rates (FPR). For example, when
SN = 2000 and OP = 5%, the ROC curve can be seen in
Figure 3. With different choices of SN and OP, Area Under
the Curve (AUC) are computed with standard deviations
over 20 runs and shown in Table 1 to measure the perfor-
mance of LASSO in outlier detection. It can be seen that
when samples are large and outliers are sparse, AUC is close
to 1. This implies that the regularization paths of LASSO
give an accurate estimation of outliers (indicated by a small
FPR with large TPR), where samples appearing early on
LASSO paths are mostly contaminated by outliers. Figure
4 illustrates an example of such LASSO paths.

We note that when OP = 50%, i.e., half of the edges are
reverted by outliers, Table 1 shows a rapid decrease of AUC
to about 0.5, which is the performance of random guess.

48



Table 1: AUC over (SN,OP) for simulated data, 20 times repeat.

AUC (sd) OP=5%OP=10% OP=15% OP=20% OP=25% OP=30% OP=35% OP=40% OP=45% OP=50%

SN=1000 0.999(0) 0.999(0.001) 0.998(0.001) 0.996(0.003) 0.992(0.005) 0.983(0.010) 0.962(0.016) 0.903(0.038) 0.782(0.050) 0.503(0.065)
SN=2000 0.999(0) 0.999(0) 0.999(0) 0.998(0.001) 0.997(0.001) 0.992(0.004) 0.986(0.007) 0.956(0.019) 0.849(0.052) 0.493(0.086)
SN=3000 0.999(0) 0.999(0) 0.999(0) 0.999(0) 0.998(0) 0.996(0.002) 0.990(0.004) 0.971(0.013) 0.885(0.032) 0.479(0.058)
SN=4000 0.999(0) 0.999(0) 0.999(0) 0.999(0) 0.999(0) 0.997(0.001) 0.994(0.002) 0.980(0.008) 0.903(0.028) 0.519(0.055)
SN=5000 0.999(0) 0.999(0) 0.999(0) 0.999(0) 0.999(0) 0.998(0.001) 0.994(0.002) 0.984(0.009) 0.933(0.022) 0.501(0.066)

Figure 4: The regularization paths of (2000,5%) for simu-
lated data. The true outliers (plotted in red color) mostly lie
outside the majority of paths.

This is expected, since when more than half of the edges
are perturbed, it is impossible to distinguish the signal from
noise by any method. A phase transition can be observed in
this table, that AUC rapidly approaches to 1 as long as OP
drops below 50% and SN increases.

4.3 Real-world Data
As there is no ground-truth for outliers in real-world data,

one can not exploit ROC and AUC as in simulated data to
evaluate outlier detection LASSO here. In this subsection,
we inspect the top p% pairs returned by LASSO regulariza-
tion paths and compare them with the whole data to see if
they are reasonably good outliers.

(a) Reference River Bed in PC-VQA dataset

(b) Reference 10 in PC-IQA dataset

Figure 5: Regularization paths. (i) Top 2% outliers; (ii) Top
5% outliers; (iii) Top 8% outliers.

For simplicity, in the PC-VQA dataset, we randomly take
River Bed as an illustrative example (other reference videos
exhibit similar results). Figure 5(a) shows the top 2%, 5%,
and 8% outliers picked by regularization paths in River Bed.
In order to allow a closer inspection of these pairs, outliers
are marked in three colors (red for top 2%, green for top
2%-5%, and blue for top 5%-8%) in the paired comparison
matrix in Table 2(a). The paired comparison matrix is con-
structed as follows (Table 2(b) is constructed in the same
way). For each video pair {i, j}, let nij be the number of
comparisons, for which aij raters agree that the quality of
i is better than j (aji carries the opposite meaning). So
aij + aji = nij if no tie occurs. In the PC-VQA dataset,
nij ≡ 32 for all videos. The order of the video ID in Table
2(a) is arranged from high to low according to the global
ranking score calculated by the least squares method (3). It
is interesting to see that the outliers picked out are mainly
distributed in the lower left corner of this matrix, which
implies that the outliers are those preference orders with a
large deviation from the global ranking scores by L2. In ad-
dition, the earlier a pair is detected by LASSO as an outlier,
the closer it will be to the lower left corner and the larger
such a deviation is. Moreover, Figure 6 further confirms this
phenomenon. Here, all the top 5% outliers are reversed pref-
erence arrows pointing from lower quality to higher quality
videos. Clearly one can see that video V6, V12, V2, V11,
and V8 are the top 5 videos which brought in the largest
number of outliers in data collection.

To see the effect of outliers on global ranking scores, Ta-
ble 3(a) shows the outcomes of three ranking algorithms,
namely L2, HLASSO, and LASSO+L2. We choose the λ
which finds 5% outliers. As we noted earlier, the global rank-
ing scores directly returned by HLASSO are possibly biased
in the estimation of large outliers, hence LASSO+L2 is used
toward less-biased solution. While video V3 is nearly the
same quality as V7 in L2, both HLASSO and LASSO+L2
put V3 worse than V7. Removal of the top 5% outliers in
LASSO+L2 further changes the orders of some competitive
videos, such as V15 and V10, V2 and V11, which shows that
the effect of outliers is mainly within the highly competitive
groups.

The experiments above demonstrate the effectiveness of
the proposed method on complete and balanced data. To il-
lustrate the detection ability on incomplete and imbalanced
data, the PC-IQA dataset is taken into consideration. Fig-
ure 5(b), Table 2(b), and Figure 7 show the experimental
results on a randomly selected reference (image 10 in Fig-
ure 2). Similar observations as above can be made and
we note that outliers distributed on this dataset are much
sparser than PC-VQA, shown by many zeros in the lower
left corner of Table 2(b). The outcomes of three rank-
ing algorithms with the top 5% outliers are shown in Ta-
ble 3(b) for PC-IQA. Based on 5% outliers detection, both
HLASSO and LASSO+L2 differ with L2 in that image ID =
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Table 2: Paired comparison matrixes, with red pairs for top 2% outliers, green for top 2%-5% outliers, and blue for top 5%-8%

outliers.

(a) Reference River Bed in PC-VQA dataset

Video ID 1 13 9 14 5 15 10 3 7 16 4 8 2 11 12 6

1 0 29 28 31 32 30 32 31 30 27 27 31 25 31 32 32

13 3 0 23 22 24 24 14 22 25 29 28 27 25 27 28 31

9 4 9 0 25 5 20 26 25 15 26 23 27 26 27 30 31

14 1 10 7 0 14 29 19 22 14 23 23 23 27 23 26 25

5 0 8 27 18 0 14 11 12 22 13 22 18 25 30 31 30

15 2 8 12 3 18 0 20 24 13 23 18 17 28 22 30 29

10 0 18 6 13 21 12 0 18 11 13 18 27 26 26 28 29

3 1 10 7 10 20 8 14 0 14 17 19 19 18 28 28 32

7 2 7 17 18 10 19 21 18 0 18 8 23 9 15 30 30

16 5 3 6 9 19 9 19 15 14 0 18 24 23 20 30 30

4 5 4 9 9 10 14 14 13 24 14 0 17 15 23 30 30

8 1 5 5 9 14 15 5 13 9 8 15 0 25 13 19 24

2 7 7 6 5 7 4 6 14 23 9 17 7 0 18 17 29

11 1 5 5 9 2 10 6 4 17 12 9 19 14 0 24 26

12 0 4 2 6 1 2 4 4 2 2 2 13 15 8 0 19

6 0 1 1 7 2 3 3 0 2 2 2 8 3 6 13 0

(b) Reference 10 in PC-IQA dataset

Image ID 1 6 9 12 10 2 16 7 15 11 8 13 14 3 4 5

1 0 11 10 12 11 20 11 15 13 14 16 15 14 17 14 13

6 3 0 5 10 8 11 11 12 10 10 12 13 12 11 14 16

9 3 7 0 5 7 6 3 10 4 5 8 6 5 11 14 17

12 3 2 3 0 6 9 13 7 8 5 8 13 13 13 16 17

10 5 4 0 2 0 7 2 5 6 7 9 5 6 12 17 19

2 0 3 5 4 4 0 8 9 9 13 6 11 12 12 13 13

16 3 1 1 2 2 4 0 6 16 8 7 16 16 15 20 14

7 0 2 1 1 4 2 4 0 7 5 12 8 9 13 17 16

15 0 4 1 4 1 4 3 2 0 8 7 12 16 16 16 14

11 0 0 0 0 0 0 3 4 1 0 9 2 6 11 14 17

8 0 0 0 0 0 4 0 0 0 0 0 5 8 10 15 17

13 0 0 0 0 0 0 0 0 4 2 1 0 12 13 15 16

14 0 0 1 0 0 0 1 0 0 2 1 2 0 6 12 10

3 0 0 0 0 0 0 0 0 0 0 0 0 9 0 10 10

4 0 0 0 0 0 0 0 0 0 2 0 2 4 1 0 9

5 0 0 0 0 0 0 0 0 0 1 0 0 5 1 5 0

Figure 6: Top 5% outliers for reference River Bed in PC-VQA dataset. The integer on each curve represents aij defined in
subsection 4.3 and the red decimal in dotted rectangle represents the global ranking score returned by L2 algorithm.
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Table 3: Comparison of different rankings (5% outliers are
considered). Three ranking methods are compared with the
integer represents the ranking position and the number in
parentheses represents the global ranking score returned by
the corresponding algorithm.

(a) Reference River Bed in PC-VQA dataset

Video ID L2 LASSO+L2 HLASSO
1 1 ( 0.8125 ) 1 ( 0.9245 ) 1 ( 0.8414 )
13 2 ( 0.4375 ) 2 ( 0.6003 ) 2 ( 0.4615 )
9 3 ( 0.3086 ) 3 ( 0.3620 ) 3 ( 0.3182 )
14 4 ( 0.1797 ) 4 ( 0.3034 ) 4 ( 0.1978 )
5 5 ( 0.1602 ) 5 ( 0.1996 ) 5 ( 0.1659 )
15 6 ( 0.1055 ) 7 ( 0.1172 ) 6 ( 0.1098 )
10 7 ( 0.1016 ) 6 ( 0.1458 ) 7 ( 0.1084 )
3 8 ( 0.0195 ) 10 ( -0.0021 ) 9 ( 0.0193 )
7 8 ( 0.0195 ) 8 ( 0.0043 ) 8 ( 0.0194 )
16 10 ( 0.0156 ) 9 ( 0.0015 ) 10 ( 0.0133 )
4 11 ( -0.0352 ) 11 ( -0.0538 ) 11 ( -0.0390 )
8 12 ( -0.2344 ) 12 ( -0.2758 ) 12 ( -0.2403 )
2 13 ( -0.2500 ) 14 ( -0.3758 ) 13 ( -0.2695 )
11 14 ( -0.3008 ) 13 ( -0.3587 ) 14 ( -0.3130 )
12 15 ( -0.6094 ) 15 ( -0.7181 ) 15 ( -0.6347 )
6 16 ( -0.7305 ) 16 ( -0.8743 ) 16 ( -0.7586 )

(b) Reference 10 in PC-IQA dataset

Image ID L2 LASSO+L2 HLASSO
1 1 ( 0.8001 ) 1 ( 0.8876 ) 1 ( 0.8144 )
6 2 ( 0.6003 ) 2 ( 0.7034 ) 2 ( 0.6143 )
9 3 ( 0.5362 ) 3 ( 0.6048 ) 3 ( 0.5484 )
12 4 ( 0.4722 ) 4 ( 0.4886 ) 4 ( 0.4752 )
10 5 ( 0.3472 ) 6 ( 0.2698 ) 5 ( 0.3368 )
2 6 ( 0.3044 ) 5 ( 0.2859 ) 6 ( 0.3105 )
16 7 ( 0.2756 ) 7 ( 0.2677 ) 7 ( 0.2757 )
7 8 ( 0.1403 ) 8 ( 0.1398 ) 8 ( 0.1374 )
15 8 ( 0.0965 ) 9 ( 0.0540 ) 9 ( 0.0865 )
11 10 ( -0.1609 ) 10 ( -0.1815 ) 10 ( -0.1563 )
8 11 ( -0.2541 ) 11 ( -0.2813 ) 11 ( -0.2620 )
13 12 ( -0.2964 ) 12 ( -0.2927 ) 12 ( -0.2958 )
14 13 ( -0.6215 ) 14 ( -0.6478 ) 14 ( -0.6361 )
3 14 ( -0.6315 ) 13 ( -0.6246 ) 13 ( -0.6315 )
4 15 ( -0.7822 ) 15 ( -0.8098 ) 15 ( -0.7889 )
5 16 ( -0.8262 ) 16 ( -0.8639 ) 16 ( -0.8287 )

3 (fruit_flou_f3.bmp in IVC [2] database) is better than
image ID = 14 (fruit_lar_r1.bmp). Such a preference is in
agreement with the pairwise majority voting of 9:6 votes
(Table 2(b)). Therefore, the example shows that under
sparse outliers L2 ranking may be less accurate.

Moreover, LASSO+L2 further suggests that image ID =
2 should be better than image ID = 10, in contrast to the
other two algorithms. A further inspection of the dataset
confirms that such a suggestion by LASSO+L2 is reason-
able. Figure 8 shows the two images (ID = 2 and ID = 10)
from the IVC [2] database. There is a blurring effect in im-
age ID = 2 and a blocking effect in the background of ID =
10. In the dataset, 4 raters agree that the quality of ID =
2 is better than ID = 10, while 7 raters have the opposite
opinion. Clearly LASSO+L2 chooses the preference of the
minority, based on aggregate behavior over population after
removal of some outliers. Why does this happen? In fact,
when a participant compares the quality between ID = 2
and ID = 10, his preference depends on his attention — on
the foreground or on the whole image. A rater with fore-
ground attention might be disturbed by the blurring effect,
leading to 10 � 2. On the other hand, a rater with holistic
attention may notice the blocking effect in the background,
leading to 2 � 10. Which criterion might be dominant? To
explore this question, we further collected more clean data
(i.e., 20 more persons provide careful judgments in controlled
lab conditions), among which a dominant percentage (80%)
agrees with 2 � 10, consistent with the LASSO+L2 pre-
diction after removal of outliers. This suggests that most
observers assess the quality of an image from a global point
of view. Another less stable way is to select a subset of clean

Figure 7: Top 5% outliers for reference 10 in PC-IQA dataset.
The integer on each curve and the red decimal in dotted
rectangle carry the same meanings with those in Figure 6.

data without outliers for validation, which points generally
towards LASSO+L2<HLASSO<L2 in least squares error.
Such a result suggests that for those highly competitive or
confused alternative pairs, a large number of samples are
expected to find a good ranking in majority voting; on the
other hand, by exploiting intermediate comparisons of good
confidence with other alternatives, it is possible to achieve a
reliable global ranking with a much smaller number of sam-
ples, such as what LASSO+L2 does here.

Figure 8: Dissimilar judgments due to multi-criteria in paired
comparisons among users. The image is undistinguishable
due to its small size, so image names in IVC [2] database are
printed here.

4.4 Discussion
As we have seen, after dropping outliers, LASSO+L2 gives

a different order on some images compared with L2, indi-
cating that outliers may cause different rank aggregations.
The differences mostly lie among the highly competitive al-
ternatives. The order returned by HLASSO somewhere lies
between the two orders returned by L2 and LASSO+L2,
showing that the bias in HLASSO estimation makes it less
sensitive to changes. From these results, we may conclude
that outlier detection by our proposed framework is effec-
tive, and that using the framework, one can prune unreliable
paired comparisons and achieve a good global ranking score
with less data collected.

In our experiments, we observe that cross-validation may
work when outliers with large magnitudes are sparse enough.
When cross-validation works it helps to identify an optimal
regularization parameter and sparsity pattern. However, in
our QoE evaluation scenario, |Yt(i, j)| is bounded by 1. For
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this reason, it is hard for sparse outliers to satisfy the large
magnitude assumption. In this case, cross-validation may
exhibit conservative and unstable behavior, either picking
out all the outliers or none of them. Therefore, as we sug-
gested earlier, users applying our framework should compute
regularization paths whenever possible to inspect outliers.

Additionally, we find that when raters are asked to con-
sider different pairs of images, they implicitly take differ-
ent salient features into account. Dissimilar judgments due
to noise will vanish when the sample size goes to infinity
while disagreements due to multi-criteria will persist with
the increase of sample size. This phenomenon will require
additional investigation in the future.

5. CONCLUSIONS
In this paper, we have proposed a framework for robustly

assessing the QoE of multimedia content, in which outliers
are automatically detected and robust global ranking scores
are obtained after outlier removal. In such a framework,
outliers are sparse approximations of cyclic ranking projec-
tions of paired comparison data and regularization paths
of outlier detection LASSO provides us an informative pro-
cedure. In particular, outlier detection LASSO, provides
benefits in crowdsourcing experiments with the Erdös-Rényi
random graph designs. Experiments are presented with both
simulations and two real-world datasets including both rep-
resentative images and videos in QoE with crowdsourcing
data. It is shown that a two-stage method (outlier detection
LASSO followed by a least squares on cleaned data) can
remove sparse outliers and achieve a global rating more con-
sistent with the population than the least squares method
applied to the whole data. The framework enables us to de-
rive reliable global ratings after purifying data, and as such
provides a helpful tool for the multimedia community, which
exploits crowdsourceable paired comparison data for robust
ranking. Finally, we would like to point out that with the
rapid development of technologies for rich user interfaces,
the proposed framework can be extended via stochastic op-
timization to assess users’ experience in an online setting,
which is a largely unexplored field and one of our future
directions.

6. ACKNOWLEDGMENTS
This work was supported in part by National Basic Re-

search Program of China (973 Program): 2012CB316400
and 2012CB825501, in part by National Natural Science
Foundation of China: 61025011 and 61071157.

7. REFERENCES
[1] ITU-R Recommendation P.800. Methods for subjective

determination of transmission quality, 1996.
[2] Subjective quality assessment irccyn/ivc database.

http://www2.irccyn.ec-nantes.fr/ivcdb/, 2005.
[3] LIVE image & video quality assessment database.

http://live.ece.utexas.edu/research/quality/, 2008.
[4] K. Arrow. A difficulty in the concept of social welfare.

Journal of Political Economy, 58(4):328–346, 1950.
[5] A.-L. Barabasi and R. Albert. Emergence of scaling in

random networks. Science, 286(5439):509–512, 1999.
[6] K.-T. Chen, C.-C. Wu, Y.-C. Chang, and C.-L. Lei. A

crowdsourceable QoE evaluation framework for multimedia
content. pages 491–500. ACM Multimedia, 2009.

[7] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least
angle regression. Annals of Statistics, 32(2):407–499, 2004.
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