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ABSTRACT

Spatial and temporal patterns inherent in facial behavior
carry crucial information for posed and spontaneous expres-
sions distinction, but have not been thoroughly exploited yet.
To address this issue, we propose a novel dynamic model,
termed as interval temporal restricted Boltzmann machine
(IT-RBM), to jointly capture global spatial patterns and
complex temporal patterns embedded in posed and spon-
taneous expressions respectively for distinguishing between
posed and spontaneous expressions. Specifically, we consid-
er a facial expression as a complex activity that consists of
temporally overlapping or sequential primitive facial events,
which are defined as the motion of feature points. We propose
using the Allen’s Interval Algebra to represent the complex
temporal patterns existing in facial events through a two-
layer Bayesian network. Furthermore, we propose employing
multi-value restricted Boltzmann machine to capture intrin-
sic global spatial patterns among facial events. Experimen-
tal results on three benchmark databases, the UvA-NEMO
smile database, the DISFA+ database, and theSPOS data-
base, demonstrate the proposed interval temporal restrict-
ed Boltzmann machine can successfully capture the intrinsic
spatial-temporal patterns in facial behavior, and thus out-
perform state-of-the art work of posed and spontaneous ex-
pressions distinction.
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1 INTRODUCTION

Posed and spontaneous expression distinction has attract-
ed increasing attention in recent years due to its wide po-
tential application in human-computer interaction. Posed
expressions may deliberately disguise inner feelings, while
spontaneous expressions convey the true emotions. Since ex-
pressions are affected by many significant subject dependen-
t variations, and the facial appearance differences between
posed and spontaneous expressions are very subtle, distin-
guishing posed and spontaneous facial expressions is rather
challenging. Successfully capturing the inherent spatial and
temporal patterns may facilitate posed and spontaneous ex-
pression distinction.

Behavior research has indicated that there exist differ-
ences in temporal and spatial patterns between posed and
spontaneous expressions. Temporal patterns involve the speed,
amplitude, trajectory and total duration of onset and offset.
For example, Ekman et al. [7][6] revealed that compared with
posed expressions, the trajectory appears often smoother,
the total duration is usually shorter, and onset is more grad-
ual for spontaneous expressions in most cases.

Schmidt et al. [18] proved that maximum speed of move-
ment onset is greater in deliberate smiles than spontaneous
smiles. Maximum speed and amplitude are greater and du-
ration is shorter in deliberate eyebrow raises compared to
spontaneous eyebrow raises. Spatial patterns mainly consist
of the movement of facial muscles. Ekman et al.’s work [7]
indicated that orbicularis oculi are contracted during sponta-
neous smiles, but not during posed smiles; Although the zy-
gomatic major is contracted for both posed and spontaneous
expressions, its contraction is more likely to occur asymmet-
rically for posed smiles than spontaneous smiles [8]. Ross and
Pulusu [16] proved that posed expressions begin on the right
face whereas spontaneous expressions begin on the left face
in most cases, especially for upper facial expressions, such as
smile and surprise.

Inspired by the observations from behavior research, most
work defines specific features for posed and spontaneous ex-
pression distinction. For example, Cohn and Schmidt [2]
adopted temporal features, such as duration, amplitude, and
the ratio of amplitude to duration. Valstar [20] extracted
speed, intensity, duration, symmetry, trajectory and the oc-
currence order of brow actions from the displacements of
facial fiducial points. Dibeklioglu et al. [4] extracted ampli-
tude, duration, speed, and acceleration to describe dynam-
ics of eyelid, cheek, and lip corner movements. Seckington
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[19] defined six features to represent temporal dynamics, in-
cluding morphology, apex overlap, symmetry, total duration,
speed of onset and speed of offset.

After feature extraction, both static classifiers and dynam-
ic classifiers were investigated to distinguish posed and spon-
taneous expressions. The static classifiers, such as the linear
discriminant classifier [2], support vector machine [12] , k-
NN and naive Bayesian classifiers [5], were used to model the
mapping between features and expression types. The dynam-
ic classifiers, such as continuous hidden Markov model [5]
and dynamic Bayesian network [19] were adopted to model
the temporal dynamic for posed and spontaneous expression
distinction. All these research demonstrated the progress in
distinguishing posed and spontaneous expressions. However,
most current work employed different features and classifier-
s for posed and spontaneous expression distinction, without
explicitly capturing spatial and temporal patterns embedded
in posed and spontaneous expression respectively, and lever-
age such spatial and temporal patterns for posed and spon-
taneous expression distinction. We call them feature-driven
methods.

Only recently, Wang et al [21] proposed multiple Bayesian
networks (BN) to capture spatial patterns for posed and
spontaneous expressions respectively given gender and ex-
pression categories. We call it a model-based method. How-
ever, due to the first-order Markov assumption of BN, their
model can only capture the local dependencies among geo-
metric features instead of the global and high-order relations
among them. To address this issue, Wu et al [22] proposed to
use restricted Boltzmann machine to explicitly model com-
plex joint distributions over feature points , i.e. spatial pat-
terns, embedded in posed and spontaneous expressions re-
spectively, since RBM can model higher-order dependencies
among random variables by introducing a layer of latent u-
nits [10]. Although RBM can effectively capture global de-
pendencies among visible units through introducing hidden
units, hidden units are independent to each other given visi-
ble units. Introducing dependencies among hidden units will
increase the model power in explaining the patterns embed-
ded in the visible units. Therefore, Quan et al. [9] proposed
to employ latent regression Bayesian network to capture the
high-order and global dependencies among facial geometric
features. Unlike RBM, which is an undirected latent vari-
able model, latent regression Bayesian network is a directed
latent variable model, consisting of one latent layer and one
visible layer. Due to the “explaining away” effect in Bayesian
networks, LRBN is able to capture both the dependencies
among the latent variables given the observation and the de-
pendencies among visible variables. Such dependencies are
crucial for faithful data representation. All the three model-
based work demonstrate that explicitly capturing spatial pat-
terns are helpful to differentiate between posed and sponta-
neous expressions.

However, to the best of our knowledge, little work explic-
itly capture both spatial patterns and temporal patterns em-
bedded in posed and spontaneous expression, and leverage

such spatial and temporal patterns for posed and sponta-
neous expression distinction. Therefore, in this paper, we
introduce a novel dynamic model, termed as interval tempo-
ral restricted Boltzmann machine(IT-RBM), to jointly cap-
ture global spatial patterns and complex temporal patterns
embedded in posed expressions and spontaneous expression-
s respectively for distinguishing posed and spontaneous ex-
pressions. The proposed IT-RBM is a three-layer hierarchical
probabilistic graphical model. The top two layer is a multi-
value RBM, capture global spatial patterns, and the bottom
tow layer is a BN, modeling temporal patterns.

The proposed IT-RBM is a novel dynamic model. Unlike
commonly used dynamic model, such as HMM and DBN,
which can only handle three time point relations (precedes,
follows, equals), the proposed IT-RBM can provide more
complex relations through incorporating interval algebra. In-
stead of capturing local stationary dynamics only due to the
assumption of the first order Markov property and station-
ary transition, like HMM and DBN, the proposed IT-RBM
can model global temporal relations.

The most related dynamic model to our model is interval
temporal Bayesian network (ITBN) proposed by Wang et al.
[23]. An ITBN implemented as a BN, includes two types of
nodes: temporal entity nodes and temporal relation nodes.
The links connecting temporal entity nodes capture the s-
patial dependencies among the temporal entities. The links
connecting the temporal relation nodes with the correspond-
ing temporal entities characterize the temporal relationships
between the two connected temporal entities. Thus, the ITB-
N can capture both spatial patterns and temporal patters.
Wang et al. apply ITBN for expression recognition. Unlike
ITBN, which used BN to capture both spatial and temporal
relationships, we propose a hybrid graphic model, including
a RBM to represent spatial patterns and a BN to represent
temporal patterns. Therefore, our model can capture high
order spatial patterns, while ITBN can only model local s-
patial patterns due to the first order Markov property of
BN.

Compared with related work, the contributions of the pa-
per is as follows:

1. We propose a novel dynamic model, i.e. IT-RBM, which
can capture global spatial patterns and complex temporal
patterns jointly.

2. We propose to explicitly model spatial-temporal pat-
terns inherent in posed expressions and spontaneous expres-
sions respectively for posed and spontaneous expression dis-
tinction.

2 PROPOSED METHOD

We consider a posed expression or spontaneous expression
as a complex activity consisting of sequential or temporally
overlapping primitive facial events. Similar to [23], the prim-
itive facial events are defined as the motion of facial feature
points. Therefore, the movement of one feature point corre-
sponds to one primitive facial event, which records the mo-
tion state, the starting time when the feature point leaves its
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neutral position, and the ending time when the feature point
comes back to its neutral position. The interval relation be-
tween every pair of primitive facial events can be defined as
one of 13 interval relations proposed by Allen’s interval alge-
bra [1]. The primitive event pairs and their interval relations
which have larger variance between posed expressions and
spontaneous expressions are selected for posed and sponta-
neous expression distinction. Then, we build two IT-RBM
models with the selected primitive events and interval re-
lations for posed expressions and spontaneous expressions
respectively. During training, the constructed IT-RBMs cap-
ture the global spatial and temporal patterns jointly. During
testing, the label of a test sample is the model with larger
likelihood. The framework of our method is shown as Fig.1.In
this section, we will introduce primitive facial events extrac-
tion and temporal relations definition and selection firstly,
then present the proposed IT-RBM model exhaustively.
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Figure 1: The outline of recognition system

2.1 Primitive facial events extraction

Given sample videos of posed and spontaneous expressions
donated as S = {(Xα, Yα), α = 1, ..., Q}, where Xα is the
αth video with frame length of fα, and Yα is its expression
label, Q is the number of total videos. Each frame is a facial
image with Pno facial points.

We consider each expression video consists of sequential or
temporally overlapping primitive facial events. The primitive
facial events are defined as the motion of facial feature points.
Therefore, the movement of one feature point corresponds to
one primitive facial event, which records the motion state,
the starting time when the feature point leaves its neutral
position, and the ending time when the feature point comes
back to its neutral position. A primitive event shown as Fig.2,
denoted as V = ⟨ts, te,K⟩, (ts, te ∈ R, ts < te), ts and te
denote the start time and the end time, respectively. K is
a set of all possible states for the primitive events extracted
by k-means clustering.

Since the frame length of expression videos are not the
same, we normalize the frame length of all expression videos
to len, which is the smallest frame length in the training
set. The samples whose frame length is larger than len are
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Figure 2: (a) Facial muscle movement as captured by
the movement of facial points.(b) Duration for even-
t v1 and v2 and their temporal relation.(c) Typical
movement patterns of a primitive facial event.

equidistantly downsampled to len frames. Then we adopt K-
means clustering on the feature point displacement sequence
[Pno × len]Q to obtain K movement models.

2.2 Temporal relations definition and
selection

Allen’s interval algebra [1] defines 13 temporal relations, i.e.
I = {b, bi,m,mi, o, oi, d, di, f, fi, eq}, respectively represent-
ing before, meets, overlaps, starts, during, finishes, equals
and their inverses. Through calculating temporal distance
dis(vi, vj) according to Eq. 1, we can obtain the temporal
relation between each pair of primitive facial events from
Table. 1.

dis(vi, vj) = [tsi − tsj , tsi − tej , tei − tsj , tei − tej ]; (1)

Table 1: TD and Interval relation mapping table

No TR tsi − tsj tei − tej tsi − tej tei − tsj illustration

1 b < 0 < 0 < 0 < 0
 ! "!

2 bi > 0 > 0 > 0 > 0

3 d > 0 < 0 < 0 > 0
 !

"!

4 di < 0 > 0 < 0 > 0

5 o < 0 < 0 < 0 > 0
  !

"!

6 oi > 0 > 0 < 0 > 0

7 m < 0 < 0 < 0 = 0
 ! "!

8 mi > 0 > 0 = 0 > 0

9 s = 0 < 0 < 0 > 0
 !

"!

10 si = 0 > 0 < 0 > 0

11 f > 0 = 0 < 0 > 0
 !

"!

12 fi < 0 = 0 < 0 > 0

13 eq = 0 = 0 − −
 !

"!

After primitive facial event extraction, we obtain Pno ∗
(Pno − 1) pairs of primitive facial events and their corre-
sponding temporal relations for every sample. The discrim-
inative temporal relations should have larger variance be-
tween posed and spontaneous expressions, therefore, we pro-
posed to use Kullback-Leibler divergence [15] based score to
measure the difference between two probability distribution-
s.

Scoreij =
∑

DKL(Pvi∥Pvj ) +DKL(Pvj∥Pvi) (2)
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The score of event pair vi, vj is defined in Eq.2, where Pvi

Pvj is the conditional probability of relation between event

pair vi, vj takes all value TR ∈ I for the vthi (vthj ) expression
with vi(vj) ranging over all expressions, vi and vj represen-
t posed and spontaneous expression singly. DKL stands for
the KL divergence. All the primitive event pairs are ranked
according to their score. The top π pairs with m primitive
events are selected and their temporal relations will be in-
stantiated in different samples and temporal relations are
denotes by the bottom layer nodes of IT-RBM model.

For example, the upside of Fig. 1 illustrates primitive fa-
cial events. Specifically, (a) shows two primitive facial events.
Facial point P1 and P2 correspond to event v1 and v2 and
represent muscle motion of left wing of nose and right mouth
corner respectively. (b) simply draw the curve chart of two
events and T1, T2 are the corresponding duration for V1 and
V2. However, (b) is only the trace along the vertical direction.
Every primitive event has K possible states, which represen-
t their movement patterns over the time interval as shown
in (c). The first red line represents the point staying stil-
l throughout the process. The other states represent k − 1
movement patterns. For example, state vk denoted by black
dotted line represents that the point moves up and then
comes back. State v2 denoted by green solid line shows a
relatively more complex pattern in which the point moves
up in the beginning and moves down later.

2.3 Spatial and temporal patterns
capturing through IT-RBM Model

The proposed model IT-RBM is shown in Fig. 3. It is a hy-
brid graphic model, whose top part is a multi-value RBM
and the bottom part is a Bayesian network. From top to
bottom, the first layer contains n binary latent variables
hn ∈ {0, 1}. The second layer contains m visible nodes,
V k
m ∈ {1, ...,K} represents m selected primitive facial events

with K motion states, and the bottom layer contains R tem-
poral relation nodes, TR ∈ {1, ..., 13} represent 13 temporal
relations. The bottom part captures the complex temporal
relations while the top part models the global dependencies
among facial events, i.e. spatial patterns inherent in posed
or spontaneous expressions. The joint probability of the pro-
posed IT-RBM is shown in Eq. 3

P (V, TR) =
∑
H

P (V, TR,H) = P (TR|V )
∑
H

P (V,H) (3)

where

P (TR|V )=

R∏
r=1

P (TRr|π(TRr)), (4)

and TRr represents the rth temporal relation node, π(TRr)
are the two primitive event nodes that produce TRr. P (V,H)
is the joint probability of the top part multi-value RBM.

After primitive events extraction, we obtain training data
{vα, Lα}Qtrain , where Qtrain indicates the number of train-
ing samples of spontaneous or posed expressions. The goal of
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Figure 3: An example of IT-RBM model

model learning is to maximize the log likelihood as follows:

θ*=argmaxθ

(
1

Qtrain

∑
logP (v|θ) + logP (TR|v)

)
(5)

From Eq. 5, we can find that the log likelihood of IT-RBM
can be factorized into the sum of the log likelihood of RBM
and the log likelihood of BN. Therefore, we can train RBM
and BN separately.

As for multi-value RBM, the marginal distribution of the
visible units is calculated as Eq. 6,

p(v) =
1

Z

∑
h

p(v, h) =
1

Z

∑
h

e−E(v,h)

=
1

Z
e

m∑
i=1

K∑
k=1

bki vk
i

n∏
j=1

(1 + e
aj+

m∑
i=1

K∑
k=1

wk
ijv

k
i
)

(6)

where E is the energy function of multi-value RBM and is
defined in Eq. 7. {W,a, b} are the model parameters: wk

ij is a
symmetric interaction term between visible unit i that takes
on value k, and hidden unitj, bki is the bias of unit i that
takes on value k, and aj is the bias of hidden unit j.

E(v, h) = −
m∑
i=1

n∑
j=1

K∑
k=1

vki w
k
ijhj −

m∑
i=1

K∑
k=1

vki b
k
i −

n∑
j=1

hjaj

(7)
The gradient with respect to ΘR = {w, a, b} can be calcu-

lated as Eq. 8, where the angle brackets are used to denote
expectations under the distribution specified by the subscrip-
t that follows, and ε is a learning rate.

∆ΘR = ε
∂ log p(v)

∂ΘR
= ε

(⟨
∂E

∂ΘR

⟩
data

−
⟨

∂E

∂ΘR

⟩
model

)
(8)

Calculating the gradient involves inferring P (h, v|Θ), which
is intractable, so we use CD algorithm [11]. The conditional
distributions are given by softmax and logistic functions as
follows:

p(vki = 1|h) =
exp(bki +

∑n
j=1 hjw

k
ij)∑K

l=1 exp(b
l
i +

∑n
j=1 hjwl

ij)
(9)

p(hj = 1|v) = σ(aj +

m∑
i=1

K∑
k=1

wk
ijv

k
i ) (10)
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The algorithm of leaning multi-value RBM’s parameters us-
ing CD learning is shown as Algorithm 1.

Algorithm 1 The training algorithm for multi-value RBM
using CD learning

Require: Training data:vα = {0, 1, ...,K}m, latent nodes
number n, learning rate ϵ, maximum training time T

Ensure: Wk
ij,aj,b

k
i

1: Initialize: set W,a, b to small random values
2: for t = 1, 2, ..., T do
3: for j = 1, 2, ..., n do
4: Sample hαj ∼ p(hαj = 1|vα) with Eq.10
5: end for
6: for i = 1, 2, ...,m do
7: Sample vkβi ∼ p(vkβi = 1|hα) with Eq.9
8: end for
9: parameters update:

10: W ←W + ϵ(P (hα = 1|vα)vTα − P (hβ = 1|vβ)vTβ )
11: b← b+ ϵ(v1 − v2)
12: a← a+ ϵ(P (hα = 1|vα)− P (hβ = 1|vβ))
13: end for

As for BN part, parameters for BN involve the condition-
al probability distribution for each temporal relation node
TRij given its parents nodes vi and vj . After selection rou-
tine, BN structure and the number of parameters are de-
termined. The conditional probability of temporal relation
TRij given the primitive event pair vi vj holds regardless
of their moving patterns, only involved with their start and
end time. Obtained training data {vα, Lα}Qtrain contains
the interval time of each primitive event and their tempo-
ral relations, the goal of parameter estimation is to find the
maximum likelihood estimate of parameter ΘB , shown as
Eq. 11.

ΘB=argmax
ΘB

log
∑

Qtrain

logP (TR|v; ΘB) (11)

2.4 Posed and spontaneous expression
distinction

After training, we obtain an IT-RBM model given posed
and spontaneous expressions separately. During testing, only
geometric features provided. The label of a test sample t is
the class with greater log likelihood value according to Eq.
12. Where l∗ is the predicted label, C is the number of IT-
RBM models.

l∗ = max
l∈[1,C]

{logP (t|θl)} (12)

For the test sample t, the log likelihood that IT-RBM
trained on class l assign to t is as follows:

logP (t|θl) = log

(∑
h

exp(−E(h, t; θl))

)
−logZ (θl)+log(P (TR|t; θl))

(13)

where, it is intractable to calculate partition function Z
directly. Salakhutdinov and Murry proposed to use Annealed
Importance Sampling (AIS) [17] to estimate the partition

function of an RBM with binary visible units. Inspired by
this, we extend the AIS method to calculate the partition
function of multi-value RBM.

AIS estimates the ratio of partition function of the object
RBM to a base-rate RBM. Suppose we have two multi-value
RBM with parameter values θA = {WA, bA, aA} and θB =
{WB , bB , aB} that define probability distributions pA and
pB over same v ∈ {0, 1, ...,K}m, and hA ∈ {0, 1}nA , hB ∈
{0, 1}nB .

First, a sequence of intermediate distributions for τ =
0, ..., τ are defined as:

pτ (v) =
p∗τ (v)

Zτ
=

1

Zτ

∑
h

exp(−Eτ (v, h)), (τ = 0, 1, ..., τ),

(14)
where energy function is defined as Eq. 15. The unnormal-

ized probability over visible units can be estimated as Eq. 16,
where 0 = β0 < β1 < ... < βτ = 1.

Eτ (v, h) = (1− βτ )E(v, hA; θA) + βτE(v, hB ; θB) (15)

P ∗
τ (v) = e(1−βτ )

∑
i

∑
k bki

A
vk
i

n
A∏

j=1

(1 + e(1−βτ )(
∑

i

∑
k WkA

ij vk
i +aA

j ))

∗ eβτ
∑

i

∑
k bki

B
vk
i

n
B∏

j=1

(1 + eβτ (
∑

i

∑
k WkB

ij vk
i +aB

j ))

(16)

Then, we define a Markov chain transition operator Tτ (v
′; v)

that leaves pτ (v) invariant. The conditional distributions are
given by softmax and logistic functions:

p(hA
j = 1|v) = σ((1− βτ )(a

A
j +

∑
i

∑
k

(
wA

)k

ij
vki )) (17)

p(hB
j = 1|v) = σ(βτ (a

B
j +

∑
i

∑
k

(
wB

)k

ij
vki )) (18)

p(v
′k
i = 1|h) = (1− βτ )

exp(
(
bA

)k
i
+

∑n
j=1 h

A
j

(
wA

)k
ij
)∑K

l=1 exp((b
A)li +

∑n
j=1 h

A
j (wA)lij)

+ βτ

exp(
(
bB

)k
i
+

∑n
j=1 h

B
j

(
wB

)k
ij
)∑K

l=1 exp((b
B)li +

∑n
j=1 h

B
j (wB)lij)

(19)

Eqs. 17 and 18 are used to stochastically activate hidden
units hA and hB . Eq. 19 is then used to draw a new sample
v′. Finally, initial θA = {0, bA, 0}, ZA is calculated as Eq.
20.

ZA = 2nA
∏
i

∏
k

eb
k
i (20)

The detailed algorithm is shown as Algorithm 2
In Eq. 13, log(P (I|t)) is the likelihood of bottom BN,

when given test sample t combining with selection routine
their selected primitive facial event pairs and temporal rela-
tions are determined, so the probability of log(P (I|t)) can
be calculated easily.
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Algorithm 2 The AIS algorithm for capturing partition
function Z[17]

Require: Base-rate RBM’s parameters ΘA = θ0, Objective
RBM’s parameters ΘB = θβ , β ∈ [0, 1],

Ensure: Objective RBM’s ZB

1: for i = 1 to Mr do
2: for β = 0 to 1 do
3: Generate v1, v2, ..., vτ using Tτas follows:
4: Sample v1 from pA = p0
5: Sample v2 given v1 usingT1

6: ...
7: Sample vτ given vτ−1 using Tτ−1

8: end for
9: end for

10:
ZB
ZA
≈ P∗

1 (v1)

P∗
0 (v0)

P∗
2 (v2)

P∗
1 (v1)

...
P∗
τ (vτ )

P∗
τ−1(vτ−1)

= 1
Mr

Mr∑
i=1

ω(i) = r̂AIS

11: ZB = ZA ∗ r̂AIS

3 EXPERIMENT

3.1 Experimental Condition

In order to evaluate the performance of the proposed method,
we conduct posed and spontaneous expression distinction
experiments on three benchmark datasets, the UvA-NEMO
Smile (UvA-NEMO) database [3], the Extended DISFA (D-
ISFA+) dataset [13] and the SPOS dataset [14].

The UvA-NEMO database, the largest posed and spon-
taneous smile database, consists of 597 spontaneous smile
videos and 643 posed smile videos from 400 subjects. The D-
ISFA+ database includes 572 posed and 252 spontaneous ex-
pression videos with five expression categories, i.e., disgust,
fear, happiness, sadness, and surprise of 27 young adults.
The SPOS database provides visible and near infrared im-
ages, we utilize the visible images, including 84 posed and
150 spontaneous expression samples of 7 subjects with six ex-
pression categories,i.e., anger, disgust, fear, happiness, sad-
ness and surprise. The data distribution of three databas-
es are show in Table.2. We define facial primitive event as

Table 2: Number of samples

SPOS DISFA+ UvA-NEMO

Expression POSED SPON Expression POSED SPON POSED SPON

Anger 14 13 Disgust 163 81 553 473

Disgust 14 23 Fear 163 63

Fear 14 32 Happy 42 18

Happy 14 66 Sad 122 54

Sad 14 5 Surprise 82 36

Surprise 14 11 Total 572 252

Total 84 150

the motion of facial feature point in Section 2.1, therefore
we extract facial landmark points as features. For the UvA-
NEMO database and the SPOS database, 49 facial feature
points shown in the bottom right corner of Fig. 1 are ex-
tracted using SDM [26]. For the DISFA+ database, 68 facial
points are provided by database constructors. We utilize 49

points without the points of face outline. Recognition ac-
curacy and F1-score are used as performance metrics, and
10-fold subject-independent cross validation is adopted on
the UvA-NEMO database and the DISFA+ database. Since
the SPOS database consists of videos from only 7 subjects,
5-fold subject-independent cross validation is adopted.

We conduct posed and spontaneous expression distinction
experiments with three methods. The first one is the posed
IT-RBM, which captures spatial and temporal patterns si-
multaneously. The second one is the multi-value RBM, the
top part of the proposed IT-RBM which only models high-
order spatial patterns. The last one is HMM, the commonly
used dynamic model which can only obtain temporal pat-
terns.

3.2 Experimental results and analyses

Results of posed and spontaneous expression distinction ex-
periments with three methods on three datasets are shown
in Table 3. From Table 3, we can obtain the following obser-
vations:

First, the proposed IT-RBM performs better than multi-
value RBM with higher accuracy and F1-score on all databas-
es. Since the proposed IT-RBM can captures spatial and tem-
poral patterns embedded in posed and spontaneous expres-
sion simultaneously, while the multi-value RBM only mod-
el inherent spatial patterns. Furthermore, compared with
multi-value RBM, the improvement of the proposed IT-RBM
is more significant on the DISFA+ database and the SPOS
database than the UvA-NEMO database. Specifically on the
DISFA+ database and the SPOS database, the accuracy of
IT-RBM is 0.0667 and 0.0085 higher than those of multi-
value RBM and F1-score is increased by 0.0555 and 0.0166
respectively. While on the UvA-NEMO database, the accura-
cy and F1-score both increased by 0.0032. Since the DISFA+
database and the SPOS database consist of posed and spon-
taneous expressions with five and six expression categories
respectively, while the UvA-NEMO database includes only
one expression category, i.e. posed and spontaneous smile.
Therefore, compared with the UvA-NEMO Smile database,
the posed and spontaneous expression distinction is more
challenging on the DISFA+ database and the SPOS data-
base with more expression categories. In such case, the extra
temporal patterns captured by IT-RBM benefits the task of
the posed and spontaneous expression distinction more sig-
nificantly.

Second, the proposed IT-RBM is superior to HMM with
higher accuracy and F1-score on all databases. As shown
in Table 3, the accuracy of HMM method is lower than IT-
RBM by 0.3011, 0.1092 and 0.1325, and F1-score of HMM
is lower than IT-RBM by 0.2021, 0.0570 and 0.1013 on the
UvA-NEMO database, the DISFA+ database and the SPOS
database respectively. HMM, the commonly used dynamic
model, can only handle three time point relations (precedes,
follows, equals), and capture local stationary dynamics due
to the assumption of the first order Markov property and sta-
tionary transition. While the proposed IT-RBM can provide
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Table 3: Experiment results on three databases

dataset UvA-NEMO DISFA+ SPOS

method HMM RBM* IT-RBM HMM RBM* IT-RBM HMM RBM* IT-RBM

accuracy 0.6723 0.9702 0.9734 0.8046 0.8629 0.9296 0.7222 0.8547 0.8547
F1-score 0.7719 0.9708 0.9740 0.8768 0.8915 0.9470 0.7619 0.7952 0.8632

* RBM is the proposed multi-value RBM
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Figure 4: (a) Graphical depiction of temporal relations selected in UvA-NEMO. (b) an example of relation
between point 2 and 47. (c) frequencies of thirteen relations between point 2 and point 47 with respect to
posed and genuine expressions. X-axis represents the index of relationships.

13 complex temporal relations through incorporating inter-
val algebra and can model global temporal relations. These
result in better performance for posed and spontaneous ex-
pression distinction.

To further demonstrate the effectiveness of the proposed
IT-RBM in capturing spatial and temporal patterns inherent
in posed and spontaneous expressions, in Fig. 4 we graphicly
depict the selected primitive event pairs and temporal rela-
tions on the UvA-NEMO database. Fig. 4 (a) is the 40 select-
ed event pairs. We can find most links involved with points
around eyebrow, eyepit, and lips. Ekman et al.’s work [7] [8]
indicated that orbicularis oculi and the zygomatic major are
most related muscles in posed and spontaneous expressions.
Our findings is inconsistent with their observations.

Fig. 4 (b-1) and (b-2) show an example of temporal re-
lations between point 2 and point 47 in posed and spon-
taneous expression, and the histogram (c-1) and (c-2) are
the frequencies of all the thirteen relations between feature
point 2 and 47 in two expressions. We can find from Table
1 that in relation 3,6 and 11, ts2 − ts47 > 0 means that
event v47 start before event v2, while in relation 4,5 and 12,
ts2 − ts47 < 0 means that event v2 start before v47. What’s
more we can find from histogram, in posed expression the

frequencies of relation 4 and 12 are higher than relation 3
and 11, and in spontaneous expression the frequencies of re-
lation 3, 6 and 11 are higher than relation 4, 5, and 12, these
indicate that in posed expression v2 start before v47 in more
cases, in genuine expression v47 start before v2 in more cas-
es. Furthermore, point 2 and 47 represent the muscle of right
eyebrow and left lip corner singly, we can draw a conclusion
that posed expression begin on the right face and sponta-
neous expression begin on the left face in most cases. This
is in accordance with Ross and Pulusu’s [16] research.

3.3 Comparison with related work

In our work, we compare the proposed method with two kind-
s of methods, i.e, model-based and feature-driven methods.
Current model-driven methods of posed and spontaneous ex-
pression distinction mainly conducted experiments on the
NVIE database and the SPOS database. Since the NIVE
database only provide the onset and the apex frames of the
posed expressions, we can not conduct experiments using IT-
RBM on the NIVE database. We compared the performance
of the proposed IT-RBM with current model-driven methods
on the SPOS database as shown in Table. 4.
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Table 4: Comparison with related work of posed and
spontaneous expressions distinction on UvA-NEMO
and SPOS

Method UvA-NEMO SPOS

Cohn vs. Schmidt[2] 0.7726 0.7250
Dibeklioglu et al.[3] 0.8702 0.7500
Dibeklioglu et al.[4] 0.9290 0.7875

Wu et al.[24] 0.9140 0.7950
Wu et al.[25] 0.9395 0.8125

Wang et al [21] - 0.7479
Wang et al.[22] - 0.7607

Quan et al.[9] - 0.7607
IT-RBM 0.9734 0.8632

From Table.4, we find that the proposed IT-RBM outper-
forms state-of-the-art model based methods. Since Wang et
al. [22] proposed to use RBM to model spatial patterns for
posed and spontaneous expression distinction. Quan et al.
[9] proposed latent regression Bayesian network (LRBN) to
capture the spatial patterns for posed and genuine expres-
sions distinguishing. The current model based methods only
capture spatial patterns, while the proposed IT-RBM jointly
model spatial and temporal patters. Therefore, the proposed
IT-RBM can fully represent posed and spontaneous expres-
sions, and lead to superior performance.

On the UvA-NEMO smile database, we compare the pro-
posed method with state-of-the-art feature-driven methods.
The DISFA+ dataset is a new database, which is available for
research purpose just from June 2016. Till now, no work per-
forms posed and spontaneous expression distinction on this
database. Therefore, we can not compare with other work
on this database. The experimental results are shown in the
Table 4. We find on the UvA-NEMO database, the accura-
cy of IT-RBM is higher than result of Wu et al. [25] which
is the best performance of current state-of-the-art feature-
driven methods. They adopted completed LBP features from
three orthogonal planes and extracted robust and discrimina-
tive patterns to classify posed and spontaneous expressions.
Although current feature-driven methods model the inher-
ent spatial and temporal patterns to some extent through
defining discriminative features, they can not fully exploit-
ing spatial and temporal patterns embedded in posed or
spontaneous expressions through defined features. But the
proposed IT-RBM can successfully represent the spatial and
temporal patterns through its structure and parameters, and
thus achieves best performance.

4 CONCLUSION

In this paper, we proposed a novel dynamic temporal relation
and spatial structure based method termed as interval tem-
poral restricted Boltzmann machine(IT-RBM), jointly cap-
ture global spatial patterns and complex temporal patterns
embedded in posed expressions and spontaneous expressions
respectively for distinguishing two expressions. We consid-
er a facial expression as a complex activity that consists of

temporally overlapping or sequential primitive facial events,
which are defined as the motion of feature points. Moreover,
we introduce Allen’s Interval Algebra to depict more com-
plex temporal relations between primitive events through a
two-layer Bayesian network of bottom part of IT-RBM. Fur-
thermore, we propose a multi-value RBM to capture intrin-
sic global spatial patterns among facial events. An IT-RBM
contains three layers, hidden nodes layer the visible facial
primitive event nodes layer and the temporal relation nodes
layer. During training, we propose efficient learning algorith-
m to learn spatial patterns and temporal patterns simultane-
ously through maximum log likelihood. During testing, the
samples are classified into posed or spontaneous expression-
s according to the IT-RBM with the larger likelihood. We
extended annealing importance sampling to IT-RBM for cal-
culating partition function of multi-value RBM.

To evaluate the performance, we conduct the experiment
on three benchmark datasets, the results demonstrate the
ability of the proposed method in exploiting intrinsic glob-
al spatial-temporal patterns in facial behavior as well as its
advantage over existing methodologies for posed and sponta-
neous expression distinction. Moreover, compared to similar
method ITBN for expression recognition, the performance
indicated that IT-RBM is not only appropriate for sponta-
neous and posed expressions classification, but also can be
applied to different facial expression recognition.
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