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ABSTRACT
This paper presents a novel and effective audio based method
on depression classification. It focuses on two important is-
sues, i.e. data representation and sample imbalance, which
are not well addressed in literature. For the former one, in
contrast to traditional shallow hand-crafted features, we pro-
pose a deep model, namely DepAudioNet, to encode the de-
pression related characteristics in the vocal channel, combin-
ing Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM) to deliver a more comprehensive au-
dio representation. For the latter one, we introduce a ran-
dom sampling strategy in the model training phase to bal-
ance the positive and negative samples, which largely alle-
viates the bias caused by uneven sample distribution. Eval-
uations are carried out on the DAIC-WOZ dataset for the
Depression Classification Sub-challenge (DCC) at the 2016
Audio-Visual Emotion Challenge (AVEC), and the experi-
mental results achieved clearly demonstrate the effectiveness
of the proposed approach.

CCS Concepts
•Computing methodologies → Activity recognition
and understanding;
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1. INTRODUCTION
Major Depressive Disorder (MDD), usually simply named

depression, is a mental disorder characterized by a pervasive
and persistent low mood, accompanied by low self-esteem as
well as a loss of interest or pleasure in normally enjoyable
activities. It has negative impacts on a person’s family, work
or school life, sleeping and eating habits, and general health.
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When depression is left untreated, it can cause severe con-
sequences, e.g. addiction, self-injury, reckless behavior, and
even suicide. For its harmfulness, in recent years, MDD has
received increasing attention in many related communities.

Fortunately, medical studies [29] [24] show that depression
is curable, and early detection of depression is very impor-
tant to control it at an initial stage. Traditional approaches
of depression analysis are prevailingly dependent on the ver-
bal reports of patients, the behaviors reported by relatives
or friends, and the mental status examinations, such as the
Scale for the Assessment of Negative Symptoms (SANS [2]),
the Hamilton Rating Scale for Depression (HRSD [38]) and
the Beck Depression Inventory (BDI-II [26]). They all make
use of subjective ratings, and due to the lack of objective and
quantitative measurements, their results tend to be incon-
sistent at different times or in various environment. Besides,
they commonly require extensive human expertise and are
time-consuming. Therefore, it becomes a necessity to focus
on Automatic Depression Detection (ADD).

ADD is a young topic and has not been investigated until
2009 [8]. The following studies mainly analyze audio signals,
video signals, or both of them (see Sec.2 for more details).
In general, these methods employ a framework that first ex-
tracts affect related features from the vocal or/and visual
channel, and then builds certain classifiers or regressors for
prediction. However, to the best of our knowledge, there are
two crucial issues that are not well addressed in literature,
limiting the ADD performance. On the one hand, the ma-
jority of the previous attempts represent the vocal or visual
properties by using hand-crafted features. For instance, the
spectrum, energy, and Mel-Frequency Cepstrum Coefficients
(MFCCs) are widely exploited to encode the cues in the au-
dio modality, while Local Binary Patterns (LBP), Histogram
of Oriented Gradients (HOG), and Local Phase Quantiza-
tion from Three Orthogonal Planes (LPQ-TOP) are the rep-
resentative ones to describe the facial characteristics in the
video modality. They are designed based on the knowledge
of human beings in the specific domain, and report promis-
ing results. Nevertheless, since our cognition of depression
is still not so adequate, such features probably incur partial
representation of audio or video data, which leaves space for
improvement. More recently, deep learning techniques have
demonstrated their competency at many audio and video
based applications. They hierarchically learn high-level ab-
stracted features through a deep graph with multiple pro-
cessing layers and prove substantially superior to the shallow
feature based ones. Some attempts [16, 7] have been made
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for continuous affect recognition of two dimensions: Arousal
and Valence, but little progress is found in depression predic-
tion. On the other hand, most of current benchmarks suffer
from data imbalance between positive (i.e. depression) and
negative samples (as in AVEC 2016, the DCC challenge) or
among different depression intensities (as in AVEC 2013, the
DSC challenge), leading to a large bias in the classification
or regression model. Furthermore, a much longer signal of
an individual may highlight some person dependent prop-
erties that are not related to depression at all, making the
circumstance even worse.

This paper presents a novel and effective approach to the
Depression Classification Sub-Challenge (DCC) at the 2016
Audio-Visual Emotion Challenge (AVEC), aiming to clas-
sify whether a person is labeled as depressed or not using
audio data. It encodes the depression cues of the vocal sig-
nal in a deep model, namely DepAudioNet, consisting of
Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM). The one-dimensional convolutional layer
in CNN incorporates short-term temporal and spectral cor-
relations, the one-dimensional max-pooling layer captures
middle-term correlations and LSTM extracts long-term cor-
relations, producing a more comprehensive audio represen-
tation. Meanwhile, we introduce a random sampling strat-
egy to train the deep vocal model, which largely alleviates
the bias caused by the imbalance in uneven sample distribu-
tion. Experiments are conducted on the DAIC-WOZ dataset
used for the AVEC 2016 competition, and the performance
is greatly superior to the counterpart in the baseline, illus-
trating the effectiveness of the proposed approach.

2. RELATED WORK
Although there exist a large number of studies that ded-

icate to model the correlation between the emotional states
and the properties of visual or vocal clues, the effort on de-
pression classification (or depression prediction) is not that
extensive. In this section, we briefly review the recent meth-
ods on ADD, which can be roughly categorized into audio
based, video based, and multi-modal based, according to the
information adopted.

Video based methods employ spatial and temporal infor-
mation in the visual channel, where dynamic features are ex-
tracted from videos to capture depression related facial and
body motions, which are further fed into a standard classifi-
cation and regression backend to predict the depression level.
As far as we know, the earliest published attempt [35] on
automatic emotion modeling is based on the visual modal-
ity. The authors aimed at diagnosing schizophrenia, another
mental disorder more serious than depression, and proposed
a computational framework that creates probabilistic ex-
pression profiles for video data and potentially helps to au-
tomatically quantify emotional differences between patients
with neuropsychiatric disorders and healthy controls. Geo-
metric features were extracted based on the facial landmarks
and several probabilistic classifiers were trained. To incor-
porate temporal information, they propagated classification
results at each frame throughout the whole video, claim-
ing that temporal dynamics are essential to capture subtle
changes of facial expressions. Regarding depression itself,
the first study [8] follows this framework, where manual Fa-
cial Action Coding System (FACS) and Active Appearance
Model (AAM) were adopted to represent facial expressions,
and Support Vector Machine (SVM) and logistic regression

were exploited for decision making respectively. Its finding
suggests the feasibility of ADD and has positive impacts on
the clinical theory and practice. Recently, Cummins et al. [9]
compared Space-Time Interest Points (STIPs) and Pyramid
of Histogram of Gradients (PHOG) in their Support Vector
Regression (SVR) based depression prediction system and
found PHOG performed better in capturing visual varia-
tions. Wen et al. [36] extracted Local Phase Quantization
at Three Orthogonal Planes (LPQ-TOP) for representing
dynamic clues and utilized sparse coding and SVR to the
predict depression level. They both reported very competi-
tive results on the DSC challenge at AVEC 2013.

Compared with the features in the visual modality that
convey the temporal information, which is crucial for mod-
eling the facial expression changes, variations of speech pro-
duction, such as rhythm, stress, and intonation, also indicate
the changes of the emotional state and mental condition. An
early study shows that noticeable acoustic changes could be
aroused by even slight physiological and cognitive changes
[32]. Therefore audio-based ADD methods [37], [8], [9], [21]
are investigated to distinguish the arousal state of the speaker.
They analyze the audio features, such as prosodic and acous-
tic features, formant features, spectral, etc., which are sup-
posed to be related to the depression emotion. Williamson
et al. [37] explored two vocal tract representations, i.e.
formant-frequency tracks and Mel-cepstral features, to en-
code the vocal tract resonant frequencies and spectral shape
dynamics. With the two feature sets reflecting the changes
in coordination of vocal tract motion associated with MDD,
a Gaussian mixture model (GMM)-based multivariate re-
gression scheme was then designed to make the final predic-
tion. Later, they enhanced the approach by generating high-
level features from the low-level ones by a multi-scale corre-
lation structure and timing feature sets. In [33], Scherer et
al. investigated four voice quality features as biomarkers for
psychological distress, which are discriminative on a breathy
to tense dimension, and used an SVM for classification. Be-
sides, several studies were dedicated to the performance of
diverse acoustic features in terms of depression prediction.
In [28], a wide range of vocal features are explored, including
estimated articulatory trajectories, acoustic characteristics,
etc., combined with back-ends of SVR, Gaussian, and de-
cision trees, and comparable depression scale rating results
were achieved on the AVEC-2014 development set by using
the vocal channel only. For a more thorough review on ADD
using the audio modality, refer to [10].

The improvements of the audio based methods and the
vision based ones in depressive disorder analysis are always
staggered, and the recent years have witnessed the achieve-
ments in fusing these two types, and several studies have
suggested that such combination of the two complementary
modalities improves the performance of depression detec-
tion. Recently, Meng et al. [27] applied Local Binary Pat-
terns (LBP) [18] and Edge Orientation Histograms (EOH)
to encode the dynamic visual cues represented in the Motion
History Histogram (MHH) feature space, and then used Par-
tial Least Square (PLS) to predict depression levels; whereas
for audio processing, a set of spectral Low-Level Descrip-
tors (LLD) features are explored to encode the characteris-
tics of the audio, which are further fed to MHH to extract
change information of the vocal expression, followed by the
PLS based repression as does in the video process. The
fusion results outperformed either modality, which ranked
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Figure 1: Flowchart of DepAudioNet.

the first place in video-based methods in the AVEC-2013
challenge. Kächele et al. [20] presented a hierarchical clas-
sifier framework, which stacked a multilayer neural network
over the SVR ensemble, to recognize the depression state
and adopted the Kalman filter for the final audio-video de-
cision fusion, which improved the prediction accuracy on
the AVEC-2013 dataset. Chao et al. [6], investigated the
recent dominant deep learning models on this issue. The
extracted audio video features were firstly fused in feature
level as representation of the abnormal behavior, and then
the Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN) was exploited to describe dynamic temporal
information. They used multi-task learning to boost the
performance and reported competitive results on the AVEC-
2014 dataset. This study indicated the promising future of
exploiting the temporal information and both modalities in
automatic depression detection.

3. DEEP AUDIO DEPRESSION MODEL
Considering the superiority of deep features over the tradi-

tional shallow ones, this paper presents a novel deep model,
namely DepAudioNet, to encode the depression related tem-
poral clues in the vocal modality and predict the presence of
depression of a test audio sample. The entire framework, key
components (i.e. CNN and LSTM), and random sampling
training strategy, are described in the subsequent.

3.1 Approach Overview
The framework of DepAudioNet is illustrated in Figure 1,

and DepAudioNet is a serial combination of CNN and LSTM,
and it is thus expected to not only produce a high-level rep-
resentation of the raw waveform, but also to capture short-
term and long-term temporal variability.

Pre-processing is applied to the audio samples in advance.
In each audio file, the long-lasting pauses are removed ac-
cording to the timestamps located by a silence detector and
the rest slices containing speech of the individual are linked
together to generate a single file.

The Mel-scale filter bank feature, a low level audio descrip-
tor, is employed to preliminarily represent the vocal signal.
Each audio signal is split into several non-overlapping seg-
ments, on each of which a number of Mel-scale filter bank
features are computed. After standard normal variate nor-
malization, all the responses from the same segment are con-
catenated along the time axis, constructing a time-frequency
2D representation (as shown in Figure 2-(b)(d), which is fur-
ther fed into DepAudioNet as input.

In DepAudioNet, a one-dimensional convolution layer is
first exploited in the network structure, whose kernel size k is
generally smaller than 3, suggesting that a number of short-
term features are captured at this layer. Batch Normaliza-
tion (BN) [19] is then performed to make the intermediate
presentations subject to a standard normal distribution, ac-
companied with the reduced internal covariate shift [19] and
regularized network. The rectified activation further intro-
duces a nonlinear transformation and sparsity, followed by
a one-dimensional max-pooling layer and a dropout layer.
The pooling operation not only provides small translation
invariance on the time axis, and more importantly, it neatly
handles the middle-term temporal correlations by replacing
the value at a certain location with a summary statistic of
the outputs along a longer time window. An LSTM layer
and two fully connected layers are stacked at the end of the
network architecture, for the purpose of encoding long-range
variability along the time axis and making the prediction.
Combined with the convolution and max-pooling operation,
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(a) (b)

(c) (d)

Figure 2: Spectrogram and Mel-scale filter bank feature vi-
sualization. (a) and (b) are spectrogram and filter bank fea-
ture of one audio slice from the non-depressed class respec-
tively, (c) and (d) are spectrogram and filter bank feature
of one audio slice from the depressed class.

it provides a hierarchical representation that comprehen-
sively models the temporal properties in the vocal modality.
The cost function is binary cross-entropy, and the Stochastic
Gradient Descent (SGD) algorithm is used for optimization.
By a majority vote method over the whole segments, the
depression prediction of an audio is finally made.

3.2 Convolutional Neural Networks
CNNs have achieved breakthroughs [22] in image recogni-

tion recently and have been widely used as a powerful tool
for many related tasks, such as speech recognition and signal
processing [4].

Generally, a typical CNN contains one or more pairs of
convolution and max-pooling layers. A convolution layer’s
parameters consist of a set of learnable filters, which have a
small receptive field replicated along the whole input space.
A max-pooling layer partitions convolution layer activations
into non-overlapping rectangles and takes the maximum fil-
ter activation from these sub-regions.

There are two significant ideas making the convolution
layer useful and effective, i.e. local connectivity and weight
sharing. Local connectivity restricts that each neuron con-
nects to only a local region of inputs, leading to sparse in-
teractions [3]; and weight sharing reduces the number of the
parameters and makes CNN much more efficient than regu-
lar feedforward multilayer perceptrons. These two ideas are
illustrated in Fig. 3, where each node merely receives inputs
from the three nearest or local inputs, and moreover, the
weights w1 to w3 are restricted to be identical on the same
output feature map. The output oj can be expressed:

oj = f(

3∑
i=1

wixi+j−1) (1)

where wi stands for the weight, and xi+j−1 is the ith input
of node j, and f (·) is a non-linear activation function like
the sigmoid function or Rectified Linear Unit (ReLU).

It is common to deploy a pooling layer after a convolution
one, replacing the output of the net at a certain location with
a summary statistic of the nearby outputs [3]. The pooling
layer aims to reduce the resolution of feature maps and intro-
duce invariance to small variations in location. Max-pooling

Figure 3: Illustration of local connectivity and weight shar-
ing in convolution network.

is one of the most popular pooling operations, as in the up-
per part of Fig. 3, where each node is calculated by taking
the max value on the corresponding region.

Pooling is a form of non-linear down-sampling, and it pro-
vides the translation invariance and tolerance to minor dif-
ferences of positions of object parts, which is quite essen-
tial in this specific case of ADD, due to the fact that we
care more about whether depression feature is present than
where it is exactly in the audio signal [3].

There exist a number of studies [31, 13, 5, 30] that di-
rectly learn acoustic deep models from raw waveforms as
the manner in image recognition where raw pixels are usu-
ally the inputs to CNN. But a recent finding [31] shows it is
more efficient to build the models using some low-level audio
descriptors. MFCCs is one of the most popular audio repre-
sentations, whereas it is not suitable in this case, since Dis-
crete Cosine Transform (DCT) projects the spectral energies
into a new basis, which may not maintain the locality [1] re-
quired by CNN. Based on such observations, we exploit the
Mel-scale filter bank features as the input. Compared to
MFCCs, Mel-scale filter bank is much more appropriate for
local filtering in this CNN configuration. The Mel-scale filter
bank feature is computed by multiplying Short-Time Fourier
Transform (STFT) magnitude coefficients with the corre-
sponding filter, and it can thus be regraded as a non-linear
transformation of spectrogram. It builds 40 log-spaced fil-
ters according to the following Mel-scale:

Mel(freq) = 2595 · log10(1 +
freq

700
) (2)

The filter bank and spectrogram features of two audio slices
in the DAIC-WOZ database are visualized in Figure 2-(b)(d)
and (a)(c) respectively.

In the traditional CNNs for images recognition, the inter-
leaving convolution and pooling layers are used, and con-
volution kernel size and pooling size are often square. For
the audio signal, which can also be represented as an 2D
spectrograms over time and frequency, things are different.
In spectrogram representation, time axis and frequency axis
have different meanings, and they are asymmetric compared
to width and height in regular RGB or gray images. The
same spectral patterns in different frequency bands could in-
dicate totally distinct audio classes, and square convolution
and pooling in CNN used for image recognition would cause
confusion among different audio classes and weaken the dis-
criminative ability [11]. Therefore, in this study, we attempt
to use the one-dimensional convolution along the whole fre-
quency axis instead of square size filter to overcome this
problem. In particular, the convolution filter size is 40 × k
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Figure 4: Structure of LSTM Cell 1.

for Mel-scale filter bank, where k is the convolution kernel
width along the time axis associated with applications. And
accordingly, we use one-dimensional max-pooling. For au-
dio signal processing, one dimensional convolution handles
the short-term temporal correlations, and one-dimensional
max-pooling not only adds invariability along the temporal
axis, but also covers middle-term temporal correlations.

3.3 Long Short-Term Memory
In the previous studies as introduced in Sec.2, when the

features of the audio signal are available, SVM, tree-based
classifier, and logistic regression are often introduced for
depression prediction and report state of the art results.
However, they do not explicitly consider time variability.
They generally assume the independence of samples and are
sequence-agnostic [25]. For sequence samples, such as audio
signals, where a long-range dependency exists, these meth-
ods tend to lose useful information.

Hidden Markov Model (HMM), a statistical Markov model
where an observed sequence is modeled with unobserved
states, is capable of capturing time dependencies and has
achieved great success in speech analysis. Due to the Markov
assumption, each hidden state depends only on the imme-
diately previous state, and thus makes it difficult to model
long-range dependencies in sequence data. Although HMM
can take a larger context window into account, it will make
the state space exponentially grow with the size of the win-
dow [25]. Besides, the time complexity of Viterbi, a dy-
namic programming algorithm to perform efficient inference
in HMM, is O(T ×|S|2), where T is the sequence length and
S is the state space. When the state space is large, HMM
becomes infeasible.

Recurrent Neural Networks (RNN) do not make the Markov
assumption in theory, and they can capture long-term de-
pendencies. LSTM [17] is adopted to overcome the vanish-
ing gradients problem, and it has the ability to model much
longer temporal structure than a vanilla RNN by introduc-
ing memory cells. The LSTM cell used in this paper is based
on [15], illustrated in Fig. 4. The computation in the LSTM
model proceeds according to:

1This picture is credited to https://github.com/shi-yan/
FreeWill/tree/master/Docs/Diagrams

Figure 5: Generation procedure of a mini-batch in the train-
ing phase (the depressed and not depressed classes are de-
noted by “1” and “0” respectively).

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (4)

ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc) (5)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (6)

ht = ot � tanh(ct) (7)

where σ is the sigmoid function, � is element-wise multipli-
cation, W is the weight matrix whose subscripts have obvi-
ous meaning, i, f , o and c are the input gate, forget gate,
output gate, and cell memory respectively, and bi, bf , bo,
and bc are corresponding bias terms.

The LSTM layer used in this paper is just stacked after the
final CNN layer and then follows two full connected layers,
which is illustrated at the end of Figure 1.

3.4 Random Sampling
A major problem in learning shallow or deep depression

models lies in uneven sample distribution. Many current
benchmarks suffer from data imbalance between positive and
negative samples or among different depression levels, which
incurs a large bias in classification or regression. For exam-
ple, in the DAIC-WOZ database provided by AVEC 2016 for
the DCC challenge, the number of non-depressed subjects is
about four times bigger than that of depressed ones in both
training and development parts. If these samples are directly
adopted for learning, the model will have a strong bias to the
non-depressed class, thus making it not reliable. Moreover,
regarding the length of each sample, a much longer signal of
an individual may emphasize some characteristics that are
person specific, which tends to deteriorate the situation.

To solve this problem, we introduce a simple yet effective
scheme by random sampling for training as in Fig. 5.

In our case, we first conduct random cropping on each
pre-processed audio file, and make the inputs to CNN have
equal proportion for every subject. This operation is to min-
imize the influence of characteristics of individual subjects.
We then split the randomly cropped slices into equal parts.
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Table 1: Performance of Mel-scale filter bank features of different parameters (values of non-depression in brackets).

Partition time window
W

max-pooling
length l

F1 score Precision Recall

Baseline [34] - - 0.41 (0.58) 0.27 (0.94) 0.89 (0.42)

Development 100 3 0.39(0.64) 0.26(0.88) 0.72(0.50)

Development 120 3 0.52(0.70) 0.35(1.00) 1.00(0.54)

Development 140 3 0.36(0.71) 0.27(0.85) 0.57(0.61)

Development 100 5 0.38(0.73) 0.29(0.86) 0.57(0.64)

Development 120 5 0.42(0.70) 0.29(0.89) 0.71(0.57)

Development 140 5 0.35(0.68) 0.25(0.84) 0.57(0.57)

Table 2: Performance of the spectrogram features of different parameters (values of not-depression in brackets).

Partition time window
W

max-pooling
length l

F1 score Precision Recall

Baseline [34] - - 0.41 (0.58) 0.27 (0.94) 0.89 (0.42)

Development 100 3 0.38(0.64) 0.26(0.88) 0.71(0.50)

Development 120 3 0.48(0.63) 0.31(1.00) 1.00(0.46)

Development 140 3 0.33(0.77) 0.27(0.83) 0.43(0.71)

Development 100 5 0.30(0.72) 0.23(0.82) 0.43(0.64)

Development 120 5 0.52(0.70) 0.35(1.00) 1.00(0.54)

Development 140 5 0.40(0.76) 0.31(0.86) 0.57(0.68)

For non-depressed samples, we perform random sampling
to make the size match the one of depressed samples. For
Mel-scale filter bank features, every rectangle produces a
40×W representation in our configuration, this representa-
tion becomes one sample in mini-batch. Referring to Fig. 5,
every mini-batch contains 18 samples, and half of them come
from the depressed class while the other half from the non-
depressed class. Finally, we shuffle every mini-batch.

Random sampling contributes to dealing with data im-
balance in two-fold. For the first, it minimizes the effects of
individual subjects by randomly cropping on the audio sig-
nal to guarantee that the inputs to the network have equal
parts from every subject. For the second, it randomly picks
samples from non-depressed classes to compose mini-batches
which have equal parts from two classes. These two opera-
tions make the network generalize well.

4. EXPERIMENTAL EVALUATION
To evaluate the effectiveness the proposed DepAudioNet,

we carry out extensive experiments on the DAIC-WOZ dataset,
in the Depression Sub-Challenge at AVEC 2016. The dataset,
experimental protocols, and prediction results are introduced
in the following subsections.

4.1 Dataset
DAIC-WOZ is part of a large corpus, namely the Distress

Analysis Interview Corpus (DAIC) [14], which contains clin-
ical interviews designed to support the diagnosis of psycho-
logical distress conditions, such as anxiety, depression and
post-traumatic stress disorder. The interviews are collected
by a computer agent that interacts with people and identi-

fies verbal and non-verbal indicators of mental illness [12].
This collection includes audio and video recordings and ex-
tensive questionnaire responses, where the part of the corpus
contains the Wizard-of-Oz interviews, conducted by an ani-
mated virtual interviewer called Ellie, controlled by a human
interviewer in another room. Samples are transcribed and
annotated for a variety of verbal and non-verbal features.

4.2 Parameter Setting
The Depression Sub-Challenge (DSC) at AVEC 2016 at-

tempts to detect if depression exists in the human-computer
interaction as indicated by the PHQ-8 score [23], which is a
self-reported heath scale. It is a binary classification task,
and the the averaging F1 score is used for assessment.

In feature extraction, 40 Mel-scale filters are calculated
on each audio segment in total. In particular, the frequency
ranges from 130 Hz to 6854 Hz, the size of the Hanning win-
dow Wfft is 1024, and the audio sample rate is 16000 Hz,
which leads to a covering domain of 1024/16000 Hz=0.064s;
accordingly, the hop size is 32ms, half of the analysis win-
dow. The time window size of the segment W is 120, which
is determined in cross-validation on the development set,
and the 120 normalized responses from the same segment
are concatenated along the time axis, covering an audio clip
of (W × Wfft/2 + 1)/16000 ≈ 3.84s. Meanwhile, besides
the Mel-scale bank filter features, we also adopt another
transformation of the spectrogram, which is the magnitude
of STFT of audio signal, to evaluate the impacts of LLD
features, and the same configuration is employed as for the
Mel-scale filter bank features, except that the feature dimen-
sion is 513.

In DepAudioNet, we apply 128 convolution maps being of
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3× 1 on the time-frequency of 2D representation capturing
the variability of 64ms precision, with the max-pooling op-
eration on a region being size of 3× 1, incorporating longer
time correlations, and the node numbers in the last two fully
connected layers are set to 128 and 1, respectively. In the
step of random sampling, each mini-batch contains 18 vocal
samples, which come evenly from both classes.

4.3 Results
We analyze the experimental results at three layers: (1)

comparison with the baseline; (2) parameter analysis; and
(3) comparison of diverse low level audio features.

Table 1 displays an overview of the depression classifica-
tion results based on the Mel-scale filter bank features with
varying parameter values. From this table we can see that
the best performance in terms of F1 score achieved by the
proposed DepAudioNet is 0.52 (0.70) with the time window
and max-pooling length set at 120 and 3 respectively, and it
is obviously superior to the averaging baseline 0.41 (0.58).
Besides, the corresponding precision and recall also outper-
form the ones in the baseline. Particularly, the precision for
class non-depressed is up to 100%, which clearly proves the
effectiveness of the proposed method.

Furthermore, it can be seen from Table 1 that with the
max-pooling length fixed, the best results are always reached
when the time window sizeW is set to 120. The reason lies in
that the proposed DepAudioNet requires a proper compro-
mise between the long-range time variety and the modeling
capability. Theoretically, LSTM is able to handle the input
of arbitrary length, whereas the performance declines when
encountering rather long sequences in practice. Conversely,
the audio clips do not convey much information about the
variability along time axis if the window size is quite small,
which weakens the model’s ability in discrimination. While
with the time window fixed, a smaller max-pooling length
generally gives better results.

Finally, we conduct the same experiment using the spec-
trogram feature, and the results are presented in Table 2.
The spectrogram feature reaches the top performance, with
the max-pooling length set at 5 and the time window size
at 120. When we compare their corresponding results in
Table 1 and 2, we can see that the figures are comparable.
Considering the fact that Mel-scale filter bank feature is a
further non-linear transformation of spectrogram, DepAu-
dioNet indeed learns such information that is beneficial to
good audio representations.

5. CONCLUSION
In this paper, a novel deep neural network, DepAudioNet

is proposed for ADD. This hierarchical structure delivers a
comprehensive audio representation by capturing the short-
term and middle-term temporal and spectral correlations
with CNN, and extracting the long-term correlations via
LSTM. Moreover, a random sampling strategy is adopted
to balance the uneven sample distribution in this specific
case. Evaluations are carried out on DAIC-WOZ used for
the AVEC 2016 competition, and the results demonstrate
the effectiveness of the proposed method.
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