
Play and Rewind: Optimizing Binary Representations of
Videos by Self-Supervised Temporal Hashing

Hanwang Zhang† Meng Wang‡ Richang Hong‡ Tat-Seng Chua†

†National University of Singapore ‡Hefei University of Technology

{hanwangzhang,eric.mengwang,hongrc.hfut}@gmail.com; dcscts@nus.edu.sg

ABSTRACT
We focus on hashing videos into short binary codes for ef-
ficient Content-based Video Retrieval (CBVR), which is a
fundamental technique that supports access to the ever-
growing abundance of videos on the Web. Existing video
hash functions are built on three isolated stages: frame pool-
ing, relaxed learning, and binarization, which have not ad-
equately explored the temporal order of video frames in a
joint binary optimization model, resulting in severe infor-
mation loss. In this paper, we propose a novel unsuper-
vised video hashing framework called Self-Supervised Tem-
poral Hashing (SSTH) that is able to capture the tempo-
ral nature of videos in an end-to-end learning-to-hash fash-
ion. Specifically, the hash function of SSTH is an encoder
RNN equipped with the proposed Binary LSTM (BLSTM)
that generates binary codes for videos. The hash func-
tion is learned in a self-supervised fashion, where a decoder
RNN is proposed to reconstruct the original video frames
in both forward and reverse orders. For binary code op-
timization, we develop a backpropagation rule that tackles
the non-differentiability of BLSTM. This rule allows efficient
deep network training without suffering from the binariza-
tion loss. Through extensive CBVR experiments on two
real-world consumer video datasets of Youtube and Flickr,
we show that SSTH consistently outperforms state-of-the-
art video hashing methods, e.g., in terms of mAP@20, SSTH
using only 128 bits can still outperform others using 256 bits
by at least 9% to 15% on both datasets.

Keywords
Temporal Hashing;Binary LSTM;Sequence Learning;Video
Retrieval

1. INTRODUCTION
Content-based retrieval—a technique focusing on the in-

dexing and querying of a large data collection based on vi-
sual content—is the key to many multimedia applications [17].
Unlike Content-based Image Retrieval (CBIR) that has been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15-19, 2016, Amsterdam, Netherlands

c© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2964308

extensively studied in the past decades [24, 5, 42], Content-
based Video Retrieval (CBVR) has not received sufficient
attention in Multimedia community [25, 14]. However, due
to the popularity of mobile video capturing devices and high-
speed network transmission, we are witnessing the rapid
growth of videos and video-related Web services such as
Vine and Snapchat. Indeed, during the time of reading this
paragraph, around 50 thousand video snippets are shared
and 2.4 million videos are viewed on Snaptchat1. Without
a doubt, the ever-growing abundance of videos on the Web
has brought about an urgent need for more advanced CBVR
technologies [18, 39, 40, 37].

Video is beyond a set of frames. However, most current
works on video analytics generally resort to pooling frame-
level features into a single video-level feature by discard-
ing the temporal order of the frame sequence2. Such bag-
of-frames degeneration works well when high-dimensional
frame-level features such as CNN responses [35] and motion
trajectories [31] are used, as certain temporal information
encoded in a high dimension can be preserved after pool-
ing. However, for large-scale CBVR, where hashing (or in-
dexing) of these high-dimensional features as short binary
codes is necessary, the temporal information loss caused by
frame pooling will inevitably result in suboptimal binary
codes of videos. The loss usually takes place in the pro-
cess of hash function learning [33], which is a post-step after
pooling; as compared to dominant video appearances (e.g.,
objects, scenes and short-term motions), nuanced video dy-
namics (e.g., long-term event evolution) are more likely to
be discarded as noise in the drastic feature dimensionality
reduction during hashing [7].

We argue that the key reason to the above defect is that
both the temporal pooling and the hash code learning steps
have not adequately addressed the temporal nature of videos.
To this end, we propose a novel video hashing method for
CBVR called Self-Supervised Temporal Hashing (SSTH),
which especially tackles this defect. In a nutshell, SSTH is
an end-to-end system that encodes an m-frame video into
a single k-bit binary code. We highlight three key charac-
teristics that make SSTH effective and distinguishable from
other state-of-the-art video hashing methods [26, 3, 38]:

Self-Supervision. Most existing unsupervised hashing
methods are not temporal-aware and hence will lose long-

1
https://www.snapchat.com/ads

2
Though some approaches represent videos as a set of frame fea-

tures (e.g., TRECVID Instance Search Task [20]), they essentially

fall into the pooling approach since the ultimate similarity calcula-

tion is temporal-independent

781

BL
ST

M
LS

TM

1v̂

BL
ST

M
LS

TM

2v̂

BL
ST

M
LS

TM

ˆmv

1v 2v mv

Recon. Loss

Encoder RNN

Decoder RNN

Query Video
Frame-level

Feature
1v mv2v

Search Results

0
1

1

Query
Hash
Code

Database
Hash Codes

Hash Table

Lookup

01 1 00 0

01 0

11 1

01 1

00 1
Training Video

Offline Training

Online Hashing

Self-Supervised Temporal Hashing Content-based Video Retrieval

Figure 1: The overview of the proposed Self-Supervised Temporal Hashing for Content-based Video Retrieval. In

offline training, the black and red arrows denote forward and back propagation, respectively. In particular, the two-way

black arrow in Decoder RNN denotes the forward and reverse reconstruction.

term video dynamics. So, we explore an alternative unsu-
pervised hashing: how can we exploit the frame order of a
video to self-supervise the binary code learning? To this end,
we propose a strategy dubbed Play and Rewind within an
encoder-decoder Recurrent Neural Network (RNN) frame-
work [27, 28]—after the RNN hash function encodes a video
(i.e., “play”), the output hash code should be able to decode
the viewed frames in a certain order (i.e., “rewind”), only if
the code successfully encodes both video appearances and
dynamics. In this way, SSTH is able to continuously refine
itself by playing and rewinding the inexhaustible amount of
videos on the Web.

Temporal Awareness. The hash function of SSTH ex-
plicitly encodes the temporal order of frames by using an
RNN, which has shown to be especially effective in sequence
modeling [27]. In particular, we propose a novel recurrent
unit called Binary Long-Short Term Memory (BLSTM),
where the video binary code at time t is a function of the
code at time t−1. RNN equipped with BLSTM unifies tem-
poral modeling and video hashing in a principled way, where
the binary codes are expected to capture the long-term dy-
namics of the entire video.

Optimized Video Binary Representation. Since the
problem of binary code learning is essentially NP-hard [13],
existing video hashing methods generally follow a three-
stage process: pooling, relaxation, and binarization. The
isolated steps make the approach suboptimal. In the pro-
posed SSTH framework, we cast the temporal modeling and
binary code learning into a joint model. Specifically, we de-
velop a binary backpropagation rule which tackles the binary
nature of SSTH without any relaxation. In this way, SSTH
can be considered as an end-to-end unsupervised learning
framework for optimizing the transformation from videos to
binary codes.

The overview of the proposed SSTH framework for CBVR
is illustrated in Figure 1. In the offline training stage, a
training video is represented by a sequence of frame-level
features (e.g., by deep CNN [23]). The encoder RNN with
BLSTM runs through the sequence, generating a set of hash
codes and then the decoder RNN decodes it to reconstruct
the frame-level feature sequence in both forward and re-
verse orders. During optimization, the reconstruction er-
ror is back propagated through the entire encoder-decoder
RNNs. In the online retrieval stage, the encoder RNN can
be considered as a temporal-aware hash function, which gen-
erates binary hash codes for both database videos and query

videos. Finally, the database hash codes are indexed into a
hash table for practical retrieval. The effectiveness of SSTH
is demonstrated on two real-world consumer video datasets
from Youtube and Flickr.

The contributions of this paper are as follows:
1) We propose a novel unsupervised video hashing frame-
work called Self-Supervised Temporal Hashing (SSTH). To
the best of our knowledge, SSTH is the first principled deep
framework for video hashing. It is an optimized end-to-end
approach that addresses a variety of weakness in conven-
tional video hashing approaches, such as the ignorance of
temporal nature and the isolation of pooling, relaxation and
binarization.
2) We develop a novel LSTM variant dubbed Binary LSTM
(BLSTM), which serves as the building block of the temporal-
aware hash function. We also develop an efficient backprop-
agation rule that directly tackles the challenging problem of
binary optimization for BLSTM without any relaxation.
3) We improve the conventional one-order encoder-decoder
RNN [27, 28] by incorporating forward and reverse order
frame reconstruction. Our strategy is a novel unsupervised
learning objective that better models the temporal nature
of data.

It is also worth mentioning that, although SSTH is devel-
oped for video hashing, it is actually a flexible and generic
framework that can be easily extended to deal with the hash-
ing of other signal sequences such as music and text.

2. RELATED WORK
By hashing data into short binary codes, efficient storage

and search can be achieved due to the fast bit XOR oper-
ations in Hamming space. Today’s hashing methods have
evolved from hand-crafted hash functions [9] to data-driven
learning-to-hash [33], which either requires pairwise data
similarities for unsupervised learning [34, 11, 41] or data la-
bels for supervised learning [32, 22]. However, due the chal-
lenging temporal nature of videos—to our best knowledge—
limited video hashing studies have been carried out. For ex-
ample, the hash functions proposed by Song et al. [26] and
Cao et al. [3] are unaware of the temporal order of video
frames. Ye et al. [38] exploited the pairwise frame order
but their method requires video labels and only generates
frame-level codes. Although Revaud et al. [21] exploited the
short-term temporal order, their video quantization codes
are not binary. In sharp contrast to the above methods,
our SSTH is an unsupervised binary code learning frame-

782

work that explicitly exploits the long-term video temporal
information.

The encoder-decoder RNN framework used in SSTH is in-
spired by recent advances in sequence learning, where RNN
has shown great success in machine translation [28] and im-
age/video caption generation [30]. In particular, our archi-
tecture is most related to the unsupervised video represen-
tation learning work by Srivastava et al. [27]. However, we
distant from them by developing Binary LSTM (BLSTM) in
place of the original LSTM [12] for binary code learning and
a forward/reverse reconstruction strategy for self-supervised
learning. By viewing SSTH as a deep network for hashing,
our work also relates to recent studies on deep learning-to-
hash [8, 43, 6]. However, besides the fact that none of the
existing methods considers the temporal nature of videos,
they also resort to relax the binary optimization to real-
valued optimization or merely append a quantization loss
minimizer at the top layer [8]. In contrast, our deep hashing
architecture is re-designed with BLSTM for direct binary op-
timization by efficient backpropagation without relaxation.

3. SELF-SUPERVISED TEMPORAL HASH-
ING

In this section, we formulate the proposed Self-Supervised
Temporal Hashing (SSTH) framework. First, we introduce
the proposed temporal-aware hash function that yields a sin-
gle compact binary code for a video sequence. Then, we
present a novel recurrent unit called Binary LSTM (BLSTM),
which is the building block for the hash function. Finally, we
introduce the proposed self-supervised strategy for learning
to hash and its deep architecture.

3.1 Temporal-aware Hash Function
Suppose a video sequence of m frames is denoted as a

matrix V = (v1, ...,vm) ∈ R
d×m, where the t-th frame

is represented by a feature vector vt ∈ R
d. Our goal is

to find a hash function H : Rd×m → {±1}k that encodes
V into a k-bit binary code3 bm ∈ {±1}k, where k � d.
In order to capture the temporal nature of videos, we re-
quire the hash function to be temporal-aware, i.e., if V′

is a matrix that is column-permuted from V, b′
m is not

necessarily equal to bm. In other words, rather than as-
suming Pr(bm|V) = Pr(bm|V′) (e.g., pooling-based hash-
ing [3]) or Pr(bm|V) =

∏m
t=1 Pr(bt|vt) (e.g., frame-level

hashing [26, 38]), a temporal-aware hash function models
Pr(bt|v1, ...,vt) = Pr(bt|bt−1,vt), where we assume that
the previous code bt−1 is statistically sufficient to represent
the previous frames Vt−1. So, the hash code bt of a t-
length frame sequence is dependent on the code bt−1 of the
last viewed (t− 1) frames and the current frame vt.

It is natural to use a Recurrent Neural Network (RNN) [12]
to fit the temporal-aware requirement. In particular, the
output bt of a recurrent unit (or layer) at t-th time is ex-
pressed by a non-linear function f , whose input includes the
last output bt−1 and the current frame vt:

bt = f(bt−1,vt). (1)

3
It is trivial to transform binary code b ∈ {±1} to b ∈ {0, 1} by

b← (1 + b)/2.

Therefore, the resultant binary code bm for video V can be
generated recurrently by:

bm = H(V) = f(bm−1,vm). (2)

The design of f is crucial to the hash function in an
RNN style. Recently, Long-Short Term Memory (LSTM)
has shown state-of-the-art performance on sequence learn-
ing tasks, due to its capability in dealing with the vanish-
ing and exploding gradient issues of deep RNN (i.e., long
sequence) [12]. However, original LSTM can only gener-
ate a real-valued hidden variable rather than a binary code,
e.g., ht = f(ht−1,vt), where ht ∈ R

k. In order to mod-
ify LSTM to generate binary codes, a straightforward ap-
proach, which is similar to some hashing deep networks [8,
43], is to use sgn function to binarize the resultant hidden
variable, e.g., bm = sgn (hm), where sgn(x) = 1, if x ≥ 0;
and sgn(x) = −1 otherwise. However, we argue that it is
essentially based on frame pooling, where the pooling func-
tion is an RNN: even though the pooling is temporal-aware,
the hash codes per se do not directly capture the temporal
nature of videos.

3.2 Binary LSTM
In order to design a hash function that not only inherits

the numerical stability of LSTM but also generates binary
codes, we propose a novel variant of LSTM named Binary
LSTM (BLSTM). As illustrated in Figure 2(a), BLSTM fol-
lows a similar data flow as LSTM. First, the input variable
zt is calculated by tanh-squashing the linear combination of
the current feature vt and the last binary code bt−1. Then,
the memory variable ct is updated by adding how much
the “old knowledge” ct−1 should forget and how much the
“new knowledge” zt should memorize. Note that this addi-
tive memory update design enables the derivatives distribute
over sums and hence the error does not vanish quickly when
performing backpropagation over time [12]. Then, the mem-
ory is batch normalized (BN). Finally, the hash code bt is
a binarization (sgn) of how much the “current knowledge”
ht should be output. The behaviors of “forget”, “memorize”,
and “output” are respectively controlled by three gate vari-
ables: forget gate F, input gate I, and output gate O. They
are applied element-wise multiplicatively and thus can ei-
ther keep a value from the gated variable if the gate is 1
or discard a value if the gate is 0. In particular, all of the
gate variables: it, ft, and ot, use sigmoid function σ as an
estimation of the pass-through probability. The detailed im-
plementation of BLSTM in Eq. (1) is given as follows:

zt ← tanh (Wvzvt +wbz ◦ bt−1 + az) (3a)

ft ← σ (Wvfvt +Wbfbt−1 +wcf ◦ ct−1 + af) (3b)

it ← σ (Wvivt +wbibt−1 +wci ◦ ct−1 + ai) (3c)

ct ← ft ◦ ct−1 + it ◦ zt (3d)

ct ← BatchNorm(ct) (3e)

ot ← σ (Wvovt +Wbobt−1 +wco ◦ ct + ao) (3f)

ht ← ot ◦ ct (3g)

bt ← sgn (ht) (3h)

where ◦ denotes the element-wise multiplication.
Now we discuss the motivation behind the two novel de-

signs of the proposed BLSTM as compared to LSTM:
Binarization (sgn). This allows BLSTM yielding {±1}

binary output. Different from the popular vanilla LSTM [12],

783

I O

cz

F

tanh

-1tb

tf
-1tc

tc
to

tb
tv

tv tv

tz

-1tbtv

sgn

-1tcti B
N

ˆtc

-1tb

-1tb

th

(a)

BLSTM LSTM

-1 -1 +1 -1

+1+1+1-1

-1 -1 +1 -1

+1+1+1-1

(b)

Figure 2: (a) The data flow of the proposed Binary

LSTM (bLSTM) at the t-th time. (b) Two dimensions

of ht of the proposed BLSTM (left) and LSTM (right).

We can see that BLSTM yields more decorrelated and

balanced binary codes as compared to LSTM.

where ht ← ot ◦ tanh(ct), we remove the tanh squash ct be-
fore entering the sgn function as in Eq. (3g). Intuitively,
as sgn only cares for the sign of ht, squashing the input to
[−1,+1] is unnecessary. In fact, since the gradient of tanh is
always nonzero, any small change in the input modifies most
of the entries in memory ct. Therefore, as we will discuss
later in Section 4.1, when the tanh before ct is removed,
small input changes will not modify the memory values if
they are already definitive on its sign, e.g., |ct| > 1. In this
way, BLSTM can be considered as a sparse model that con-
tributes better disentangling ability for data variance and
efficient training [10].

Batch Normalization (BN). It has shown to be effec-
tive in removing layer-wise covariance shift in deep neural
networks [15]. It normalizes ct to zero-mean unit-variance
Gaussian distribution and then a linear transformation: ct ←
ct−μt

σt
, ct ← γ1ct + γ2, where ct is any entry of ct, μt and

σt are the mean and unbiased variance of the training mini-
batch at time t, γ1 and γ2 are trainable transformation pa-
rameters. Note that in testing, μt and σt are estimated
from the whole training data. By denoting matrix Ct as the
memory variables of a minibatch, BN approximates the con-
straints CT

t Ct = I and CT
t 1 = 0, which respectively impose

decorrelation (i.e., bits should be as independent as possible)
and balance (i.e., each bit should split the data as balanced
as possible) on the resultant codes Bt = sgn(Ot ◦ Ct). In
fact, these constraints are shown to maximize the informa-
tion entropy in binary codes [34], i.e., BN helps BLSTM
yielding informative binary codes (cf. Figure 2(b)).

3.3 Learning Objective
We use the temporal order of the video sequence as a self-

supervision for learning to hash. Essentially, our learning

objective falls in the RNN encoder-decoder framework for
unsupervised sequence learning [28, 27]. In particular, we
propose to implement the framework as follows. First, an en-
coder RNN with BLSTM first runs through a video sequence
(v1,v2, ...,vm) to come up with a hash code bm. Then, a
decoder composed of two independent RNNs with LSTM:
forward and reverse reconstruction RNNs, decodes the hash
code to features that reconstruct the input frames in the for-
ward order (ṽ1, ṽ2, ..., ṽm) and reverse order (v̂m, v̂m−1, ..., v̂1),
respectively. Specifically, we adopt linear reconstructions for
the output of the decoder LSTMs:{

ṽt = W̃h̃t + ã, h̃t = f̃(h̃t−1,0),

v̂t = Ŵĥt + âr, ĥt = f̂(ĥt+1,0),
(4)

where {W̃, ã} and {Ŵ, â} are the parameters of the forward

and reverse reconstruction; f̃ and f̂ are the functions of the
forward and reverse LSTMs. Particularly, h̃0 = bm or ĥm =
bm denotes that the decoder starts from the hash code and
the 0 input highlights that the decoder RNNs do not take
any input features. The missing input feature 0 prevents the
decoder from learning trivial reconstruction that is directly
from the input. As a result, the encoder is encouraged to
generate hash codes that retain sufficient information for
valid reconstructions.

The proposed forward and reverse RNNs focus on learn-
ing different aspects of video dynamics. On one hand, the
forward RNN attempts to memorize long-term event evolu-
tion since the reconstruction starting from the first frame
will encourage the memory not to forget too much about
the early frames; on the other hand, reverse RNN is more
likely to capture short-term temporal relations among video
semantics, e.g., objects and motion changes, since the recon-
struction from the last frame, which has been just viewed,
is a relatively easy task if the memory holds sufficient infor-
mation about recent frames. Based on the above analysis,
the overall loss function for our SSTH can be formulated as:

L =

m∑
t=1

‖ṽt − vt‖22︸ ︷︷ ︸
forward order

+

1∑
t=m

‖v̂t − vt‖22︸ ︷︷ ︸
reverse order

. (5)

However, minimizing the above loss function is challenging
since the deeply nested binary codes (b1, ...,bm) are non-
differentiable. Later, we will introduce an efficient binary
optimization method based on backpropagation of the bi-
nary codes.

3.4 Architecture Details
The detailed architecture of the proposed SSTH is illus-

trated in Figure 3. Both the encoder and two decoders adopt
a two-layer structure in order to enhance the expressive
power of the model. On the encoder side, the first-layer is
a conventional vanilla LSTM [12], where the output hidden
variable h is used as the input to the second-layer BLSTM
and the next LSTM. Specifically, the dimensions of h is 2k,
i.e., two times as the bit size of the binary code. By doing
this, the first-layer LSTMs of the encoder can be viewed as
higher-level feature extractors for the frames. After the hash
code bm being encoded, i.e., the BLSTM output of the last
frame, we directly feed it to the first layer of the two de-
coder RNNs. On the decoder side, the dimension of the first
and second layer are k and 2k, respectively. In particular,

784

L
ST

M
B

L
ST

M

L
ST

M
B

L
ST

M

L
ST

M
B

L
ST

M

1v

1h

1h

1b

L
ST

M

L
ST

M

L
ST

M

L
ST

M

L
ST

M

L
ST

M

L
ST

M

L
ST

M

L
ST

M
L

ST
M

L
ST

M
L

ST
M

2v mvˆmv-1ˆmv1v̂ 1v1v 2v2v mvmv

mb

Input SequenceReverse Recon. Forward Recon.

Figure 3: The encoder-decoder architecture used in

SSTH learning. Both encoder and decoder are two-layer

RNNs. Red: encoder RNN. Green: forward decoder

RNN. Blue: reverse decoder RNN.

the linear transformation reconstructs the 2k-D hidden vari-
ables of the second layer to d-D frame-level features. Note
that this is different from [27] which aligns the two-layer en-
coder outputs to the two-layer decoder inputs. The reason is
that we want to limit the decoder to access information from
other source, e.g., the first hidden layer of the encoder, in
order to encourage the hash code retaining more higher-level
video dynamics. One should also note that the trainable pa-
rameters of the encoder LSTM-BLSTM, forward and reverse
decoder LSTM-LSTM are independent with each other since
the three RNNs are responsible for different purposes.

4. BINARY OPTIMIZATION
Training SSTH equipped with BLSTM is essentially NP-

hard as it involves binary optimization of the hash codes that
requires combinatorial search space [13]. However, approxi-
mated solution by discarding the binary constraints will lead
to large quantization loss [11]. In this section, we propose to
directly tackle the challenging binary optimization. We first
introduce how to take the derivative of the sgn binarization
and then detail the learning algorithm.

4.1 Derivative of Binarization
As the derivative of the sgn function in BLSTM is zero

almost everywhere, it is impossible to apply exact backprop-
agation for BLSTM. Here, we propose an approximation by
estimating the derivative of the sgn function.

In fact, the binary code generated by sgn can be viewed
as binary classification results, where the classifier responses
are ht. So, sgn(ht) is a set of hidden classifiers that collab-
oratively make predictions for a final objective [2], e.g., the
reconstruction loss in our case. Based on this view, our key
idea is to design a delegate classifier d that approximates
the original classifier sgn by allowing a certain loss. With-
out loss of generality, we only consider a single entry h of ht

in Eq. (3h):

• When h ≥ 0, we use d(h) to approximate sgn(h) = 1 by
allowing some classification loss as:

sgn(h) ≈ d(h) = sgn(h)− �(h), h ≥ 0, (6)

where �(·) ≥ 0 is the loss function. Since h ≥ 0, we can
view it as a score for the positive label +1. In fact, d(h)
is equivalent to sgn(h) when �(h) = 1(1 · h ≤ 0), i.e.,
the loss is 0 if the response h is consistent with the label
+1; and 1 otherwise. However, such 0–1 loss is useless
since we constrain h ≥ 0. A popular way to soften the
“hard” 0–1 loss is to use the hinge loss with a margin:
�(h) = max(0, 1−1 ·h), which is widely used in penalizing

(a) (b) (c)

()d h

max(0,1-1)h)

()d h

max(0,1- (-1))h) ()d h

Figure 4: Illustrative process of how d(·) (red line) ap-

proximates sgn(·) using a hinge loss function (black line).

(a) when h ≥ 0, d(h) = sgn(h)−max(0, 1− 1 · h); (b) when

h < 0, d(h) = sgn(h) +max(0, 1− (−1) · h); (c) d(h).

large-margin classifiers such as SVM. Specifically, it allows
a certain violation 1 − (+1) · h to the ideal response +1
when 0 ≤ h ≤ 1. Thus, Eq. (6) can be rewritten as:

d(h) = 1−max(0, 1− 1 · h), h ≥ 0, (7)

• When h < 0, similar to the above analysis, we can view it
as a score for the negative label −1. By allowing a hinge
loss to the ideal binary response −1, sgn(h) = −1 can be
approximated as:

d(h) = −1 + max(0, 1− (−1) · h), h < 0, (8)

where a violation as 1 + h is allowed when −1 ≤ h < 0.

Combining Eq. (7) and Eq. (8), the resultant approxima-
tion of sgn(h) can be written as:

sgn(h) ≈ d(h) =

⎧⎪⎨
⎪⎩
−1, h < −1,
h, − 1 ≤ h ≤ 1,

1, h > 1.

(9)

So far, we are ready to define the derivative of sgn(h) as:

sgn′(h) := d′(h) = 1(|h| ≤ 1). (10)

Figure 4 illustrates how we use the hinge loss to approximate
the sgn function.

The derivative d′(h) states a simple backpropagation rule
for BLSTM: when the gradients back propagate to the sgn
function, we only allow gradients, whose neural responses
are between [−1,+1], to pass through. Intuitively, this rule
encourages BLSTM to update if the hidden value h is not
well separated with respect to a margin, resulting in hash
functions that are more certain about binarization. In fact,
d′ can be considered as a“straight-through estimator”which
has been used in SGD for discrete neurons [4]. Though d′ is
not an exact gradient for sgn, the convergence of SGD can
be achieved [1].

4.2 Algorithmic Details
Thanks to the derivative of the sgn function introduced

in Eq. (10), we are now ready to develop forward propaga-
tion (FP) and back propagation (BP) for training the deep
RNNs. Due to space limit, we only summarize FP and BP
for the key component: the proposed BLSTM.

The FP for BLSTM is illustrated in Algorithm 1. For
notational simplicity, we divide BLSTM into four steps: 1)
subroutine BLSTMhead, parameterized by α, runs from
Eq. (3a) to Eq. (3d). Note that the input vt can be video
feature or the output of the first layer LSTM; 2) subrou-
tine BatchNorm, parameterized by γ, runs for the batch
normalization in Eq. (3e); 3) subroutine BLSTMtail, pa-

785

Table 1: Time expense (millisecond) of LSTM and

BLSTM on TITAN X. Batch size B = 50, frame length

l = 25, feature dimension d = 4096, bit size k = 128.

FP BP BatchNorm BatchNormBP Hashing

LSTM 23.6 93.4 N.A. N.A. 17.1

BLSTM 23.7 144 3.03e−2 50.6 17.3

rameterized by β, runs from Eq. (3f) to Eq. (3g); and 4)
binarization in Eq. (3h). The BP for BLSTM is detailed in
Algorithm 2. The input ∇bm = ∂L

∂bm
is the derivative of the

loss function L in Eq. (5) with respect to hash code bm. Line
2 is the binarization BP according to Eq. (10). Then, from
Line 3 to Line 9, we assume that the three gradient subrou-
tines are available: BLSTMheadBP, BLSTMtailBP and
BatchNormBP. Note that Line 4, 6, and 9 are the gradi-
ents of the model parameters updated using chain rules.

After applying FP and BP over a minibatch of train-
ing videos, we use SGD to update the model parameters
{α, β, γ} with momentum and dynamic learning rate. De-
note frame length as l, frame-level feature dimension as d,
bit size as k, and the SGD batch size as B, it is easy to see
that it takes O(Bdkl) for FP and BP, and O(1

2
Bdkl)) for

generating hash codes. Thus, the training and testing time
is linear to the frame length, bit size and sample size. In par-
ticular, Table 1 lists the training/testing time expense com-
parison between LSTM and BLSTM on a TITAN X GPU.
We only need to pay off a little overhead for BLSTM due to
the introduction of batch normalization.

Algorithm 1: Forward Propagation for BLSTM

Input : (v1, ...,vm): frame-level feature sequence

α, β: BLSTMhead,tail parameters

γ: BatchNorm parameters

Output: bm: the binary code

Init : c0 ← 0, b0 ← 0

1 for t = 1 to m do

2 ct ← BLSTMhead (ct−1,bt−1,vt;α)

3 ct ← BatchNorm (ct; γ)

4 ht ← BLSTMtail (ct,bt−1,vt;β)

5 bt ← sgn(ht)

6 end

7 return bt

5. EXPERIMENTS
As the proposed SSTH is a novel unsupervised video hash-

ing framework, the goal of our experiments is to answer the
following three research questions:
RQ1. Why is SSTH designed to what we have proposed?
How do different components of it affect the performance?
RQ2. How does SSTH perform as compared to other state-
of-the-art video hashing methods?
RQ3. What is the generalization ability of SSTH, e.g., less
training data and cross-dataset performance?

5.1 Datasets
We used two challenging large-scale video datasets for un-

supervised training and retrieval4:

4
Details of the two datasets are in the supplementary material.

Algorithm 2: Back Propagation for BLSTM

Input : ∇bm: gradient of bm propagated from the decoder

∇cm: gradient of cm propagated from the decoder

Output: ∇α, ∇β: gradients of BLSTMhead,tail

parameters

∇γ: gradient of BatchNorm parameters

Init : ∇αm+1 ← 0, ∇βm+1 ← 0, ∇γm+1 ← 0

// Backpropagation through time

1 for t = m to 1 do

2 ∇ht ← ∇bt ◦ 1(|ht| ≤ 1)

3

(
∇ĉt,∇b̂t−1,∇αt

)
← BLSTMtailBP(∇ht,∇ct)

4 ∇αt ← ∇αt+1 +∇αt

5 (∇ct,∇γt) ← BatchNormBP(∇ĉt)

6 ∇γt ← ∇γt+1 +∇γt

7 (∇ct−1,∇bt−1,∇βt) ← BLSTMheadBP(∇ct)

8 ∇bt−1 ← ∇b̂t−1 +∇bt−1

9 ∇βt ← ∇βt+1 +∇βt

10 end

11 return ∇α1,∇β1,∇γ1

FCVID. It is Fudan-Columbia Video Dataset [16]. FCVID
is one of the largest datasets for video categorization with ac-
curate manual annotations in generic domain. This dataset
contains 91,223 Youtube videos annotated manually accord-
ing to 239 categories, covering a wide range of topics like
events (e.g., “Tailgate Party”), objects (e.g., “Panda”) and
scenes (e.g., “Beach”). The average video length is about
167 seconds. Its train/test split is 45,611/45,612. We used
the train split for unsupervised learning and the test split
for retrieval.
YFCC. It is Yahoo Flickr Creative Common dataset [29],
the largest public multimedia collection that has ever been
released. It is officially announced with 0.8M videos from
Flickr, however, we only collected 700,882 videos by filter-
ing out invalid urls and corrupted video files. The average
video length is about 37 seconds. Particularly, we also con-
tributed to the community a large video scene dataset of
100,000 videos selected from YFCC, manually annotated ac-
cording to the most popular 80 scenes from the third level of
MIT SUN secene hierarchy [36], such as indoor (e.g., “Cof-
fee Shop”) and outdoor (e.g., “Golf Court”). We used the
unlabeled 600,882 videos for unsupervised learning and the
rest 100,000 labeled videos for retrieval.

Note that unlike FCVID where a considerable amount
of the Youtube videos are taken by professionals, YFCC
videos are mostly taken by the mobile phones of Flickr ca-
sual users. Therefore, the visual quality of YFCC videos is
much lower and hence it is more challenging for video con-
tent understanding. For each video, we uniformly sampled
25 frames as video sequences. As a result, our SSTH is a
very deep RNN that has 75 layers after unfolding (i.e., 25-
layer encoder, 25-layer forward decoder and 25-layer reverse
decoder). Though we set the frame number to 25 as a com-
prise for training time and GPU memory, we believe that
higher frame rate will lead to stronger models. For frames,
we used VGG-fc19 [23] to extract 4,096-D CNN features as
the frame-level representations. Note that we did not use
motion features such as dense trajectories [31] for all the

786

methods, since we intended to investigate whether they can
capture video dynamics by modeling sequences.

5.2 Experimental Setup
5.2.1 Evaluation Metrics
We adopted Average Precision at top K retrieved videos

(AP@K) for retrieval performance evaluation [20]. Denote
R as the number of relevant videos in the database. At any
ranked position j (1 ≤ j ≤ K), let Rj be the number of
relevant videos in the top j results and let Ij = 1 if the j-th
video is relevant and 0 otherwise, then AP@K is defined as

1
min(R,K)

∑K
j=1

Rj

j
× Ij . For each class label, we considered

every test video that belongs to the label as query and the
rest of test data as the database; then, we used the mean of
AP@K of the queries (mAP@K) as the performance metric
for the label. We also slightly abused mAP@K to be the
mean of all the label-specific mAP@K as an overall metric.

5.2.2 Search Protocols
We adopted two search protocols which are widely used

in search with binary codes. We evaluated code length
k ∈ {8, 16, 32, 64, 128, 256}.
Hamming Ranking: Videos are ranked according to their
Hamming distance (or similarity) from the query user. Al-
though the search complexity of Hamming ranking is still
linear, it is very fast in practice since the Hamming distance
calculation can be done by fast bit XOR operations and the
sorting is constant time due to integer distance.
Hashtable Lookup: A lookup table is constructed using
the video hash codes and all the items in the buckets that
fall within a small Hamming radius (e.g., 2) of the query are
returned. Therefore, search is performed in constant time.
However, a single table would be insufficient when the code
length is larger than 32 since it would require over O(232)
space to store the table in memory. We adopted Multi-Index
Hashing (MIH) table [19], which builds one table for each
code subsegment. Items are aggregated by all the tables and
then conducted Hamming ranking for the items. By doing
this, the search time is significantly reduced to sublinear.
We empirically set the substring length as {1, 1, 1, 2, 4, 8}
for bit size {8, 16, 32, 64, 128, 256} as suggested in [19].
It is worth mentioning that the above two search protocols

focus on different characteristics of hash codes. Ranking pro-
vides a better measurement of the learned Hamming space,
i.e., the accuracy upper bound that the codes can achieve
since it linearly scans the whole data. Lookup, on the other
hand, emphasizes the practical speed of large-scale search.
However, a common issue in this protocol is that it may
not return sufficient items for recommendation, as a query
lookup may miss items due to the sparse Hamming space.
In our experiments, if a query returns no videos, we treated
it as a failed query with an AP of zero.

5.2.3 Compared Methods
To validate the architecture design of the proposed SSTH,

we compared the following possible architectures that can
also be viewed as temporal-aware hashing methods:
LSTM. We used the conventional vanilla LSTMs [12] for
both the encoder and decoder. After training, the real-
valued output of the encoder is binarized as the hash code.
Note that this setting can be considered as a relaxed deep
hashing model.

LSTM-sgn. We directly added a sgn function to the out-
put of every LSTM in the encoder. This method includes
the tanh function for the memory cell and does not use
batch normalization. Its optimization adopts the same bi-
nary backpropagation as BLSTM.
Enc-sgn. The encoder consists of LSTM with batch nor-
malization for the memory. Moreover, we added a sgn func-
tion at the end of the encoder to generate binary codes.
This method is mentioned at the end of Section 3.1. Its op-
timization adopts the same binary backpropagation as the
proposed BLSTM.
SSTH-F/R. This is SSTH without the reverse (SSTH-F)
or the forward reconstruction decoder (SSTH-R).
SSTH-1/2. This is SSTH with one or two layer architec-
ture. Note that all the aforementioned methods are one-
layer except SSTH-2.

As we will show that the two-layer SSTH-2 introduced in
Section 3.4 performs better, we use SSTH instead of SSTH-2
when the context is clear. To compare with the state-of-the-
art unsupervised hashing methods, we have:
ITQ. This is perhaps the most popular unsupervised hash-
ing method called Iterative Quantization [11]. It first uses
average pooling for video data representations, then applies
PCA to reduce the dimensionality of the data to the target
bit size (i.e., k), and finally iteratively learns a rotation that
minimizes the quantization loss.
SubMod. This is Submodular video hashing [3]. It first
uses average pooling for video data representations, then it
applies traditional hashing methods such as LSH to hash
the videos into long codes (e.g., we used 1024), and then
it greedily selects k most informative hash functions, where
the informativeness is measured using the training data.
MFH. This is Multi-Feature Hashing for videos [26]. It
learns hash functions based on the similarity graph of the
frames. Since the hash function is learned on frame-level, it
uses average pooling to pool the real-valued outputs of hash
functions and then binarizes them for hash codes.
DH. This is a Deep Hashing framework [8]. Its key idea for
binary code learning is to add a binarization loss function
at the top layer of a neural network. For fair comparison,
we used the original encoder-decoder RNN [27] with the loss
function imposing at the end of the encoder RNN. By doing
this, DH is able to hash temporal data like videos.

Although there are other video hashing methods, they are
either based on supervised hashing [38] or specialized non-
binary hash codes [21], hence do not apply in our comparable
experiments. For deep models such as DH and SSTH, we
used a TITAN X GPU with Theano implementation. The
minibatch size of all the deep models was set to 50, training
for 30 epochs.

5.3 Result Analysis
5.3.1 Architecture Investigation (RQ1)
Figure 5 shows how the possible designs of SSTH affect

the overall performances. Due to space limit, we only re-
port the results of 128-bit codes. From the results on both
datasets, we can arrive at the following observations: 1) only
LSTM leads to considerable performance drop when using
table lookup since it is the only two-stage method with large
quantization loss. On the contrary, we do not observe sig-
nificant performance drop of the other models using binary
backpropagation, which is a joint framework; 2) by naively
adding sgn function for LSTM, LSTM-sgn achieves the worst

787

LSTM LSTM-sgn Enc-sgn SSTH-F SSTH-R SSTH-1 SSTH-2

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

m
A

P@
K

K

FCVID Ranking

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

m
A

P@
K

K

FCVID Lookup

20 40 60 80 100
0

0.1

0.2

0.3

0.4

m
A

P@
K

K

YFCC Ranking

20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25
m

A
P@

K

K

YFCC Lookup

Figure 5: Performances (mAP@K) of 128-bit hash codes

learned from various RNN architectures.

Table 2: Cross-dataset mAP@20 gain (%) by Hamming

ranking of various methods using different bit sizes.

Dataset Training: FCVID, Testing: YFCC

Bits 8 16 32 64 128 256

SubMod -2.13↓ -3.64↓ -7.32↓ -14.8↓ -15.1↓ -33.8↓
MFH -23.8↓ -7.29↓ -16.5↓ -34.3↓ -30.0↓ -24.7↓
ITQ -14.7↓ -10.1↓ -22.7↓ -5.76↓ -2.47↓ -4.76↓
DH -7.03↓ -3.16↓ -10.0↓ -12.9↓ -13.8↓ -2.04↓

SSTH -8.71↓ -5.03↓ -12.5↓ -11.4↓ -10.0↓ -11.6↓
Dataset Training: YFCC, Testing: FCVID

SubMod -1.78↓ -3.54↓ -5.07↓ -12.5↓ -12.1↓ -20.3↓
MFH 12.6↑ 13.6↑ -7.28↓ 5.03↑ 3.64↑ 2.38↑
ITQ 14.5↑ 15.9↑ -8.83↓ -7.62↓ 5.17↑ -8.26↓
DH 11.3↑ 11.6↑ 13.8↑ -8.02↓ -9.70↓ -3.93↓

SSTH 28.1↑ 27.7↑ 22.9↑ 10.1↑ 8.64↑ 7.58↑

results. This is because of the absence of batch normaliza-
tion as discussed in Section 3.2: without batch normaliza-
tion, the hidden variables are likely to be imbalanced and
correlated, e.g., some of the hidden variables may be out of
the range [−1, 1]. Thus, the zero gradients will result in pre-
mature hash codes; 3) the temporal hashing models such as
SSTH-F/R/1/2 are better than Enc-sgn that only deploys
binarization at the end of the encoder. This demonstrates
the effectiveness of the temporal-aware design as defined in
Eq. (1); 4) by combining both forward and reverse recon-
struction, SSTH-1 is better than SSTH-F and SSTH-R; 5)
by adding more layers, SSTH-2 can enhance the expressive
power of SSTH. Therefore, based on the above observations,
we have demonstrated the effectiveness of our particular de-
sign for SSTH.

5.3.2 Comparison with State-of-The-Arts (RQ2)
Figure 8 shows how SSTH performs as compared to state-

of-the-art video hashing methods. We can see that SSTH
consistently performs the best on both datasets. Specifi-
cally, we have the following observations:
1) Compared to pooling based hashing methods such Sub-
Mod, MFH and ITQ, SSTH explicitly models the tempo-
ral information of videos. For example, on FCVID, by us-
ing only 128 bits, SSTH achieves 24.5% mAP@20, which is

Class ID
0 50 100 150 200 250

m
A

P@
20

0

0.2

0.4

0.6

0.8

1
FCVID

SubMod
MFH
ITQ
DH
SSTH

Class ID
0 20 40 60 80

m
A

P@
20

0

0.2

0.4

0.6

0.8
YFCC

SubMod
MFH
ITQ
DH
SSTH

MFH

SSTH

Tornado

MFH

SSTH

#60

Making Hotdog

MFH

SSTH

#239

Ski Slope#1

MFH

SSTH

patio#75

MFH

SSTH

Pantry#80

MFH

SSTH

Guitar Performance#25

Figure 6: Detailed performance (mAP@20 of 256 bits)

of all the methods on both datasets. The Class ID is

sorted according to the descending order of performances

of SSTH. The illustrative examples are the top 5 retrieval

results of SSTH and the most competitive MFH queried

by three categories of different performances. Red bor-

ders denote wrong results. Left: FCVID; Right: YFCC.

Training size
25% 50% 75% 100%

m
A

P@
20

0.1

0.15

0.2

0.25

0.3
FCVID

SubMod
MFH
ITQ
DH
SSTH

Training size
25% 50% 75% 100%

m
A

P@
20

0.05

0.1

0.15

0.2
YFCC

SubMod
MFH
ITQ
DH
SSTH

Figure 7: Performance (mAP@20 of 256 bits) on two

datasets using various percentages of training data.

comparable to 25.1% of the most competitive MFH using
256 bits. Figure 6 detailed the mAP@20 of various methods
using 256 bits on both datasets. We can see that model-
ing temporal information is beneficial to discriminate con-
cepts that involves human actions like “Guitar Performance”
in FCVID. More interestingly, we can observe that SSTH
consistently outperforms the pooling-based methods on the
scene retrieval task on YFCC. This demonstrates that the
temporal information of videos are not only crucial for events
but also indispensable for recognizing scenes. For the exam-
ple of YFCC “Ski Slope” in Figure 6, pooling-based meth-
ods like MFH will inevitably mis-classify frames of “Snow”
as “Ski Slope” while SSTH successfully captures the infor-
mative “Ski” motion.
2) However, we should note that pooling-based methods
such as MFH are also powerful, especially for video cate-
gories that are not likely to be distinguished by temporal
information. As illustrated in Figure 6, MFH that only

788

SubMod MFH ITQ DH SSTH

FCVID

20 40 60 80 100
0

0.02

0.04

m
AP

@
K

K

8 bits

20 40 60 80 100
0

0.1

0.2

m
AP

@
K

K

16 bits

20 40 60 80 100
0

0.1

0.2

m
AP

@
K

K

32 bits

20 40 60 80 100
0

0.2

0.4

m
AP

@
K

K

64 bits

20 40 60 80 100
0

0.2

0.4

m
AP

@
K

K

128 bits

20 40 60 80 100
0

0.2

0.4

m
AP

@
K

K

256 bits

20 40 60 80 100
0

0.02

0.04

m
AP

@
K

K
20 40 60 80 100

0

0.1

0.2

0.3
m

AP
@

K

K
20 40 60 80 100

0

0.1

0.2

0.3

m
AP

@
K

K
20 40 60 80 100

0

0.2

0.4

m
AP

@
K

K
20 40 60 80 100

0

0.2

0.4

m
AP

@
K

K
20 40 60 80 100

0

0.2

0.4

m
AP

@
K

K
YFCC

20 40 60 80 100
0

0.05

0.1

m
AP

@
K

K

8 bits

20 40 60 80 100
0

0.1

0.2

m
AP

@
K

K

16 bits

20 40 60 80 100
0

0.1

0.2
m

AP
@

K

K

32 bits

20 40 60 80 100
0

0.1

0.2

0.3

m
AP

@
K

K

64 bits

20 40 60 80 100
0

0.1

0.2

0.3

m
AP

@
K

K

128 bits

20 40 60 80 100
0

0.1

0.2

0.3

m
AP

@
K

K

256 bits

20 40 60 80 100
0

0.05

0.1

0.15

m
AP

@
K

K
20 40 60 80 100

0

0.1

0.2

m
AP

@
K

K
20 40 60 80 100

0

0.1

0.2

m
AP

@
K

K
20 40 60 80 100

0

0.1

0.2

0.3

m
AP

@
K

K
20 40 60 80 100

0

0.1

0.2

0.3

m
AP

@
K

K
20 40 60 80 100

0

0.1

0.2

0.3

m
AP

@
K

K

Figure 8: Performance (mAP@K) of various video hashing methods at different bit sizes. For each dataset, the top

row is the performance by Hamming ranking and the bottom row is by table lookup.

captures visual appearances seems sufficient for the “Tor-
nado” category in FCVID; while SSTH over-emphasizes on
the cloud motion. As another example, SSTH overfits to
the motion of individual selfies in YFCC “Patio”, and thus
performs worse than MFH. We also find some hard cases for
all the methods. One example is the food related events like
FCVID “Making Hotdog”, where MFH is biased to the gen-
eral concepts of “Food”, and SSTH is more likely favored the
motion of “Making” like “Nail Painting” and “Cutting Pota-
toes”. Another example is the YFCC “Pantry”, where MFH
and SSTH are both biased to the appearance of “Waffle”.
3) DH, which also attempts to capture temporal informa-
tion, performs much worse than SSTH and even some pooling-
based methods such as MFH and ITQ. The reason is similar
to why Enc-sgn in the previous experiment performed worse
than SSTH: although DH exploits RNN to model the tempo-
ral order of frames, it is essentially a pooling-based hashing
method since the hash codes are not temporal-aware as de-
fined in Eq. (1).
4) As shown in Figure 8, when retrieval is performed by using
hash table lookup, relaxed methods—SubMod, MFH and
DH—show significant performance drop using longer hash
codes, e.g., 128 and 256 bits. This demonstrates the effec-
tiveness of binary optimization adopted in ITQ and SSTH,
for the minimization of the binarization loss.

5.3.3 Generalization Ability (RQ3)
Generalization ability is especially crucial for learning-to-

hash methods since the queries provided by users are usually
out-of-domain as compared to the training data. Therefore,
it is important to investigate how SSTH performs given lim-

ited training data and how SSTH generalizes to cross-dataset
retrieval tasks, e.g., training on FCVID but testing on YFCC
and vice versa.

Figure 7 shows the mAP@20 of all the methods using
256 bits on two datasets trained by various percentages of
training data. Obviously, all the methods gain better per-
formance when using more training data. In particular,
the generalization ability of the proposed SSTH is signifi-
cantly better than others. For example, by using only the
half training data, SSTH achieves similar performance to
the most competitive MFH on FCVID and outperforms all
the methods on YFCC. We believe that this is due to the
strong expressive ability of the deep architecture of SSTH.
Table 2 lists the cross-dataset performance of all the hash-
ing methods. We can see that all of them suffer a consider-
able performance drop when training on FCVID but testing
on YFCC. This demonstrates that when training data are
relatively small, e.g., around 50 thousands of FCVID, the
practical use of data-driven hash models is limited due to
the train/test dataset discrepancy. However, if the training
data are sufficient, e.g., around 600 thousands of YFCC, we
can observe that all the methods, except SubMod, achieves
much better performance gain as compared to that of train-
ing on FCVID; in particular, SSTH achieves consistently
increasing gain when using all the bit sizes. This demon-
strates that the expressive power of the SSTH architecture
is strong. The reason why SubMod achieves the worst gener-
alization is perhaps that the binary code selection procedure
is heavily biased to particular datasets. In summary, based
on the above observations, we believe that SSTH has a great
potential in real-world CBVR due to its generalization abil-

789

ity in unsupervised learning from the inexhaustible videos
on the Web.

6. CONCLUSIONS
In this paper, we proposed a novel video hashing frame-

work called Self-Supervised Temporal Hashing (SSTH). In
sharp contrast to existing video hashing methods that are
generally based on frame pooling, SSTH explicitly models
video temporal information and directly optimizes the bi-
nary code learning problem without relaxation. Through
extensive experiments on two large consumer video datasets,
we have demonstrated that the effectiveness of SSTH is
due to its three distinguished designs: Binary Long-Short
Term Memory, Self-Supervision Learning Strategy and Bi-
nary Backpropagation. To the best of our knowledge, SSTH
is the first unsupervised deep video hashing model.

SSTH is essentially a generic end-to-end framework for
binary representation learning of any sequential multimedia
data. In this view, a possible future direction is to apply
SSTH to other temporal multimedia applications where im-
ages and texts can be traced by time, such as multimedia
user profiling and news event prediction. Further, we can
also extend SSTH to supervised and semi-supervised hash-
ing framework if labels are available.

Acknowledgements
NExT research is supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its IRC@SG
Funding Initiative.

7. REFERENCES
[1] Y. Bengio, N. Léonard, and A. Courville. Estimating or

propagating gradients through stochastic neurons for
conditional computation. arXiv preprint arXiv:1308.3432,
2013.

[2] A. Bergamo, L. Torresani, and A. W. Fitzgibbon. Picodes:
Learning a compact code for novel-category recognition. In
NIPS, 2011.

[3] L. Cao, Z. Li, Y. Mu, and S.-F. Chang. Submodular video
hashing: a unified framework towards video pooling and
indexing. In MM, 2012.

[4] M. Courbariaux and Y. Bengio. Binarynet: Training deep
neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

[5] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval:
Ideas, influences, and trends of the new age. ACM Computing
Surveys, 2008.

[6] T.-T. Do, A.-D. Doan, and N.-M. Cheung. Learning to hash
with binary deep neural network. In ECCV, 2016.

[7] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell. Long-term
recurrent convolutional networks for visual recognition and
description. In CVPR, 2015.

[8] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep
hashing for compact binary codes learning. In CVPR, 2015.

[9] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in
high dimensions via hashing. In VLDB, 1999.

[10] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier
neural networks. In ICAIS, 2011.

[11] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative
quantization: A procrustean approach to learning binary codes
for large-scale image retrieval. TPAMI, 2013.

[12] A. Graves and J. Schmidhuber. Framewise phoneme
classification with bidirectional lstm and other neural network
architectures. Neural Networks, 2005.

[13] J. H̊astad. Some optimal inapproximability results. JACM,
2001.

[14] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank. A survey on
visual content-based video indexing and retrieval. TSMC Part
C, 2011.

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167, 2015.

[16] Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang.
Exploiting feature and class relationships in video
categorization with regularized deep neural networks. arXiv
preprint arXiv:1502.07209, 2015.

[17] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based
multimedia information retrieval: State of the art and
challenges. TOMM, 2006.

[18] H. Li. Multimodal visual pattern mining with convolutional
neural networks. In ICMR, 2016.

[19] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in
hamming space with multi-index hashing. In CVPR, 2012.

[20] P. Over, J. Fiscus, G. Sanders, D. Joy, M. Michel, G. Awad,
A. Smeaton, W. Kraaij, and G. Quénot. Trecvid 2014–an
overview of the goals, tasks, data, evaluation mechanisms and
metrics. In Proceedings of TRECVID, page 52, 2014.

[21] J. Revaud, M. Douze, C. Schmid, and H. Jégou. Event retrieval
in large video collections with circulant temporal encoding. In
CVPR, 2013.

[22] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised
discrete hashing. In CVPR, 2015.

[23] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[24] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and
R. Jain. Content-based image retrieval at the end of the early
years. TPAMI, 2000.

[25] C. G. Snoek and M. Worring. Concept-based video retrieval.
FTIR, 2008.

[26] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong. Multiple
feature hashing for real-time large scale near-duplicate video
retrieval. In MM, 2011.

[27] N. Srivastava, E. Mansimov, and R. Salakhudinov.
Unsupervised learning of video representations using lstms. In
ICML, 2015.

[28] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In NIPS, 2014.

[29] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni,
D. Poland, D. Borth, and L.-J. Li. The new data and new
challenges in multimedia research. arXiv preprint
arXiv:1503.01817, 2015.

[30] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell:
A neural image caption generator. In CVPR, 2015.

[31] H. Wang and C. Schmid. Action recognition with improved
trajectories. In ICCV, 2013.

[32] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing
for large-scale search. TPAMI, 2012.

[33] J. Wang, W. Liu, S. Kumar, and S.-F. Chang. Learning to hash
for indexing big data: A survey. Proceedings of the IEEE, 2016.

[34] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, 2009.

[35] Z. Wu, Y. Fu, Y.-G. Jiang, and L. Sigal. Harnessing object and
scene semantics for large-scale video understanding. In CVPR,
2016.

[36] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun
database: Large-scale scene recognition from abbey to zoo. In
CVPR, 2010.

[37] Y. Yang, Z.-J. Zha, Y. Gao, X. Zhu, and T.-S. Chua.
Exploiting web images for semantic video indexing via robust
sample-specific loss. TMM, 2014.

[38] G. Ye, D. Liu, J. Wang, and S.-F. Chang. Large-scale video
hashing via structure learning. In CVPR, 2013.

[39] Z.-J. Zha, M. Wang, Y.-T. Zheng, Y. Yang, R. Hong, and T.-S.
Chua. Interactive video indexing with statistical active
learning. TMM, 2012.

[40] Z.-J. Zha, H. Zhang, M. Wang, H. Luan, and T.-S. Chua.
Detecting group activities with multi-camera context. TCSVT,
2013.

[41] H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua.
Discrete collaborative filtering. In SIGIR, 2016.

[42] H. Zhang, Z.-J. Zha, Y. Yang, S. Yan, Y. Gao, and T.-S. Chua.
Attribute-augmented semantic hierarchy: towards bridging
semantic gap and intention gap in image retrieval. In MM,
2013.

[43] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic
ranking based hashing for multi-label image retrieval. In
CVPR, 2015.

790

