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ABSTRACT
With advances of recent technologies, augmented reality systems
and autonomous vehicles gained a lot of interest from academics
and industry. Both these areas rely on scene geometry understand-
ing, which usually requires depth map estimation. However, in case
of systems with limited computational resources, such as smart-
phones or autonomous robots, high resolution dense depth map
estimation may be challenging. In this paper, we study the problem
of semi-dense depth map interpolation along with low resolution
depth map upsampling. We present an end-to-end learnable resid-
ual convolutional neural network architecture that achieves fast
interpolation of semi-dense depth maps with different sparse depth
distributions: uniform, sparse grid and along intensity image gra-
dient. We also propose a loss function combining classical mean
squared error with perceptual loss widely used in intensity image
super-resolution and style transfer tasks. We show that with some
modifications, this architecture can be used for depth map super-
resolution. Finally, we evaluate our results on both synthetic and
real data, and consider applications for autonomous vehicles and
creating AR/MR video games.

CCS CONCEPTS
•Human-centered computing→Mixed / augmented reality;
Virtual reality; Systems and tools for interaction design; • Comput-
ing methodologies → Vision for robotics; Reconstruction;
Neural networks; Shape analysis; Image-based rendering; • Soft-
ware and its engineering → Virtual worlds software; • In-
formation systems → Multimedia content creation; • Applied
computing → Computer games;
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1 INTRODUCTION
Nowadays increasing computational power and advances in com-
puter vision and decision making algorithms have greatly impacted
such growing fields as augmented reality, robotics and self-driving
cars, changing their status from emerging technologies to actively
studied research areas.

In order to construct an augmented reality environments one
needs to estimate scene geometry for proper interaction of virtu-
ally projected objects with the real world. In case of autonomous
vehicles or mobile robots, estimating geometry is essential to make
them safe from collisions and serves advanced scene understanding.

Although there exists special 3D-sensing hardware, such as time
of flight or structured lights sensors, it is not always possible to
use them. Such depth sensors can suffer from various environment
conditions like background illumination [11], may have high cost
or large size. As another example, augmented reality applications
are usually designed for modern smartphones with only standard
RGB cameras. Various environmental conditions, such as a lack of
illumination or glares, can also degrade performance of 3D sensor-
based hardware.

Whenever special 3D sensors can not be applied, scene depth
can be estimated using stereo setup or monocular video. However,
for mobile systems, such as smartphones, real-time, high-quality
dense depth estimation using monocular video can be challenging
task due to the constrained computational resources. For this case
one can try to estimate semi-dense or low resolution depth map
with its consequent interpolation. Semi-dense depth maps arise
even in modern direct visual localization and mapping or odometry
methods. Such methods as LSD-SLAM [8], REBVO [37], DSO [7]
estimate semi-dense, edge-based, or even sparse depth maps to
find the camera pose. In particular, DSO method measures depth
maps filtering points with low confidence that leads to sparse depth
mostly along the intensity gradient. To sum up, all these methods
estimate partial depth maps, where depth values are distributed
along intensity image gradient with high estimation confidence.

Any real application involving 3D-reconstruction requires to
know the camera pose, which is exactly one of the problems solved
by SLAM methods. Using semi-dense SLAM methods with an effec-
tive interpolation methods can ease 3D reconstruction by providing
dense depth maps from semi-dense ones.

In this paper, we present a convolutional neural network that can
be trained to interpolate semi-dense depth maps or low-resolution
depth, supporting different spatial distributions of the input depth
map. The network architecture induces almost no constraints on
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the depth estimation algorithm. Finally, we show that with small
architecture changes one can train the network to perform dense
depth super-resolution.

In our method, along with MSE loss, which is traditional for
regression tasks, we also apply the perceptual loss function. The
perceptual loss is one of the ingredients of style transfer methods
[39]. We use it to get better interpolation of object shapes and edges,
which are usually oversmoothed by the MSE loss.

To train our networks we use SYNTHIA [31] dataset. This dataset
provides a large amount of synthetic outdoor road scenes data.
It includes full semantic labeling, stereo RGB images, and high-
resolution depth maps. The dataset can easily be used in tasks
related to road scene understanding by autonomous vehicles. To
evaluate generalization power of our neural network we use two
additional datasets: Sintel[3] and NYU Depth[34]. For the super-
resolution evaluation we use Middlebury [32] dataset, which is the
common benchmark for depth super-resolution methods. Finally,
we consider the work-in-progress applications of our method to
AR/MR video games and road accidents detection.

2 RELATEDWORK
Depth interpolation is actively studied in the literature, but most
of the works focus on low resolution depth upsampling methods,
which are usually divided into two groups: guided upsampling and
single image depth upsampling.

Guided upsamplingmethods use high-resolution intensity image,
to provide depth clues. In [19], the authors applied joint bilateral
filtering method proposed in [38]. Another local filtering method
was proposed in [23] taking into account geodesic distances to pix-
els with known depth for computing depth for the high resolution
image. In [25], Lu et al. developed a method to reconstruct depth
structures inside each cluster of the segmented intensity image.

Another group of guided methods used the optimisation-based
approaches. In [5], Deibel et. al. proposed MRF-based method with
the penalized smoothness term along the edges of intensity image.
Park et. al used regularization on non-local means in order to pre-
serve thin details [29]. Anisotropic diffusion tensor was proposed
in [9] for regularizing depth upsampling.

Single image depth upsampling methods do not need the aligned
image for depth upsamling. For example, a dictionary-basedmethod
was proposed in [42], where the low resolution and the correspond-
ing high resolution depth patches were used for upsampling low-
resolution depth. In [1], the authors formulated similar task in terms
of the MRF labeling problem. In [17], a guided residual interpolation
was adapted for the single image upsampling problem with the help
of depth interpolation by displacement fields upsampling method
[40] as a guidance.

Apart from traditional methods, there also exist depth interpola-
tion methods based on convolutional neural networks. Song et al.
[36] suggested a model of convolutional neural network that was
trained to produce high resolution depth using bicubic upsampled
input with the following refinement. In [14], the authors proposed
networks for both guided and unguided upsampling. They used
early spectral decomposition and trained their networks using only
high frequency part of low resolution depth and intensity images.

The authors applied guidance through multiscale feature extraction
from high-frequency part of intensity image.

Convolutional neural networks are also widely used in intensity
image super-resolution. Dong et al. [6] presented the end-to-end
learnable deep convolutional neural network for super-resolution.
Shi et al. [33] made use of subpixel convolutional layers also known
as pixelshuffle layers, to train a subpixel convolutional neural net-
work for image and video super-resolution. Finally, in [21], the
authors used Generative Adversarial Network to improve percep-
tual quality of interpolated images.

The latter set of methods is usually used to reconstruct depth
from sparse set of samples. These methods are close to our model
in the sense of using different spatial configurations of input depth
samples, not limiting only to the dense low-resolution depth case. In
[12], Hawe et. al. formulated an optimization problem based on the
theory of Compressed Sensing, which allows to recover disparity
map using only 5% of known disparity values. In [22], Liu et. al used
ADMM method [28] to solve the reconstruction problem instead
of optimization method from [12]. They also introduced optimal
sampling scheme to improve depth reconstruction quality.

In contrast with previous techniques, our method considers neu-
ral network training problem instead of explicitly stating depth re-
construction optimization problem. Once trained, depth reconstruc-
tion is achieved by forward pass through the network. However,
our method needs 15-20% of valid depth values for reconstruction,
which is higher compared to 2-5% in [12], [22].

3 OUR METHOD
3.1 Interpolation Problem and Network

Architecture
We formulate our task as a regression problem: for the input semi-
dense map x ∈ Rm×n find its interpolation ŷ ∈ Rm×n that min-
imizes the loss function L(ŷ, y), where y ∈ Rm×n is the original
depth map. Since we suppose that known depth values of the in-
put map represent true depth values, it is natural to implement a
residual reconstruction mapping:

ŷ = x +K(x),

where K(x) is the output of the proposed network. For the super-
resolution task we use bicubic upsampling to get xh and then sum
it with network predictions. Similar idea was used in [14], where
the authors used upsampled low-frequency part of depth map and
sum it with high-frequency predictions:

ŷ = xh +K(x).

3.2 Neural Network Overview
Our architecture for semi-dense depth map interpolation is a fully-
convolutional encoder-decoder based architecture. Such architec-
tures are common for problems where network output should be
the same size as the network input, such as, for example, semantic
segmentation [24], [30].

The encoder parts serves as information extractor, gradually
decreasing the size of the input map. It reduces spatial redundancy
of semi-dense depth map, in which only a small number of values
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Figure 1: Network architecture for semi-dense depth maps interpolation. The sizes of the filter and the output features are
given in parenthesis for convolutional, projection, downscale, and residual blocks. For pixelshuffle and dropout, the upscale
factor and the probability are given, respectively. Dashed lines denote concatenation. The average pooling with window 3 and
stride 2 was considered.

Figure 2: Main blocks layout. Left to right: standard residual
block, projection block, and downscaling block.

are valid. The encoder part performs upsampling of the reduced
input, based on the extracted low-resolution feature maps.

The decoder and encoder parts share information by feature
maps concatenation. This type of connections was introduced in
[30] and now is common for semantic segmentation architectures
[15]. The purpose of feature map concatenation is to pass high-
frequency information from the decoder to the encoder part, since
this information can be lost during spatial downsampling. The
feature maps concatenation improves detailing of the produced
depth map.

For all activation functions in our network we use the exponen-
tial linear unit [4]. This activation also allows negative values to
pass, which shifts mean activation to zeros. The ELU activation
without batch normalization reduces the training time of the net-
work and leads to a slightly better interpolation quality in our case.

3.3 Encoder Architecture
In the encoder part, we use several types of core building blocks,
each one including residual connections. Residual blocks were in-
troduced in [13]. These blocks include additional identity data path
along with convolutions. It was shown in [13] that such types of
blocks allow training very deep networks and achieve the state-of-
the-art results on classification tasks. In our case, using residual
blocks also gives a considerable boost in depth maps quality. When
amount of feature maps is doubled, we add a 1×1 linear convolution

layer in the identity path to match the output feature dimension.
Downscaling blocks use strided convolutions in the convolution
path and average pooling followed by 1× 1 linear convolution layer
in the identity path. We found that average pooling performs much
better in our task than max pooling, since we extract the informa-
tion from the sparse input. For regularization we use dropout with
p = 0.5 after each downsampling stage.

3.4 Decoder Architecture
The decoder architecture, in opposite, does not contain residual
blocks. The common practice is to use deconvolutional layers for
upsampling. Recently, [33] has introduced subpixel convolution lay-
ers (also called pixelshuffle layers) that are computationally more
effective and lead to better super-resolution. The deconvolutional
layers upsample the feature map and then apply convolution. The
subpixel layer arranges pixels from several feature maps in inter-
leaving manner to match the output spatial size. In our decoder, we
choose subpixel convolution layer providing better reconstruction.
So, the decoder blocks are just plain convolutional layers followed
by pixelshuffle rearrangement.

3.5 Architecture for Super-resolution
With slight modifications, our architecture can be used for dense
depth-map upsampling. We just replace the encoder by several
residual blocks. Here, we do not need the contracting part, as the
input is already dense and we do not need to eliminate spatial
redundancy. The encoder part remains the same. Similar network
layouts are used in [21] and [14].

3.6 Loss Function
The depth and intensity image super-resolution problem gener-
ally considered low-resolution depth upsampling as a regression
problem and used MSE error [14], [6]. We define a loss function
consisting of two components:

L = Lsquare + αLVGG
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Figure 3: Network architecture for super-resolution, all notations are the same, as on figure 1. This architecture was inspired
by [21].

The first component is the traditional MSE loss, which ensures
that the interpolated depth map will be consistent with the ground
truth:

Lsquare =
1

WH

W∑
i=1

H∑
j=1

(yi, j − ŷi, j )
2

MSE loss function tends to give oversmoothed results and of-
ten has poor perceptual quality. Recently, many works proposed
using Euclidean distance in the feature space of some pretrained
neural network in the application to image inpainting [43], super-
resolution[16], [21], and style transfer[39], [16]. Computing loss
in the feature space of VGG-16/19 [35] networks leads to better
performance in all tasks mentioned above.

We also make use of this perceptual loss, since it allows to trans-
fer semantic knowledge from the loss network and achieve better
interpolation of the object shapes and higher depth map detailing.
This loss is written as:

LVGG =
1

WHC

W∑
i=1

H∑
j=1

C∑
k=1

(Φ(y)i, j,k − Φ(ŷ)i, j,k )
2,

where Φ(y) is the output of the convolution layer of the loss net-
work.

Following the previous works on super resolution and image
style perception we use VGG-16 or VGG-19 networks to compute
perceptual loss. In our work, we use the smaller VGG-16 network,
as we found almost no difference comparing training results. VGG-
16 consists of several groups of convolution layers separated by
max pooling layers that perform spatial downsampling. We use the
output of the first convolutional layer of the third group (conv3.1
layer). We do not use higher levels since they extract mostly low-
level information such as edges. Deeper levels do not fit also, as
they induce artifacts on the reconstructed depth map.

One can notice that in [21] or [16] the perceptual loss is used
standalone. However, we found that in the depth interpolation
problem, a network trained with perceptual loss only catches the
geometry but fails to produce correct depth values. It leads to high
errors in the sense of MAPE and RMSE metrics. We can explain it
by the fact, that VGG networks are image classifier networks, and
depth map input values distribution differs with intensity image
brightness values.

The loss has a hyperparameter α . This hyperparameter should
be tuned in log-scale to achieve a trade-off between depth error

and perceptual quality of resulting depth maps. In our case we used
α = 5 × 10−5. Such low value is explained by the fact that in our
case the perceptual loss value has order of 104 while MSE loss does
not exceed 10.

4 EXPERIMENTS
4.1 Description of Datasets

SYNTHIA [31]. SYNTHIA is a synthetic dataset of road scenes,
originally collected for semantic segmentation tasks. This dataset
consists of large number of high-resolution intensity and depth
images from the town landscape from the road view. SYNTHIA
also provides dense semantic labeling, although, we do not use
semantic segmentation at the current stage of the research. We use
this dataset as our main training dataset, since it contains large
number of high-quality depth maps. For training we used ‘02’ and
‘06’ sequences of this dataset. Other sequences were used for test.

Sintel [3]. Sintel dataset also provides high quality images and
depth map from 3D rendered scenes. This dataset consists of very
diverse set of environments that are quite different from SYNTHIA
data. We use Sintel dataset for semi-dense depth interpolation eval-
uation.

Middlebury 2005 [32]. Middlebury dataset is a set of image pairs
with ground truth disparity. We use this dataset to evaluate our
depth super-resolution network performance. We chose this par-
ticular version among the others in Middlebury dataset series to
compare our results with traditional single image depth upsampling
methods considered in [17]

NYU Depth [34]. NYU Depth is a real indoor dataset, collected by
means of Kinect depth sensor. This dataset provides preprocessed
datawith inpainted depthmaps, synchronisedwith intensity images
and dense semantic labeling. We use this dataset only for evaluation
of our network ability to generalize to unknown data.

4.2 Data Preprocessing and Training Details
Neural Network was implemented using TensorFlow framework.
We trained it on 8000 depth images from scratch, using only ‘02’ and
‘06’ sequences from SYNTHIA dataset. No additional fine-tuning
on other datasets was performed. To reduce training time and
memory consumption we resized all the depth images to 152 × 256
resolution for a semi-dense depth map interpolation. For depth
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MAPE, % RMSE, meters
Sampling type SYNTHIA 01 NYU Depth Sintel SYNTHIA 01 NYU Depth Sintel

Uniform 4.9 5.8 28.2 52.1 0.54 4.66
Regular 24.6 23.7 48.1 71.7 0.69 5.20
Along gradient 8.7 11.5 36.3 54.9 0.62 4.38
Gradient + uniform 3.8 4.8 24.5 46.1 0.35 4.00
Table 1: Semi-dense depth interpolation results for different types of input distributions.

SYNTHIA NYU DEPTH
RMSE SSIM RMSE SSIM

MSE +αVGG, α = 1e − 2 1246 0.93 1.01 0.85
MSE +αVGG, α = 5e − 5 46.1 0.96 0.36 0.89

MSE only 46.9 0.94 0.35 0.87
MSE+αVGG + βTV, α = 5e − 5, β = 1e − 5 44.3 0.92 0.45 0.86

Table 2: Comparison of different losses and hyperparameters. TV stands for Total Variation regularization.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

SYNTHIA
NYU Depth

Figure 4: Histograms of depth values of two typical sam-
ples from SYNTHIA and NYU Depth datasets. Left to right:
without logarithm transform, logarithm transform applied
to SYNTHIA sample.

super-resolution tasks we used 38 × 64 depth maps as the input
upsamling them to the 304 × 512 resolution, which is equivalent
to ×8 upscaling factor. Training was performed for 56k iterations
using Adam optimizer with initial learning rate 10−4, with batch
size of 5. After 48k iterations of training learning rate was decreased
to 10−5. We used dropout regularization with p = 0.5.

To provide input data for the network we generated masks with
desired non-zero values distributions and applied them to ground
truth depth. Gradient masks were generated using adaptive thresh-
olding of intensity image gradient; for combined masks we used
clipped sum of gradient and uniform masks. We tuned the parame-
ters of thresholding to achieve 15-25% density of input masks.

Another important preprocessing step was taking the logarithm
from the input depth map. We noticed that SYNTHIA dataset depth
maps have rather low dynamic range, so the typical depth val-
ues distribution was significantly different from the other datasets
(see Figure 4). This difference leads to significant overfitting while
training on the SYNTHIA dataset. Interpolating the logarithm of
SYNTHIA depth maps solved the problem.

Further, we removed non-zero pixels mean from the input semi-
dense depth map. Finally, we used random horizontal and vertical
flips augmentation during training.

5 RESULTS
5.1 Semi-dense depth interpolation
The results of evaluation of our method on the datasets are given
in Table 1. We can see that the best input distribution was obtained
by the sampling along the intensity gradient combined with the
uniform sampling. The uniform sampling adds information about
homogeneous regions while intensity gradient adds object shapes
information. We can also see that on the Sintel dataset our method
gives rather large error. This can be explained by the fact, that
this dataset contains images with objects very close on foreground
combined with high depth values of background. Such combination
gives very large depth variance within the frame and network fails
to leverage it. From the error maps in Figure 8 we can indeed see
that on the Sintel and NYU Depth datasets the error is large in the
far areas, or on the entire background, in case of the Sintel. We
should also note that our method run time is 760ms on Intel Core I7
4790K CPU and 88ms on NVIDIA GTX960 GPU for 400 × 400 semi-
dense depth map. To compare, a similar method for sparse depth
interpolation proposed in [22] has run times from 10 to 20 seconds
on CPU depending on the number of available depth values.

In the Table 2, we have provided the comparison of different
loss function on the semi-dense depth map interpolation quality.
We can see that proposed loss is the best in terms of SSIM metric.
It shows that the proposed loss function reconstructs structural
details better than the others. We have also evaluated our result
versus the loss function with the total variation term with weight
β = 10−5 from [16]. In fact, smaller beta values had almost no
impact on the resulting quality, so we removed this term from the
further research.

5.2 Depth super-resolution
The results for depth super-resolution with upscale factor ×8 are
given in Table 3. To be consistent with [17] we also provided struc-
tural similarity score (SSIM) [41]. We can see that in the sense of
SSIM metrics our networks outperforms the traditional methods.
However, there are images with very high RMSE, which is similar

Session: Fast Forward 5 MM’17, October 23-27, 2017, Mountain View, CA, USA

1411



Figure 5: Intensity image and inputs (upper) and corresponding outputs (lower) of neural network on a sample from SYN-
THIA dataset. Left to right: ground truth, regular grid, uniform, only gradient, and gradient combined with uniform spatial
distributions.

Figure 6: The processing order for the NYU Depth dataset is the same as in Fig. 5.

Figure 7: The processing order for the Sintel dataset is the same as in Fig. 5.

Figure 8: Error maps of combined sampling input examples given in Figures 5, 6, 7. Brighter colors mean higher errors. Left
to right: SYNTHIA, NYU Depth, Sintel.
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Art Laundry Moebius Dolls
SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE

Yang [42] 0.43 46.21 0.41 33.87 0.41 19.01 0.54 16.42
Wang [40] 0.55 47.07 0.53 32.56 0.54 19.76 0.63 15.16
Konno et al. [17] 0.63 30.01 0.59 21.31 0.61 12.09 0.70 10.86
Our Method 0.68 28.02 0.79 21.92 0.87 8.95 0.86 26.98

Table 3: Evaluation of performance of the super-resolution network. Results are given for ×8 upsampling; for other methods
values obtained from [17]

RMSE
Art Books Moebius Reindeer Laundry Dolls

Proposed 3.92 1.96 1.39 1.61 2.01 1.81
MS-Net [14] 2.77 1.07 1.14 1.97 1.62 1.17
Bilinear 5.99 2.39 2.19 2.31 3.12 1.89
Bicubic 5.29 2.07 2.01 3.99 3.45 1.86
Lanczos 5.50 2.08 2.03 4.92 4.01 1.84

Table 4: Comparison with unguided deep neural network based method proposed in [14] and classic interpolation methods,
×8 upsampling. Values for RMSE are given with scaling according to [14]. While [14] has better results, our methods run time
is 62ms compared to 248ms in [14]

Figure 9: Example of depth super-resolution. Left to right: ground truth, input, ×8 upsampled output

to the case with semi-dense depth interpolation: the output depth
values of the network have low dynamic range. In Table 4, we show
the comparison with one of the state-of-the art unguided depth
super resolution method MS-Net proposed in [14], along with stan-
dard interpolation methods. We scale our data to match results
given in [14]. Besides our method had not outperformed MS-Net,
our run time is almost 4 times less compared to MS-Net (62ms vs
248ms on NVIDIA TITAN X GPU as stated in [14]). In Figure 9
we show the example of inverse depth map from the Middlebury
dataset. We can indeed see the background of reconstructed depth
map is brighter than ground truth, which means that output has
lower depth values in this area.

5.3 Discussion
From the results we can see that our method is able to provide
meaningful interpolation of both semi-dense and low resolution
depth maps. However, there are several drawbacks.

First, our method fails on scenes with high dynamic range as in
the Sintel dataset, producing wrong values in the remote areas. This
problem can be solved by segmenting the scene to the foreground
and background and discarding invalid depth values for far or
background segments. Another solution is to clip output depth
values to some predefined range.

Second, the method tends to generate hole-like artifacts when
there is no data in some large image region. While this effect can be
seen on gradient-only sampling outputs, it prevents us from direct
application to semi-dense depth maps generated by direct SLAM
methods. In order to reduce this effect we need to change sampling
patterns or to introduce hole-filling preprocessing procedure.

6 CONCLUSIONS AND FUTUREWORK
We have presented the end-to-end learnable method for semi-depth
dense maps interpolation. Our method allows to reconstruct dense
maps from a semi-dense map with small relative error, and to get
high-quality low-resolution depth map upsampling. However, there
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are still the unsolved issues. The problem with low dynamic range
should be solved to provide reliable reconstruction. We will work
on integrating our method with the existing semi-dense SLAM
systems. Future work may also include optimisation of the network
architecture for running on low-performance embedded devices.

We aim to provide a ready-to-use efficient method for scene
reconstruction that can be used in autonomous vehicles to build
environment model or in AR/MR games for scene reconstruction.

In [26], the authors described another application of fast depth
map interpolation, which could be used for reconstructing navigable
surfaces and operating computer controlled intellectual agents.
With the help of the image representation with the depth map
information, similar to [20], we use deep reinforcement learning
methods for training on a visual input and extracting game features,
such as the enemy recognizing and tracking, items collection, and
learning tactical navigation. In what follows, we aim to create game
application in Unreal Engine 4 that will unify the described method
under a real-time multiplayer first-person shooter game application.
We are looking forward merging our model of intelligent shooter
game for VR [27] with Mixed/Augmented Reality, which will lead
to a new level of game experience.

The detection of road accidents is also one of important tasks for
the future work. As we could see on Sintel dataset, there are two sit-
uations, in which we could misclassify a close object to be a far one,
thus increasing the error of the depth map interpolation. Such situ-
ations may cause a false depth estimation leading to car accidents.
We plan to use the proximity data generated by our method in the
context of ontology-based data access over temporal, streaming,
and spatial data [18], [2] with disjunctive ontology language [10],
where temporal and spatial ontologies define complex situations
the users are interested to detect (for example, fast driving, over
speed, pedestrian detection, incorrect speed counter malfunction,
etc.) so that even non-expert users can easily formulate queries
over processed streaming data.
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