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ABSTRACT
Recently, remarkable progress has been achieved in human ac-
tion recognition and detection by using deep learning techniques.
However, for action detection in real-world untrimmed videos, the
accuracies of most existing approaches are still far from satisfactory,
due to the difficulties in temporal action localization. On the other
hand, the spatiotempoal features are not well utilized in recent
work for video analysis. To tackle these problems, we propose a
spatiotemporal, multi-task, 3D deep convolutional neural network
to detect (including temporally localize and recognition) actions in
untrimmed videos. First, we introduce a fusion framework which
aims to extract video-level spatiotemporal features in the training
phase. And we demonstrate the effectiveness of video-level fea-
tures by evaluating our model on human action recognition task.
Then, under the fusion framework, we propose a spatiotemporal
multi-task network, which has two sibling output layers for action
classification and temporal localization, respectively. To obtain pre-
cise temporal locations, we present a novel temporal regression
method to revise the proposal window which contains an action.
Meanwhile, in order to better utilize the rich motion information
in videos, we introduce a novel video representation, interlaced im-
ages, as an additional network input stream. As a result, our model
outperforms state-of-the-art methods for both action recognition
and detection on standard benchmarks.

CCS CONCEPTS
• Computing methodologies→Activity recognition and un-
derstanding;

KEYWORDS
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1 INTRODUCTION
Recently, action recognition and localization in videos receive exten-
sive research interests because of its wide applications on real-world
video analyses. Early methods [21, 42, 43], utilized engineering fea-
tures or spatiotemporal local descriptors as video representations,
based on which the actions are detected and classified. In recent
years, deep convolutional neural networks have shown the remark-
able progress in many computer vision related areas, such as image
classification [14, 20, 34, 38, 39], objection detection [11, 13, 31].
Deep learning based action classification approaches [7, 33, 46, 47]
also have been proposed but mainly for trimmed short videos (one
video only contains one action). However, most videos in real-
world application are long, untrimmed, and contain multiple action
instances, which means action detection in these videos actually
involves another challenge task: temporal localization of the ac-
tions. In this paper, we propose a novel spatiotemporal multi-task
network for action detection from real-world untrimmed videos,
based on a 3D deep convolutional neural network architechture.
Additionally, we also explore a better representation of videos to
capture motion information.

Unlike images, videos are 3D signals in nature and have motion
information. Therefore how to extract effective features that reveal
both spatial and motion characteristics from videos is a challenge
topic. Recent works [33, 47] tackle this issue by sampling several
frames and extracting CNN features as the representation of the
videos. Obviously, this representation mainly contains appearance
information thus not sufficient for action detection. [16, 40, 41]
extract spatiotemporal features of fixed-size volumes. However it is
unreasonable to apply the video-level labels to all sampled volumes.
What’s far more important is that the spatiotempoal features are
not well utilized in these work. Inspired by the idea of long-range
temporal structure modeling [8, 10, 24, 45] and descriptor aggre-
gation structure [57], we propose a fusion framework to extract
video-level spatiotemporal features.

For temporal localization, we argue that the spatiotemporal fea-
tures are effective for modeling actions and locating their temporal
boundaries. Most state-of-the-art approaches [18, 44] rely on hand-
craft features, such as improved Dense Trajectory (iDT) with Fisher
Vector [25, 43], but the performances are still far from satisfactory.
Recent works [23, 28, 52] extract features by 2D deep convolutional
neural networks. However, only appearance information is consid-
ered in these methods. To explicitly take temporal localization into
consideration, we present a multi-task 3D convolutional network
based the proposed fusion framework. Specifically, this network
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has two sibling output layers, one outputs a discrete probability dis-
tribution and another outputs temporal window regression offsets.

In addition, we also study the impact of different representations
of videos. Recently, several papers [33, 49] employ multi-stream
structure for action recognition, which aims to incorporate the
appearance and motion information simultaneously. In work [47],
the authors proposed using RGB difference images and warped
optical flow fields as input modality. However, the computation of
optical flow is very expensive. And the movement information is
not well expressed in these approaches. To tackle this problem, we
introduce the concept of interlaced images, which extended from a
traditional technique for "painting" videos on an electronic display
screen. This method is simple, but effective in capturing motion
perception from videos. In our work, the interlaced images will be
used as an additional input stream to capture motion information,
which further improves the performance of our model.

In summary, the main contributions of this paper are as fol-
lows. First, we present a fusion framework to extract video-level
spatiotemporal features in the training phase. Our experiments
show the effectiveness of video-level spatiotemporal features and
this method achieves significantly superior performances compared
with most recent methods on action recognition task. Second, based
on the proposed fusion framework, we design a multi-task 3D con-
volutional neural network for action detection in an end-to-end
fashion. To the best of our knowledge, this work is the first end-
to-end framework for action detection based on 3D convolutional
neural networks. Third, with the help of our study on representa-
tion of videos, we propose to use interlaced images as inputs for
capturing more motion information. In our experiments, the model
based on interlaced images outperforms traditional optical flow
fields based approaches.

2 RELATEDWORK
In this section, we introduce related work along four directions:
action recognition, temporal action localization, multi-task learning
and cross-modality representation.

Action recognition. In early works [21, 42], hand-craft features
have proved effective for video classification and the method [3, 43]
based on the improved dense trajectories (iDTs) achieve competi-
tive performance on standard benchmarks. In recent years, deep
learning techiques, especially the convolutional neural networks
[14, 20, 34], have show their powerful ability in many computer
vision areas. The works [14, 39] have achieved human-level perfor-
mance in the challenging ImageNet [4] classification task. To ex-
ploit deep neural networks for video analysis, deep neural network
models [37, 46, 47, 49, 59] have been proposed and achieve better
performance than traditional methods. A few attempts [48, 50, 55]
discover new approaches for pooling frame-level features for better
performance, and [7, 37] explore novel fusion structure on training
stage for better model learning. Recent methods [6, 51, 53] apply
RNN to understand a video by feeding a sequence of frame-level
features, and achieve competitive results for both action recogni-
tion and video caption task. However, these approaches are not
possible to learn from entire videos due to their limited temporal
coverage. Our method tackle this issue by its fusion framework.

To learn spatiotemporal features of videos, an early work [16]
extended deep convolutional neural network to three-dimensional,
Tran [40] trained deep 3DConvolutional Networks (C3D) on a large-
scale video dataset [19] and achieved state-of-the-art performance.
Varol [41] extend the 3D convolutional networks to long-term tem-
poral convolution structures and achieve significant improvement
over original models. Other works [7, 22, 37, 59] propose their
models with spatiotemporal features for better performance. These
methods directly operated on volumes clipped from videos. How-
ever, it is problematic to apply video-level labels to all sampled
volumes. We follow this line of work with the addition of fusion
mechanism in the training phase to improve original models.

Temporal localization. Recent work [44] treat this topic as a
classification problem and apply a temporal sliding window ap-
proach, where each window is regarded as an action candidate
subject to classification. To specifically tackle the temporal preci-
sion of action detection, Gaidon [9, 10] modeled the structure of
action sequence with atomic action units (actoms). Xu [50] intro-
duce a latent concept descriptor of convolutional feature map, and
achieve great results on action detection with VLAD encoding. In
[26] the approximately normalized Fisher Vectors were proposed
to reduce the high dimensionality of FV. Another line of work fo-
cus on localizing action in space and times at the same time. Jain
[15] and Soomro [35] merge super-voxels in their works for action
localization. Gkioxari [12] and Raptis [30] automatically localize a
spatio-temporal tube in a video. Ramanathan [52] use RNN with
the addition of an attention mechanism to attend to the action par-
ticipants for action detection within longer untrimmed videos. To
exploit deep learning for temporal localization, Shou [32] proposed
Segment-CNN which is a deep network framework with multi-
stage processes for temporal action localization. The most of these
works focus on learning from data when the temporal boundaries
have been annotated for action instances in untrimmed videos. This
paper introduced here aims to solve the problem of precise action
detection in untrimmed long videos in the wild.

Multiple task learning. Recent works have demonstrated that
deep learning approaches with multi-task structure can boost up
the performance of each task. For object detection task, Fast R-CNN
[11] proposed a multi-task framework to take object recognition
and localization into consideration simultaneously, and later ap-
proaches [27, 31] have followed this idea. For face detection, [27, 58]
detection and alignment tasks are jointly modeled in their proposed
deep multi-task framework, which exploit the inherent correlation
between these two tasks to improve overall performance. In [29],
more than two tasks have been integrated into a deep framework,
such as face detection, landmark localization, pose estimation, gen-
der recognition and etc. For video analysis, Diba [5] proposed a
multi-task framework which joint action recognition and motion
estimation, and achieved impressive performance for action recog-
nition. As an analogy of object and recognition in still images,
in which instance recognition and bounding-box regression are
unified in one framework by using CNN features, we propose an
end-to-end deep framework, which consider action classification
and temporal localization simultaneously by using spatiotemporal
features.
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Figure 1: Overview of our model. The input to the model is a untrimmed video, and the output is a set of action predictions.
For the entire video, we first generate dozens to hundreds of proposals of various durations via temporal sliding window. Each
proposal window will be fed into the spatiotemporal multi-task network by dividving into K segments. After fusion layer in
each branch, the first sibling layer outputs a discrete probability distribution over C + 1 categories, the second sibling layer
outputs temporal window regression offsets. During prediction, some post-processing methods (e.g. temporal NMS etc.) are
used.

Cross-modality representation. To incorporate the appear-
ance and motion information, [33] proposed the two-stream archi-
tecture which consists of optical flow and RGB streams. Following
this direction, Wang [47] introduced two new type of input modal-
ities, namely stacked RGB difference and stacked warped optical
flow field. This work also explored a number of pretty practices
to solve the difficulties caused by different input modalities, such
as cross-modality pre-training. The work [41] show that the im-
pact of different representation and demonstrate the importance
of high-quality optical flow map for learning precise models. [49]
extend the two-stream framework to a multi-stream architecture,
and introduced audio spectrogram to improve the performance for
video classification. However, the most computationally expensive
step in these approaches comes from the calculation of optical flow.
In [56], optical flow was replaced by motion vector, which can be
obtained directly from compressed videos. To exploit more effective
representations, the concept of dynamic image has been proposed
in [1], which is a compact representation of videos and obtained by
directly applying rank pooling on the raw image pixels. To capture
rich motion information from videos, we introduce the concept of
interlaced images to capture motion information.

3 OUR METHOD
As observed in the Section 1, the action detection task contains
two sub-tasks: action instance recognition and temporal action
localization. Temporal localization is a challenge topic, due to the
difficulties in temporal feature extraction. For object detection in
still images, the couvolutional neural networks provide better fea-
tures compare with traditional hand-craft features, and achieve
impressive performance. Howeve, there is no remarkable improv-
ment when extend the deep networks from images to videos for

action recognition and detection. This motivates us to build a frame-
work which can extract effective features for action detection in
videos.

In this section, we will detail the proposed approach for action
detection in long untrimmed videos. Specifically, we firstly present
the proposed fusion framework together with feature aggregation
mechanism and sampling strategy to extract video-level spatiotem-
poral features. And then we will illustrate the architectures of the
proposed multi-task 3D convolutional neural network in detail, as
shown in Figure 1. Finally, we describe the training process as well
as the testing process of the learned model.

3.1 Video-level feature extraction
As we discussed in Sec.1, it is problematic to apply video-level la-
bels to all sampled volumes. Our experiments show that a volume
can only cover very limited frames (e.g. 16), due to the limited of
storage and computational resources. However, these small vol-
umes are more likely to be irrelevant to or less relevant to the
action categories at video level, especially for complex sports ac-
tions, such as dunk. It would be extremely a loss and hurt to the
final performance. To tackle this issue, we propose a fusion frame-
work to extract real video-level features by aggregating segmental
spatiotemporal features, as shown in Figure 2.

Segment-level fusion. This fusion framework aims to capture
the appearance and temporal information of the entire video for
video-level predictions. Instead of fusing the inferred results of
different volumes, our framework perform aggregating operation
directly in the training phase. Specifically, given a video, we divide
it into several segments of the same durations, and then sample
a sequence of short snippets from these segments. Note that a
snippet contains a certain number of frames sampled from the

Session 2 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

289



3D-Conv1a
3D-Pool1

3D-Conv2a

3D-Pool5

3D-Pool2
3D-Conv3a
3D-Conv3b
3D-Pool3

3D-Conv4a
3D-Conv4b
3D-Pool4

3D-Conv5a
3D-Conv5b

FC6
FC7

3D-Conv1a
3D-Pool1

3D-Conv2a

3D-Pool5

3D-Pool2
3D-Conv3a
3D-Conv3b
3D-Pool3

3D-Conv4a
3D-Conv4b
3D-Pool4

3D-Conv5a
3D-Conv5b

FC6
FC7

3D-Conv1a
3D-Pool1

3D-Conv2a

3D-Pool5

3D-Pool2
3D-Conv3a
3D-Conv3b
3D-Pool3

3D-Conv4a
3D-Conv4b
3D-Pool4

3D-Conv5a
3D-Conv5b

FC6
FC7

Fusion
FC8
Loss

Segment-1

Share Weights Share Weights

Segment-2 Segment-3

Figure 2: Overview of our fusion architecture. Given a video,
we divide it into K segments, and we illustrate an example
of K = 3 in this figure. Then these segments will be fed into
the 3D convolutional neural networks respectively, and the
weights of networks before fusion layer are shared. By ap-
plying concatenation fusion method, we can extract video-
level spatiotemporal features. Finally, the obtained features
can be used for classification and detection task.

corresponding segment. In our framework, each snippet in this
sequence will be fed into the 3D convolutional neural network and
produce the corresponding spatiotemporal features. These features
will be aggregated in the learning process, and derived as the video-
level spatiotemporal features for optimizing the loss value of video-
level rather than the segment or volume levels.

To be clearer, our intention here is to fuse the spatiotemporal
features of all segments (in particular fully connected layer), such
as concatenating these features. The idea is inspired by the recent
work [47] of long-range temporal modeling, which produces the
final video-level prediction by fuse the preliminary prediction of
snippets. However, according to our experiments, performance is
improved when perform the fusion operation on the feature layer
compared with the prediction layer. The final architecture is shown
in Figure 2.

Formally, given a videoVv , wherev = 1, ...,N and N is the num-
ber of video samples, we firstly divide the video into K segments
{S1v , S

2
v , ..., S

K
v } in equal duration. Then we perform the sampling

operation on each segment Skv to produce a sequence snippets
{T 1
v ,T

2
v , ...,T

K
v }. This operation is denoted as:

T kv = R (Skv ),k = 1, ...,K , (1)

where K is the number of segments and R (Skv ) represent the sam-
pling function. This sequence of snippets will be fed into the 3D con-
volution neural network as input stream, and a set of spatiotemporal
features { f 1v , f 2v , ..., f Kv } will be obtained by performing convolu-
tional network parametersW on each snippet. Note that f kv ∈ RD ,
where D is the length of feature vector (e.g. 4096). These feature
vectors will be fused to produce an output feature vector Fv , where
Fv ∈ R

D′ , andD ′ is the length of the final feature vector to learn our
model. Specifically, the fusion function is Fv = H ( f 1v , f

2
v , .., f

K
v ).

In summary, the process of video-level feature extraction can be
formed as:

Fv = H (G (R (S1v );W ), ...,G (R (SKv );W )), (2)

where G (R (Skv );W ) is the function representing the operations of
the 3D deep network before fusion layer. In this work, the fusion
operation is implemented by inserting a fusion layer before the
final fully connected layer.

So far, there are three open questions remained for our fusion
framework about aggregation function H , sampling function R and
the number of segments K . In this paper we evaluated several dif-
ferent forms of the aggregation function H , including maximum,
stochastic, evenly averaging and concatenation. Our experiments
show that the model with concatenation fusion achieves the best
performance, thus the concatenation fusion is used in our final
framework. We also assessed three different forms of the sampling
function R, including random sampling n frames, random a volume
and isometric sampling, as shown in Figure 4. Among these sam-
pling strategies, the performance for random sampling volumes and
sampling isometric achieve similar level, and sampling isometric
has better performance than the other two. The last question is how
to select an appropriate value of K . The main purpose of dividing a
video into K segments is to extract richer features from the videos
constrained by the limited of memory and computation resources.
In the extreme case, K = 1, the model will degenerate to the simply
original 3D convolutional neural network (C3D[40]), and a larger
K will lead to more parameters. Finally, in our framework K is set
to 3.

Interlaced images. As we discussed in Sec.1, motion informa-
tion is pretty useful for video analysis, and optical flow is a widely
used method to capture motion information in videos. However,
the range of optical flow fields is different with RGB images. Most
approaches will discretize optical flow fields into the interval of 0 to
255 by a linear transformation. Though the results of these methods
are pretty resonably by using transformed optical flow fields as
inputs, but the cost of generating optical flow fields is very large.
We introduce the interlaced images to capture motion information
from RGB images more efficiently. Traditionally, one interlaced
image is generated from two frames in raw videos by filling the
value of odd lines with corresponding line in the first raw frames
and operating the same rules on even lines. We extend this method
with a parameter L to assemble L raw frames for one interlaced
image, the method is shown in Figure 3. In our experiments, we
generate one interlaced image from 3 raw frames.
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Figure 3: Examples of interlaced images. We show an exam-
ple of M = 3 to generate a interlaced image. Top row: 3 raw
frames in a video. Center row: Intermediate result images.
Bottom row: The resulting interlaced image.

3.2 Multi-task framework
As aforementioned, multi-task framework is adopted for action
detection in end-to-end fashion from untrimmed long videos, as
shown in Figure 1. In order to achieve optimal performance, a few
practical concerns should be taken care of, such as the strategy to
generate temporal proposal windows. To this end, we adopt a series
of good practices in training multi-task 3D convolutional neural
networks.

Network architecture. For spatiotemporal feature extraction,
[16, 40] proposed 3D convolutional neural networks to perform
convolution/pooling in spatial and temporal dimensions simulta-
neously. The network, the network in [40] (C3D) is trained on a
large-scale video dataset, Sports-1M [19], and achieve the state-of-
the-art performance for action recognition. Therefore, we follow
the network architecture in [40], in which we keep all 3D convo-
lution layers, all 3D pooling layers and two fully connected layers
(fc6 and fc7). After the second fully connected layer (fc7), we insert
a fusion layer followed by a dropout layer, which is described in
Sec.3.1, to boost up the performance of original C3D models and ex-
tract video-level spatiotemporal features. The number of filters for
the last fully connected layer (fc8) is correspond with the number
of categories C .

For multi-task learning, we add a new branch after the last con-
volution layer (conv5b) based on the proposed fusion framework.
Specifically, five layers are added: global pooling layer - fully con-
nected layer - fully connected layer - fusion layer - fully connected
layer. Follow the parameters in [40], all 3D convolution layers have
kernel size 3 and stride 1 in all three dimensions. All 3D pooling
layers use max pooling and have kernel size of 2ÃŮ2 in spatial with
stride 2, while vary in temporal. The input for this network is a

Random Sampling Random a volumeIsometric Random

Figure 4: Three examples of sampling strategy in segments.
The left example shows that random sampling L frames. The
center example shows that sampling L frames with the iso-
metric rule. The right example shows that random a volume
of lengthL. Note that a sampled volume is a spatial-temporal
video clip from consecutive frames.

sequence snippets of a video of dimension S ∗ 16 ∗ 128 ∗ 171, where
S is the number of segments.

Loss function. Our proposed multi-task 3D convolutional neu-
ral network has two sibling output layers. The first outputs a dis-
crete probability distribution (per proposal window),p = (p0, ...,pC ),
over C + 1 categories. As usual, p is computed by a softmax over
the C + 1 outputs of the final fully connected layer. The second
sibling layer outputs temporal window regression offsets, tc =
(tcstar t , t

c
center ), each of the C action classes, indexed by c . Espe-

cially, tk specifies a time-point shift relative to a temporal proposal
window. Each proposal window is labeled with a ground-truth class
u and a ground-truth temporal window regression target v .

We define the multi-task loss L to combine loss for classification
and temporal window regression:

L(p,u, tu ,v ) = Lcls (p,u) + λ[u ≥ 1]Lr eд (tu ,v ), (3)

in which the first loss, Lcls is conventional log loss for true class u,
which is effective for training deep networks for classification and
formed as:

Lcls (p,u) = −loдpu (4)
The second loss, Lr eд , is defined over a tuple of true temporal
window regression targets v = (vstar t ,vcenter ), and a predicted
tuple tu = (tustar t , t

u
center ), for class u. Specially, we employ the

Euclidean loss for each proposal temporal window and the catch-all
background class is labeled u = 0 by convention. For background
proposal windows there is no notion of a ground-truth temporal
regression target and hence Lr eд can be ignored, the loss formed
as:

Lr eд (t
u ,v ) = | |tu −v | |22 . (5)

In Eq.3, the Iverson bracket indicator function [u ≥ 1] evaluates
to 1 when u ≥ 1 and 0 otherwise, and the hyper-parameter λ
balances the contribution from each loss. We find that λ = 10
works well in practice, through empirical validation. For temporal
regression, we normalize the ground-truth regression targets v to
have zero mean and unit variance.

3.3 Training
Initialization. Most deep frameworks for image tasks initialize
network weights from a pre-trained model, such as pre-trained
ImageNet [4] networks. Follow this idea, we initialize our network
weights with a pre-trained C3D model [40] on Sports-1M [19] and
perform the transformation. Specifically, the last fully connected
layer and softmax (which were trained for 200-way Sports-1M
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classification) of the original network are replaced with two sibling
layers described in Section 3.2. In this work, we use the stochastic
gradient descent (SGD) to learn the network weights.

Mini-batch sampling. Unlike classification task, example sam-
pling is important for detection task both in still images and videos.
During fine-tuning, each SGD mini-batch is constructed from N
videos, chosen uniformly at random (as is common practice). With
the limited of memory resources (e.g. 12GB for NVIDIA M40), we
construct a mini-batch of size 12 by random 4 temporal proposal
windows from each chosen video. And we keep one proposal win-
dow from these 4 selected proposal windows is positive example,
while others are negative examples. The positive examples are pro-
posal windows that have temporal intersection over union (IoU)
overlap with a groundtruth temporal window of at least 0.5. Note
that the temporal windows labeled with a foreground action class
are also positive examples. The remaining proposal windows that
have a maximum temporal IoU with groundtruth in the interval
[0, 0.5) are defined as negative samples and are labeled as u = 0.

To generate proposal windows, we slide temporal windows with
varied durations. In our experiments, the length of proposal win-
dows vary from 16 frames to 1600 frames. During training, examples
are horizontally flipped with probability 0.5, and random cropping
mechanism will be applied. Note that the examples are snippets
sampled from videos, these operations have to be careful to main-
tain consistency of the video. No other data augmentation is used
in this work.

SGD hyper-parameters. According to previous work on im-
age detection [11], the fully connected layers used for softmax
classification and temporal window regression are initialized from
zero-mean Gaussian distributions with standard deviations 0.01 and
0.001, respectively. Biases are initialized to 0. For all experiments,
all layers use a per-layer learning rate of 1 for weights and 2 for
biases and a global learning rate of 0.0001. A momentum of 0.9 and
parameter decay of 0.0005 (on weights and biases) are used. For
action recognition task, the learning rate decreases to its 1

10 every
12000 iterations. The maximum iteration is set as 30000. For action
detection task, the learning rate decreases to its 1

10 every 20000
iterations. The maximum iteration is set as 45000. Specifically, our
method is implemented based on Caffe [17].

3.4 Prediction
During prediction, we process the entire video directly to gener-
ate temporal proposal windows by using the strategy described in
Section 3.3. Then we feed these proposal windows into the multi-
task 3D convolutional neural network to obtain action category
predictions and temporal window regression offsets. The windows
predicted as the background will be removed. Finally, we apply tem-
poral Non-maximum Suppression (NMS) on remaining temporal
windows to remove redundant detections.

4 EXPERIMENTS
In this section, we firstly introduce the evaluation datasets. Then
we evaluate the effectiveness of the proposed fusion framework for
learning video-level features and the novel representation of videos
for capturing motion information. Finally, we also compare the
performance of our method with the-state-of-the-art methods. In

Table 1: Performance comparision of different fusion func-
tion in UCF101.

Fusion Function Accuracy #layer

Maximum 80.45% 18
Average 82.89% 18
Stochastic 82.20% 18
Concatenation 86.38% 17

Table 2: Performance comparision of different sampling
strategies (Sec.3.1) in UCF101.

Sampling
Strategy

Random
frames

Random
a volume

Isometric
sampling

Accuracy 85.47% 86.38% 86.44%

addition, we also discussed the results of each experiments together
with discussions about the performance differences.

4.1 Datasets and setup
We conduct our experiments on two large video datasets, namely
UCF101 [36] and ActivityNet [2]. UCF101 [36], contains 101 action
classes and 13,320 trimmed videos. This dataset was built for action
recognition, we follow the provided evaluation protocol and adopt
the three training/testing splits for evaluation. The second dataset is
ActivityNet [2], which contains 68.8 hours of temporal annotations
in 849 hours of untrimmed, unconstrained video. There are 1.41
action instances per video and 193 instances per class. ActivityNet
validation is applied to evaluate the action detection accuracy.

4.2 Evaluation of the fusion framework
In this subsection we focus on the study of the proposed fusion
framework in UCF101 action recognition datasets [36]. All exper-
iments in this subsection are conducted on the split 1 of UCF101
dataset [36]. We first study the impact of the number of segments,
different fusion functions and different sampling strategies for our
framework. Next, we study the effect of using interlaced images
as inputs and compare it with optical flow fields. We also compare
our final model with the state-of-the-art methods.

Fusion function. Here we evaluate four candidate functions:
(1) maximum, (2) average, (3) stochastic, (4) concatenation for the
form of fusion function. In this experiment, the number of segments
is 3, and the sampling strategy is random a volume in each segment.
The experimental results are summarized in Table 1, and concate-
nation fusion function achieves the best performance. Compare
these functions, we argue that the concatenation function main-
tains temporal characteristics among segments and enhances the
temporal features. Following the results of this experiments, we
choose concatenation as the default aggregation function.

Sampling strategy. As discussed in Section 3.1, the sampling is
useful for analysis. Here, we evaluate three candidate strategies: (1)
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Table 3: Comparison with state-of-the-art methods (RBG in-
puts only) in UCF101.

Methods Acc. (RGB only)

Two Stream [33] 72.70%
C3D (1 net) [40] 82.30%
C3D (3 nets) [40] 85.20%
TDD+FV [46] 82.80%
LTC [41] 81.50%
KVMF [59] 85.30%

Two Stream (VGG16) [47] 84.50%
Two Stream (BN-Inception v3) [47] 84.50%

TSN [47] 85.70%
Wu, multi-stream [49] 84.00%

Ours 86.77%

random sampling frames, (2) random a volume, (3) isometric sam-
pling frames. In this experiment, the fusion function is concatena-
tion, and the number of segments is 3. The results are summarized in
Table 2. We see that the model with isometric sampling in segments
achieves the best performance. Compare with other strategies, we
believe that isometric sampling can cover more frames and capture
richer information in videos. So we choose isometric sampling as
the default sampling strategy.

RGB images based model.We compare our framework with
recent state-of-the art methods, especially deep learning based
methods, in UCF101 dataset (split 1)[36]. Specifically, our method
only use RGB images and processed RGB images (interlaced images)
as inputs. So the results reported in this paper are RGB input only.
The results are summarized in Table 3.

Analysis.Compare with the original 3D convolutional networks
based model (C3D) [40], our method outperforms by 4.14% and
1.24% for 1-net model and 3-net model respectively. Compare with
two stream architecture based methods, our model also achieve
better performance, where Two Stream (VGG16) and Two Stream
(BN-Inception v3) are implemented in [47] based on original two-
stream method [33]. Wu [49] extend the two stream architecture to
multi-stream architecture. We also compare our result with other
recent deep learning based methods, such as trajectory-pooled
deep-convolutional descriptors (TDD) [46], long term convolution
networks (LTC) [41], and key volume mining framework (KVMF)
[59] and Temporal Segment Networks (TSN) [47]. Our best result
outperforms other methods by 1.07% on the UCF101 dataset [36]
(split 1) by using a small 3D convolutional neural networks. The
superior performance of our methods demonstrates the effective-
ness of proposed spatiotemporal fusion framework and justifies the
importance of video-level spatiotemporal features.

4.3 Action detection
In this subsection, we evaluate our multi-task framework in Activi-
tyNet [2] for action detection. Specifically, evaluation is applied on
the ActivityNet validation set, because the online evaluation system
has been closed. We compare our method with existing work [2],
which provides a baseline result for comparsion. The method of

Table 4: Summary of action detection results. We report the
mAP score for all activity classes.

Method α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

[2] with MF 11.7% 11.4% 10.6% 9.7% 8.9%
[2] with DF 7.2% 6.8% 4.9% 4.1% 3.7%
[2] with SF 4.2% 3.9% 3.1% 2.1% 1.9%
[2] Fusion 12.5% 11.9% 11.1% 10.4% 9.7%

Ours 28.89% 24.85% 20.17% 17.88% 14.21%

Table 5: Comparison with the optical flow based methods in
UCF101. Optical Flow Fields* represent the result by using
optical flow fields as inputs in our framework.

Input Modality Accuracy

Optical Flow Fields* 75.80%

LTCF low (16f) [41] 78.7%
LTCF low (100f) [41] 82.60%
LTCF low (60f+100f) [41] 83.80%

Optical Flow [Clarifai] [33] 81.0%
Optical Flow [GoogLeNet] [47] 83.9%
Optical Flow [VGGNet-16] [47] 85.7%
Optical Flow [BN-Inception] [47] 87.2%

Interlaced Images 84.32%
Interlaced Images+static-rgb 87.36%

this work [2] is based on combination of dense trajectories, SIFT,
and ImageNet-pretrained CNN features. This work investigate the
performance of the different feature types, individually and collec-
tively. Specifically, the value of alpha (α ) is the overlap threshold.
The results are summarized in Table 4. And the performance of
proposed method outperforms these methods.

This experiments demonstrates the effectiveness of our video-
level spatiotemporal features based multi-task deep network for
action detection in untrimmed long videos. For comparsion, we
report the results of baseline method based different features, such
as hand-craft features, CNN features and etc. The results show that
the features have a great impact on the performance. And compared
to other features, spatiotemporal features are more effective for
video analysis. In addition, the multi-task network architecture is
also valuable for video analysis.

4.4 Evaluation of interlaced images
As described in Section 3.1, we propose a novel representation of
videos to capture motion information from RGB images, namely
interlaced images. To evaluate it, we feed the interlaced images into
our framework with the default settings. The settings have been
discussed above. And we setup two experiments for comparison.

In the first experiment, we compare proposed method with op-
tical flow fields based methods. And the results are summarized
in Table 5. Firstly, we compare our method with recent work [41]
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Table 6: Performance comparision of different input modal-
ities in UCF101. For comparison, we also report the accu-
racy of fusing interlaced images basedmodel and rgb images
based model.

Input Modality Accuracy

RGB Image [47] 84.5%
RGB Difference [47] 83.8%
RGB Image + RGB Difference [47] 87.3%

MDI-end-to-end [1] 70.90%
MDI-end-to-end+static-rgb [1] 76.90%
EMV-CNN with ST+TI [56] 79.3%

static-rgb 86.77%
Interlaced Images 84.32%
Interlaced Images+static-rgb 87.36%

which feeds optical flow fields into long-term 3D convolutional neu-
ral networks for action recognition. For fair comparison, we also
investigate the performance of our 3D Convolution based frame-
work, which is named Optical Flow Fields* in the table. Obviously,
the performance of our method outperforms all the 3D Convolution
based models. Except 3D Convolution based mehthods, we also
compare the results with normal convolutional network based mod-
els, for example two-stream ConvNets. The performance have been
reported in work [33, 47]. Our result also outperforms these CNN
based methods, even the very deep model, such as BN-Inception.
Specifically, we generate optical flow fields following method [54]
by using Opencv.

In the second experiment, we compare proposed method with
other input modalities based methods. The accuracies of recent
works for video representation [1, 56] are also reported in Table 6.
The authors designe new video representation as input modalities,
and the performance outperforms most optical flow fields based
methods. For comparison, we also report the result of the processed
RBG images based method in recent work [1, 56]. And for fair
comparsion, we aslo report result of one model and multiple models.
Specifically, we report the result of two models, which fuses the
result of interlaced images based model and RGB images baed
model. The experiment settings have discussed above. Finally, the
performance of proposed method outperforms these works.

4.5 State-of-the-art comparisons
Finally, we compare with the state-of-the-art methods in UCF101 in
Table 7. We make comparsion with recent work, such as two-stream
CNNs, multi-stream CNNs, 3D Convolution based models, hand-
craft based methods and etc. For comparsion, we also report the
result of multi-stream model base on proposed methods. The multi-
stream includes RGB images, optical flow and interlaced images
as input modality. And we use two kinds of model architectures,
proposed network architecture and normal convolutional neural
network. The final report of the performance is the result of multi-
stream of fusion. Obviously, the proposed method outperforms
almost all the approaches and approaches the best method.

Table 7: Comparison with state-of-the-art methods in
UCF101.

Methods Acc. (RGB only)

Two Stream [33] 88.0%
C3D (1 net) [40] 82.30%
C3D (3 nets) [40] 85.20%
TDD+FV [46] 90.30%
LTC [41] 91.70%
KVMF [59] 93.10%

Two Stream (VGG16) [47] 90.90%
Two Stream (BN-Inception v3) [47] 92.0%

Wu, multi-stream [49] 92.60%
Two Stream Fusion [7] 92.5%
EMV+RGB-CNN [56] 86.40%

MDI-end-to-end + static-rgb+trj [1] 89.10%

Ours + CNN 93.36%

5 CONCLUSION
In this paper, we have presented a spatiotemporal multi-task net-
work for action detection from untrimmed real-world videos. Specif-
ically, a fusion framework based on 3D convolutional neural net-
works is proposed to extract video-level spatiotemporal features.
Meanwhile, a novel video representation, namely interlaced im-
ages, is introduced to capture motion information from RGB images.
As demonstrated in UCF101[36] and ActivityNet datasets [2], our
model outperforms state-of-the-art methods and the effectiveness
of video-level spatiotemporal features has been proven. A direction
for future work is to explore the deeper 3D convolution neural
network architectures and extend our framework to learn more
powerful model.
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