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ABSTRACT
Most existing video segmentation methods are focused on
extracting the primary objects in test video sequences. They
assumed that only one object appeared through the whole
video sequences, which is impractical in many applications.
In this paper, we focus on the object segmentation from the
long video sequences which consist of many different scenes,
shot cuts and various motion patterns, etc. In order to solve
this problem, we propose a framework to segment the objects
in relative video shots, while discarding the irrelative video
shots. A graph is constructed to model the video object
detection and final segmentation is obtained by getting the
superpixels in the detection boxes. We also introduce a new
long video segmentation dataset which corresponds to the
pixel-wise ground truth. The experiments demonstrate that
our proposed method can deal with the object segmentation
in long video sequence.

Categories and Subject Descriptors
I.4.6 [Image Processing and Computer Vision]: Seg-
mentation—Video segmentation

General Terms
Algorithms
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Long video sequence, Segmentation, Graph

1. INTRODUCTION
Video segmentation extracts the object through the whole

videos with relative frames, which is widely used in action
recognition, video analysis. Compared with the object seg-
mentation from images, video segmentation utilizes not only
the information in single frame but also the relationship be-
tween adjacent frames. Many existing methods have been
proposed to obtain the foreground in video by extending the
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static and dynamic information, such as shortest path video
segmentation [18, 19], key-segments video segmentation [8],
maximum weight clique based video segmentation [12], and
incremental learning based video segmentation [9].

Although these methods have successfully segmented the
objects in the popular test sequences, such as SegTrack Dataset
[15] and GaTech Segmentation Dataset [6], they assumed
that the primary objects appeared in each frames and no
shot cuts were present in these sequences. While this as-
sumption is strong and impractical in many real applica-
tions, such as movies, long videos and edited videos. Many
complex situations may frequently appear in these videos,
such as suddenly scene change, multiple objects appearing
across in different shot cuts, uncertain motion pattern, etc.
When all the situations arise in a long video sequence, how
to extract the object in the relevant video shots is challenge.

In order to declare our new problem for long video se-
quences object segmentation, we introduce a new bench-
mark video segmentation dataset, LongVideoSeg dataset.
The LongVideoSeg dataset contains one video which con-
sists of 10000 frames from various shot cuts with multiple
objects and different scenes. All the video frames are an-
notated with pixel-wise groundtruth for specific classes by
human. In order to get the specific-class objects prior in-
formation, few bounding boxes corresponding to class labels
are provided with some noise data.

In this paper, we proposes a new framework to solve the
long video sequence segmentation. We cluster the given
bounding boxes and utilize the correlation among them to
discard noisy boxes. The long video sequence is divided into
shot cuts with consistent scene and the relevant shot cuts are
found with the help of clustering object priority. We model
the video object detection process as an energy minimiza-
tion problem which is optimized via dynamic programming.
Finally, some subjective and objective experiments validate
our method on our new dataset.

2. RELATED WORK
Most existing video segmentation methods pay much at-

tention to extracting primary object in single video sequence.
Several methods proposed to segment the primary object by
discovering the most objectness segments with appearance
and motion information. Lee and Kim [8] firstly utilized
spectrum clustering to discover the segments with the high
static and dynamic scores and generate foreground prior for
spatial-temporal graph cuts. Ma [12] utilized the spatial and
temporal mutex constrain to model objects discovery as con-
strained maximum weight cliques. Zhang [19] constructed
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Figure 1: The flowchart of our proposed method.

directed acyclic graph to find the primary object regions
based on appearance and motion similarity. These meth-
ods focus on single object appeared in each frames which
are unsuitable for real unconstrained video sequences. Li
[9] modeled the many figure-ground segments tracking as a
incremental learning problem. Meanwhile, Banica [1] devel-
oped the multiple segments hypotheses as salient segment
chain composition. These methods can deal with multiple
objects in a successive video sequence.

Recently, in order to segment object in different video
sequence, video cosegmentation is an alternative method to
extract the common objects from two or multiple videos.
Several methods [2, 14, 7] have been proposed to extract
the common object from two or more videos, which assumed
that the target object appeared in all videos. Liu [11] and
Fu [5] proposed methods to solve the multiple foreground
video cosegmentation. Their methods are constrained in
the assumption that the common objects must appear in
two or multiple videos. Zhang [20] proposed a maximum
weight cliques based video cosegmentation to discard the
assumption on the target objects appearance in all videos.
Wang [17] presented an extremely weak supervision video
cosegmentation to discover video object in relevant frames
and cosegment in different videos.

3. PROPOSED METHOD
Given a long video sequence with a few specific-class bound-

ing boxes, we present a new framework to solve the segmen-
tation in a long video sequence. Fig. 1 overviews our pro-
posed method. The framework consists of three steps: (1)
We simultaneously cluster the given bounding boxes into
subclasses and discard the noise boxes which are incorrect
detection. (2) Given a long video sequence, we divide it into
shot cuts and rank them by video-level class scores with
the help of subclass bounding boxes to discover the relevant
frames which the target object appears in them. (3) A graph
is constructed to model the object detection process and the
final segmentation is generated via these detection boxes.

3.1 Data Clustering and Denoising
Since the given specific-class bounding boxes are detected

by DPM [3] and preserved upon a certain threshold, some
noise data will be inevitably introduced into the class data.
In this step, we avoid the noise data to contaminate the ob-
ject prioriry. Firstly, we cluster the given bounding boxes
via their height/width into K clusters. The noisy bounding
boxes is independent of class information, so they are clus-
tered into different subclasses which help us to prevent them
into object trajectories. Secondly, for each subclass we cal-
culate the correlative matrix in term of their corresponding

Figure 2: The object tracklet.

overlap rate. We observe that the more overlap the adja-
cent bounding boxes have, the more likely the two boxes are
a same object. So an object trajectory corresponds to the
higher overlap rate and successive bounding boxes, the noisy
data have lower overlap rate due to their independence, as
show in Fig. 2. Hence, we generate object tracklets as the
subclasses positive samples and discard the noise data.

3.2 Generate and Identify Relevant Shot Cuts
Given a long video which is edited with many different

shot cuts, we need to generate each single shot cut, i.e. iden-
tify the start and end points for a successive frame sequences.
In general, a single shot cut is motion smoothness and object
consistency, which is comfortable to handle with. We firstly
identify the start and end point for the different shot cuts.
Given a set of video frames F = {fi, 1 ≤ i ≤ N}, where N
is the frame number for the long video sequence. We denote
S = {si, 1 ≤ i ≤ N − 1} as the inter-frame difference, i.e.,
si = 1

N

∑
x,y∈I(fi+1 − fi), where N is the pixel number in

a frame, and x, y are the position in image I. We smooth
s and add a threshold on it, and then the adjacent frames
switched to different scene will yield a high response. The
response points beyond the threshold are treated as the start
and end points for the shot cuts.

After generating the shot cuts, we discovery the relevant
shot cuts by matching the weighted histogram of shot cuts.
We rank the matching distance and select the top N nearest
shot cuts as the relevant shot cuts.

3.3 Video Object Detection
We treat the object detection as an optimization of model.

A directed solution is to construct a graph such as Fig. 3.
In this graph G = (V, E), each node vi ∈ V denotes a bound-
ing box in corresponding frame and each edge eij ∈ E de-
notes the similarity between two bounding boxes in adja-
cent frames. In this model, the task is to obtain the state
for each node, and the state space for each node L = {1 ≤
li ≤ N, 1 ≤ i ≤ N}, is the bounding box position in current
frame. Inspired by [4], our cost function is defined as:

E =
∑
i∈V

Ui(li) +
∑

(i,j)∈E

Vi,j(li, lj) (1)
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Figure 3: Connection of nodes in adjacent frames.

The energy function consists of unary terms Ui(li) and
pair-wise term Vi,j(li, lj), which represent the objectness
scores of detected bounding box and smoothness between
two bounding boxes in adjacent frames [10], respectively.

Ui(li) is calculated by Ui(li) = B(li)
Area(li)

, where Area(li)

is the area of the li-th bounding boxes, and B(li) is the
score of the sliding windows detection. This unary term
can preserve the tightness of the detection boxes. In or-
der to obtain the objectness score, we train an appearance
model for the target object via GMM in the color space,
O = {πo(k), µo(k), νo(k), o ∈ {0, 1}, k ∈ {1, ...,K}}. Then
frames in relevant shot cuts can be generated a pixel-wise
foreground object likelihood. We use the integral image
[16] to speed up the objectness scores calculation for unary
terms. Hence, the unary term can be calculated in constant
time. Then the pairwise terms are calculated the similar-
ity of the normalized color histograms for adjacent nodes
bounding boxes.

Vi,j(li, lj) = 1− exp{−χ2(li, lj)} (2)

Where χ2(li, lj) = 1
2

∑Nd
b=1

(hli
(b)−hlj

(b))2

hli
(b)+hlj

(b)
, hli is the color

histogram of bounding box li in frame i, and Nd is the num-
ber of histogram bins. Minimizing the cost function Eq. 1
will obtain the optimal state for each node, i.e., the optimal
detection box for each frame.

In order to optimize Eq. 1, an optimization method via
dynamic programming is summarized in Alg. 1. The algo-
rithm finally outputs the optimal state for each node, i.e.,
the optimal center position Lab and scale Sstar for detected
bounding box. After obtaining the detected bounding boxes,
we extract the superpixels in the detected bounding boxes
as the final object segmentation.

4. EXPERIMENTS
In order to verify our proposed method, a new benchmark

database, LongVideoSeg dataset, is introduced in this paper.
The video sequence contains 10000 video frames with people
and cheetah categories, which are annotated by pixel-wise
groundtruth manually. Given by a few bounding boxes for
above two categories with some noise detections, the task is
to obtain the pixel-wise labels for the each object class.

We define the evaluation metrics in three situations:
(1) For the object class k, the groundtruth annotation and

segmentation masks all exist in these frames. The evaluation
score is calculated by intersection-over-union.

(2) The evaluation score is defined as zero if and only
if one of groundtruth annotation and segmentation masks
exists in the frames.

(3) The test frames don’t contain the object and the seg-
mentation masks also don’t exist. We don’t consider the
evaluation into our scores.

Our evaluation metric is finally defined as follows:

Algorithm 1 Algorithm for Video Object Detection

Input:
Video shot cut F = {fi, 1 ≤ i ≤ N};
Foreground likelihood map, M = {mi, 1 ≤ i ≤ N};
Scale for sliding windows, S = {sk, 1 ≤ s ≤ K};

Output:
Detected bounding boxes {Lab(i), Sstar(i), 1 ≤ i ≤ N};

1: for i = 1 : N do
2: for s = 1 : K do
3: calculate Ui(li, s) by integral image, where li ∈

{1, ..., |L|} is the position for each node.
4: end for
5: end for
6: for i = 2 : N do
7: for li = 1 : |L| do
8: calculate wli,s(li−1, s) by Eq. 2, where li−1 ∈ N (li)
9: l∗, s∗ ←− argmaxli−1∈N(li),s∈{1,...,K}(B(li−1, s) +

wli,s(li−1, s))
10: B(li, s) = minli−1∈N(li),s∈{1,...,K}(B(li−1, s) +

wli,s(li−1, s) + Ui(li, s))
11: record the best child node for current position

L(li) = l∗

12: record the best state of child node S(li, s) = s∗ for
position l∗

13: end for
14: end for
15: trace back from i = N frame

l∗, s∗ ←− argmaxli∈L,s∈1,...,KB(li, s)
16: Lab(N) = l∗, Sstar(N) = s∗
17: for i = N − 1 : 1 do
18: Lab(i) = L(Lab(i+ 1))
19: Sstar(i) = S(Lab(i+ 1), Sstar(i+ 1))
20: end for

Score =


Mi

⋂
Gi

Mi
⋃

Gi
situation 1

0 situation 2

not consider situation 3

(3)

To our knowledge, there are no existing methods to per-
form multiple objects segmentation in long video sequences.
We compare our proposed method with two baseline meth-
ods and FastVideoSeg [13]. In order to validate the first step,
i.e., data clustering and denoising, Baseline1 is designed to
directly model the foreground prior by GMM while step 2
and step 3 remain unchanged. This design evaluates the effi-
ciency of the foreground map correctness by the noise data.
The more correctly the foreground maps are generated, the
higher accuracy our method gives. The second method Base-
line2 is designed to randomly select the relevant shot cuts
for step 2 and not to change other steps, which can evaluate
the correctness of our step 2. Finally, [13] is used to compare
with our step 3, i.e., detection and segmentation algorithm
only on our detected relevant shot cuts.

Some subjective results are shown in Fig. 4 for our method
and Baseline1. In this figure, our method generates more
accurate foreground prior and leads to higher detection pre-
cision by eliminating the noise data than Baseline1. Specif-
ically, the bounding box can detect the people more com-
pletely by our method. Cheetah detection by our method
can locate the main object in these frames but Baseline1
loses the object due to the noise data. We also compare our
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Figure 4: Comparison between our method and
Baseline1. From top to bottom: original frames,
foreground map by Baseline1, detection by Base-
line1, our foreground map, our detection.

Table 1: IoU of our method and compared methods.
Class Baseline1 Baseline2 [13] Ours
people 38.62 9.27 20.38 40.35
cheetah 10.60 4.03 18.80 24.97

method with [13]. The subjective segmentation results are
shown in Fig. 5. This figure shows that [13] only segments
the face of the people and feet of the cheetah. The reason
is that the performance of [13] seriously depends on optical
flow, which is unreliable in many cases. In people shot cut,
the person only twists her head. In cheetah shot cut, the op-
tical flow calculation is inaccurate for the object. The above
two situations will result in an error result by [13]. The
results of our method don’t utilize optical flow information
and models the robust object detection as an energy mini-
mization problem, which leads to the better performance.

Tab. 1 shows the results of our method and the compared
methods. It can be seen that our method obtains 40.35%
in people and 24.97% in cheetah, which outperforms other
compared methods. From above experiments, the subjective
and objective performance comparison demonstrates that
our proposed method is effective.

5. CONCLUSIONS
In this paper, we propose a new framework to solve the

long video sequence segmentation. We cluster the given
bounding boxes and utilize the correlation among them to
discard noisy boxes. The long video sequence is divided into
shot cuts with consistent scene and the relevant shot cuts
are found with the help of clustering object priority. We
model the video object detection process as an energy mini-
mization problem which is optimized via dynamic program-
ming. Finally, a new database LongVideoSeg is introduced
to evaluate our proposed method and some subjective and
objective experiments validate our method.
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