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ABSTRACT
Identifying accurate correspondences information among dif-
ferent shapes is of great importance in shape analysis such as
shape registration, segmentation and retrieval. This paper
aims to develop a paradigm to address the challenging issues
posed by shape structural variation and symmetry ambigu-
ity. Specifically, the proposed research developed a novel
shape signature based on local diffusion map on 3D surface,
which is used to identify the shape correspondence through
graph matching process. The developed shape signature,
named local diffusion map signature (LDMS), is obtained
by projecting heat diffusion distribution on 3D surface into
2D images along the surface normal direction with orienta-
tion determined by gradients of heat diffusion field. The
local diffusion map signature is able to capture the con-
cise geometric essence that is deformation-insensitive and
symmetry-aware. Experimental results on 3D shape cor-
respondence demonstrate the superior performance of our
proposed method over other state-of-the-art techniques in
identifying correspondences for non-rigid shapes with sym-
metry ambiguity.
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1. INTRODUCTION

1.1 Background
Shape correspondence provides important information for

many shape analysis such as shape alignment and registra-
tion, texture mapping, information transformation among
shapes, shape morphing, statistical shape modelling and so
on. It is therefore of great interest to develop the efficient
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Figure 1: Pipeline of our method.

shape correspondence algorithm that, given a pair of shapes,
return the corresponding regions on surface. The accuracy
of shape correspondence algorithm is ultimately determined
by the quality and characteristics of the shape signature
that captures the geometric essence of points on 3D sur-
face. While many advancements have been made for shape
correspondence over the years, there remain challenges in
the development of effective and discriminative shape sig-
nature. Two such challenges are shape structural variations
and symmetry ambiguity and both can significantly degrade
the performance of a shape correspondence technique[13, 12,
7, 18]. Therefore, a robust shape signature should be able
to address the following issues.

• Structural variation in 3D models.

• Symmetry ambiguity in 3D shapes.

• Noise and incompleteness present in 3D shape descrip-
tion.

1.2 Related Work
3D non-rigid shape correspondence has been received con-

siderable attention from computer vision and graphics ar-
eas. Many 3D objects contain dynamical units with their
3D shape flexibility and variations play an essential role in
certain types of functional processes. The non-rigid shape
correspondence methods often attempt to find correspon-
dence information through a feature matching process. The
process starts with computing a certain type of shape signa-
ture that capture geometric characteristics for representative
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Figure 2: Local descriptor comparison between
HKS(middle up), local depth descriptor(middle
bottom) and multi-scale HKS projection descrip-
tor(right). HKS cannot separate left and right foot,
local depth projection is not discriminative, multi-
scale HKS projection is discriminative between left
and right foot.

points sampled on shape surface, then identifies a sparse cor-
respondence by solving an assignment problem which maxi-
mize the similarity between the set of shape signatures with
a certain type of spatial constrains such as preservation of
geometric distance among corresponding pairs[17, 16]. Since
a complete survey of non-rigid shape correspondence tech-
niques is beyond the scope of this research paper, we refer
the interested readers to review papers [17] for a compre-
hensive summary of the detailed techniques. As we can see
from the feature matching process, the non-rigid shape cor-
respondence can essentially boils down to two key compo-
nents: the shape signature and assignment algorithm. Given
an assignment algorithm, the accuracy of shape correspon-
dence algorithm is ultimately determined by the quality and
characteristics of the shape signature.

There have been a significant works on shape signatures in
computer graphics community. [15, 3] Although those shape
signatures are able to robustly capture the deformation in-
variant feature, all of them face with the symmetry ambi-
guity challenge. Early attempt to address the symmetry
ambiguity takes advantage of the distortion measures based
on conformal mapping[8, 10] or symmetry information[12].
However, these methods are restricted to meshes with same
genus and require the mesh to be quite close to each other.
Most recently, Yoshiyasu presented an orientation-aware lo-
cal shape descriptors that be used for finding correspondence
for shapes present incompleteness and symmetry [18].

1.3 Our shape signature: Local Diffusion Map
Signature

Based on the diffusion geometry, we proposed a local dif-
fusion map signature (LDMS) based on a novel strategy of
projecting heat diffusion distribution on 3D surface into 2D
image along the direction determined by gradients of heat
diffusion field. Figure 1 illustrates the pipeline of generating
LDMS, which mainly includes three steps. The first step is
mapping a 3D surface with heat diffusion distribution. A va-
riety of heat diffusion distribution, such as HKS, SIHKS, and
Heat Kernel Matrix, can be chosen for this purpose. HKS is
chosen in our development. The Figure 1(b) is a mapping of
HKS on 3D surface shown on Figure 1(a). And Figure 1(c)
and Figure 1(d) are closeup view of left and right hand region
for human model. The second step is generating LDMS for
repressive points sampled from 3D shape. The Figure 1(e)

and Figure 1(f) illustrate the LDMS for points sampled from
left and right hand respectively. The third step is produc-
ing a multi-scale LDMS for repressive points sampled from
3D shape. The multi-scale LDMS is produced by concate-
nating 2D images by projecting HKS based heat diffusion
distribution at different scales. As we can see from Figure 2,
the HKS (Figure 2(a))for sampled points from left and right
hand are almost identical, whereas the local depth projec-
tion (Figure 2(b)) and LDMS (Figure 2(c)) can differentiate
those points. In addition, multi-scale LDMS shown in Fig-
ure 2(c) provides much more discriminative power compared
to local depth projection (shown in Figure 2(b)).

2. METHOD

2.1 Heat diffusion and heat kernel signature
Heat kernel signature[15], which is developed based heat

diffusion, has been widely used for 3D shape processing [15].
Heat kernel signature is defined by:

HKS(x) = (ht1(x, x), ht2(x, x), . . . , htn(x, x)) (1)

where x denotes a point on the surface, HKS(x) denotes
the heat kernel signature at point x, ht(x, x) denotes the
heat kernel value at point x, tn denotes the nth sample point
in time. A number of attractive attributes, including invari-
ance to isometric transformation, robustness to noise, and
multi-scale representation, make HKS a popular signature
in community[15]. Our LDMS is developed based on HKS
as described below.

2.2 Local diffusion map signature (LDMS)
LDMS is proposed primarily to address two challenging

shape correspondence issues: structural variations and sym-
metry ambiguity. As shown in Figure 1, there are three
main steps in producing a LDMS and multi-scale LDMS for
a sampled point on 3D surface. Subsections below, which
include representative points sampling, local diffusion map,
stable orientation direction, and generation of LDMS, pro-
vide with detailed descriptions for LDMS computation.

Representative points sampling: A triangulated 3D
mesh normally contains a large number of vertex on its sur-
face. It is therefore very time-consuming and computation-
ally inefficient for a shape correspondence algorithm consid-
ering all of the vertex to establish a dense correspondence
between a pair of shapes. In our work, DoG detector [4] is
used to identify the representative samples on surface and a
density-invariant smoothing strategy [4] is employed to re-
duce the influence due to the sampling density. With result
of correspondence of sampled points, a dense shape corre-
spondence can be established by various approaches like [14].

Local diffusion map: In this paper, we define local dif-
fusion map as a regional heat diffusion distribution of HKS
values for a specific point at a time scale. For each point
on the surface (for example, a sampled point on right hand
as shown in Figure 1(d)), a local diffusion map reflects two
important information 1)the HKS values for its neighbour
points, 2) the spatial orientation of its neighbour points. As
described in [15], HKS capture intrinsic geometric feature for
points on surface. However, it loses the spatial orientation
information. This explains why HKS values for points sam-
pled from left and right hands are almost identical as shown
in Figure 2(a). Therefore, to capture symmetry-aware in-
formation, we need to further exploit the spatial orientation
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Figure 3: Diffusion map on a 3D surface at different
scales.
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Figure 4: Demonstration of projecting a local diffu-
sion map to 2D image.

information contained in local diffusion map. In this paper,
we developed a method of determining a stable orientation
from gradients of heat diffusion field, which is explained in
the following subsection. Note that local diffusion map also
has multi-scale property due to the multi-scale nature of
HKS. Figure 3 illustrate the diffusion map for the entire 3D
surface at six different scales.

Stable orientation direction: Previous work [4] sug-
gests the principle component vector based PCA analysis
is able to provide a reasonable orientation direction for a
surface point. However, this direction is not stable espe-
cially for points on the surface of non-rigid shapes with the
local deformations. In [18], the authors suggest that the
gradients of average diffusion distance field will give a more
stable orientation direction compared to the principle com-
ponent vector. In this paper, we develop a way to determine
the orientation from gradients of heat diffusion field which
is computed by averaging diffusion maps at all scales. Al-
though the determination of orientation direction is similar
to the approaches in [4, 18], our experimental experience in-
dicates that our orientation direction is more stable probably
due to multi-scale nature of diffusion map.

Generation of LDMS: The newly proposed LDMS is
generated by projecting local diffusion map into 2D image.
To perform a projection from a local diffusion map on 3D
surface to a 2D image, we require to have three critical pa-
rameters to set up a camera: camera position, viewing di-
rection and camera rotation (up direction). As shown in
Figure 4, the viewing direction is the opposite direction of
surface normal, the camera is placed at some position on
the normal direction line with a distance of d to the surface
point, and the camera rotation is set as the stable orienta-
tion direction determined in subsection above. The LDMS
for a surface point is generated by projecting a local diffu-

Figure 5: Shape correspondence over nonrigid mod-
els

(a) (b)

Figure 6: Shape correspondence over noise models
and partial models

sion map to a 2D image based on the camera setting. In
addition, the multi-scale property of the local diffusion map
can naturally give rise to a multi-scale nature for LDMS by
projecting multi-scale local diffusion map as shown in Figure
1(g). The multi-scale LDMS is able to boost the discrimi-
native power of the shape signature.

3. EXPERIMENT
We carry out a set of experiments for finding shape cor-

respondence and assessed the performance of our LDMS.
The 3D models were chosen from the following databases:
SCAPE [5], TOSCA [2], and Watertight [6] database. The
SCAPE library has 71 human meshes in total, which is 3D
human surface library with realistic muscle deformation in
different poses. The 3D models from datasets have under-
gone different types of geometric transformations which lead
to various levels of structural variations. Models in Figure
5, 6 are from TOSCA [2] and Watertight [6] database.

In the experiments, all the shapes are resampled to have
approximately the same amount of faces. The represented
sample points are selected by the DoG detector or by con-
sistent selection from ground truth correspondence. For
the heat diffusions we sampled 101 scales in time interval
of 0.0065. For each sample point, we generate six LDMS
by choosing local diffusion map at six different time scales
(1,21,41,61,81,101). We normalized the shape coordinates to
1/max(max(X−average(X)),max(Y−aver(Y )),max(Z−
aver(Z))) of original magnitude, where X,Y,Z are physi-
cal coordinates of all the input points. Each LDMS has a
resolution of 50 pixel × 50 pixel.

3.1 Shape correspondence for non-rigid mod-
els

In this experiment, we test the performance of LDMS for
finding correspondence on nonrigid shape models. We carry
out two sets of tests using 3D models present in different
types of nonrigid deformation. In the first test, we aim to
establish the shape correspondence between 3D models with
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articulated deformation. We selected a pair of 3D human
models at different poses as shown on the left side of Figure
5. In the second test, we aim to identify the shape correspon-
dence between 3D models with non-isometric deformation,
which is generally considered as much more challenging de-
formation for a shape correspondence method. We chosen
a 3D human model and a 3D homer model as shown on
the right side of Figure 5. All of the 3D models selected in
this experiment are present in symmetry. The shape corre-
spondence results can be found in Figure 5, where the red
lines link the corresponding points between two models. The
accurate correspondence shown in Figure 5 indicates that
our LDMS captures deformation-insensitive and symmetry-
aware geometric essence.

3.2 Shape correspondence for noise models
In this experiment, we will demonstrate that LDMS is

robust to numerical noise. To prepare the noisy model, we
simulate noise on the 3D model by randomly perturbing the
vertices of original models. As we can see from the Figure
6(a), there are a original model is a 3D human model without
noise and a noisy models generated from the original model
at a moderate noise level. We can see that the geometric
features of the noisy human model have significantly altered
and deteriorated. As indicated by the results in Figure 6(a),
our method performs very well in identifying correspondence
between models with moderate level of noise suggested by
the accurate corresponding pair of points linked by red lines
in the Figure.

3.3 Shape correspondence for incomplete mod-
els

In this experiment, we will design the test that validate
the performance of LDMS under the context of incomplete
models. To prepare the incomplete 3D models, we select
clean models from TOSCA dataset and manually remove
some parts from the clean models as shown in Figure 6(b).
The figure on left in Figure 6(b) illustrates a pair of 3D
human models with one model missing the right arm part.
The figure on right in Figure 6(b) displays a pair of 3D hu-
man models with one model having a hole on the neck. The
close-up figures provide a better view of the incompleteness
in original models. As indicated by the results in Figure
6(b), our method works very well for finding the shape cor-
respondence as demonstrated by the accurate corresponding
pair of points linked by red lines in the figure.

Methods Average Geodesic Error
LDMS 0.039
Blended 0.081

Mobius Voting 0.162
Best Conformal 0.113

GMDS 0.276
HKM 1 corr 0.272
HKM 2 corr 0.256

Table 1: Result average geodesic error on SCAPE
library. 100 uniform vertices are sampled.

3.4 Comparisons with state-of-the-art signa-
tures

In this section, we will conduct an experiment to compare
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Figure 7: Geodesic error for shape correspondence
on SCAPE. 100 uniform vertices are sampled.

the performance of LDMS to those of other state-of-the-art
shape signature. We compared the proposed method with
other methods including Blended Intrinsic Maps [8], Mo-
bius Voting [10], GMDS [1] and heat kernel map matching
[11] in the benchmark and the most recent SAM method
published in CVPR 2014 [18]. The geodesic distortion is de-
fined as the a distance shift from the identified corresponding
point to the true one. We provide two quantitative evalu-
ation based on geodesic distortion: 1) Average geodesic er-
ror, 2) Geodesic error vs Percentage of corresponding points
Curve (GP-curve). The average error measures the overall
performance of a shape correspondence based on the mean
geodesic errors produced by all corresponding points. As
we can see in Table 1, LDMS gives the best correspondence
performance as indicated the smallest average geodesic er-
ror. The GP-curve evaluates the performance of a shape
correspondence at a given level of geodesic error. For each
level of geodesic error, GP-curve provides with a percent-
age of corresponding points that have a lower geodesic er-
ror than the given one. In Figure 7, we plot all GP-curves
for five different methods. As we can see from the figure,
LDMS consistently gives the best performance at all levels
of geodesic errors as indicated by the fact that red GP-curve
consistently stays on the top of all other GP-curves. The re-
sults quantitatively validate the superior performance of our
proposed method over other state-of-the-art techniques in
identifying correspondences for non-rigid shapes with sym-
metry ambiguity.

4. CONCLUSION
Identifying accurate correspondence information among

shapes is of great importance in shape analysis such as shape
registration, segmentation and retrieval. In this paper, we
proposed a shape signature, named local diffusion map sig-
nature (LDMS), that capture the deformation-insensitive
and symmetry-aware geometric essence. Driven by LDMS, a
shape correspondence paradigm is developed to address the
challenging issues posed by shape structural variations and
symmetry ambiguity. Experimental results on 3D shape cor-
respondence demonstrate the superior performance of our
proposed method over other state-of-the-art techniques in
identifying correspondences for non-rigid shapes with sym-
metry ambiguity.
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